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Wall-modelled large-eddy simulation of
three-dimensional turbulent boundary layer in a
bent square duct
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We conduct wall-modelled large-eddy simulation (WMLES) of a pressure-driven
three-dimensional turbulent boundary layer developing on the floor of a bent square duct
to investigate the predictive capability of three widely used wall models, namely, a simple
equilibrium stress model, an integral non-equilibrium model, and a partial differential
equation (PDE) non-equilibrium model. The numerical results are compared with the
experiment of Schwarz & Bradshaw (J. Fluid Mech., vol. 272, 1994, pp. 183–210).
While the wall-stress magnitudes predicted by the three wall models are comparable,
the PDE non-equilibrium wall model produces a substantially more accurate prediction
of the wall-stress direction, followed by the integral non-equilibrium wall model. The
wall-stress direction from the wall models is shown to have separable contributions from
the equilibrium stress part and the integrated non-equilibrium effects, where how the
latter is modelled differs among the wall models. The triangular plot of the wall-model
solution reveals different capabilities of the wall models in representing variation of flow
direction along the wall-normal direction. In contrast, the outer LES solution is unaffected
by the type of wall model used, resulting in nearly identical predictions of the mean
and turbulent statistics in the outer region for all the wall models. This is explained
by the vorticity dynamics and the inviscid skewing mechanism of generating the mean
three-dimensionality. Finally, the LES solution in the outer layer is used to study the
anisotropy of turbulence. In contrast to the canonical two-dimensional wall turbulence,
the Reynolds stress anisotropy exhibits strong non-monotonic behaviour with increasing
wall distance.
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1. Introduction

The capability to predict high-Reynolds-number turbulent flows is essential for many
natural and engineering flows such as external aerodynamics of wind turbines and aircraft
wings, flow over the hull of marine vehicles, and atmospheric boundary-layer flow over
complex landscapes and cityscapes, to name a few. However, due to extreme disparity
of scales present in high-Reynolds-number wall-bounded turbulent flows, any attempt to
simulate these flows directly on a computational grid without resorting to modelling of
some sort results in prohibitively large computational cost. To resolve all the scales of
the near-wall turbulent motions using direct numerical simulation (DNS), the required
number of grid points scales as O(Re37/14), where Re is the characteristic Reynolds
number. Wall-resolved large-eddy simulation (WRLES), which resolves only the large
(stress-carrying) eddies, reduces the grid point requirement to O(Re13/7) (Choi & Moin
2012). However, this level of computational cost is still unaffordable when the Reynolds
number is high. As a cost-effective alternative to the above two approaches, wall-modelled
large-eddy simulation (WMLES) resolves only the energetic eddies in the outer portion of
the boundary layer, while the momentum transport within the unresolved near-wall region
is accounted for by augmenting the wall-flux through a wall model. Thus, the no-slip
condition at the wall is replaced by the Neumann boundary condition supplied by the wall
model in the form of the wall shear stress. Note that the wall shear stress is computed
by the wall model without ever resolving the near-wall scales. Therefore, the grid point
requirement for WMLES reduces to O(Re) (Choi & Moin 2012), making the simulations
of high-Reynolds-number flows feasible.

To date, several wall models have been proposed, most of which are based on some
form of the law-of-the-wall or solving a set of simplified or full Reynolds-averaged
Navier–Stokes (RANS) equations. Deardorff (1970) and Schumann (1975) were the first
to recognize the need for wall modelling to perform LES of high-Reynolds-number plane
channels and annuli to overcome lack of computing resources in the 1970s. Grötzbach
(1987) later improved the model by removing the necessity of a priori knowledge of the
mean wall shear stress. The geometry of the near-wall eddies was incorporated in the
work of Piomelli et al. (1989) to account for the inclination of the vortical structures
in the streamwise/wall-normal plane. Wang & Moin (2002) proposed an ordinary
differential equation (ODE) based wall model derived from the equilibrium assumption
(Degraaff & Eaton 2000), which later was extended to compressible flows (Bodart &
Larsson 2011; Kawai & Larsson 2012). The ODE equilibrium wall model excludes the
non-equilibrium effects such as pressure gradient, and considers the wall-normal diffusion
only. Non-equilibrium wall models based on full three-dimensional (3-D) RANS equations
were investigated by Balaras, Benoccis & Piomelli (1996), Wang & Moin (2002), Cabot &
Moin (2000), Kawai & Larsson (2013) and Park & Moin (2014, 2016a). Yang et al. (2015)
introduced the integral non-equilibrium wall model based on the integrated boundary
layer equations and assumed velocity profiles, which can be considered as a compromise
between the aforementioned two classes of wall models. Similarly, Fowler, Zaki &
Meneveau (2022) substituted the law-of-the-wall velocity profile into the wall normal
integrated momentum balance and derived a Lagrangian relaxation towards an equilibrium
transport equation for the friction-velocity vector. Several efforts have also been directed
towards formulating wall models which are not based on RANS. Bose & Moin (2014)
and Bae et al. (2019) proposed a differential filter-based wall model which introduced
a slip-velocity applied in the form of Robin boundary condition at the wall. Chung &
Pullin (2009) proposed a virtual wall model with a slip velocity boundary condition
specified on the lifted virtual wall. Gao et al. (2019) extended this virtual wall model
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in a generalized curvilinear coordinate. Advances on WMLES were reviewed by Piomelli
& Balaras (2002), and more recently by Larsson et al. (2016) and Bose & Park (2018).
With the development of novel wall models and increase in the computing capacity,
WMLES is becoming an indispensable tool for predictive but affordable scale-resolving
simulation of practical engineering flows at high Reynolds numbers. Recent applications
to external aerodynamics applications include simulation of a wing-body junction flow
(Lozano-Durán, Bose & Moin 2022) and flow over a realistic aircraft model in landing
configuration deploying high-lift devices (Goc et al. 2021).

Although WMLES is now gaining popularity as a high-fidelity tool balancing the
computational cost and the accuracy, with the potential to be used for design and
optimization in practical engineering applications because of its reasonable turnaround
times, comprehensive benchmark studies on the comparison of different wall models in
complex flows are lacking. There have been a number of comparative studies of WMLES
with different wall models or subgrid scale (SGS) models in canonical flows. For instance,
Wang, Hu & Zheng (2020) assessed the predictive capability of three wall models paired
with four SGS models for the turbulence kinetic energy spectrum in the outer region in
periodic channel flow to find out that the choice of SGS models (but not wall models) affect
the result. Yang & Bose (2017) also conducted WMLES in periodic channel flow to provide
a physics-based interpretation of the equivalence between the Robin-type wall closure
(slip wall model) and the equilibrium wall model, along with comparison to the integral
non-equilibrium wall model. Rezaeiravesh, Mukha & Liefvendahl (2019) systematically
studied the accuracy of WMLES using an algebraic wall model in predicting periodic
channel flow, focusing on sensitivities to the choice of SGS models, matching height, grid
resolution, and law of the wall parameters. It should be noted that the non-equilibrium
terms that are added to the more complicated wall models are essentially inactive in
canonical flows like a periodic channel flow. This fact limits the full understanding of
the performance of wall models. Therefore, comparative studies of different wall models
in more realistic turbulent flows with non-equilibrium effects, such as pressure gradient
and mean-flow three-dimensionality, are highly desirable to understand the mechanism of
certain wall models performing better than others, and to seek improvements of models
based on such findings. Park (2017) compared the performance of ODE equilibrium wall
model and PDE non-equilibrium wall model in a separating and reattaching flow over the
NASA wall-mounted hump. Kawai & Asada (2013) investigated the capability of WMLES
in transitional and separated flow over an airfoil near-stall condition with the equilibrium
and non-equilibrium wall models. Lozano-Durán et al. (2020) tested three RANS-based
wall models (ODE equilibrium wall model, integral non-equilibrium wall model and
PDE non-equilibrium wall model) in a three-dimensional transient channel flow. For the
latter study, it is worth noting that the three wall models were not tested using the same
LES code. The lack of a like-for-like comparison of different wall models, especially in
flows with non-equilibrium effects such as mean-flow three-dimensionality and pressure
gradient, warrants a systematic study of various wall models under the identical settings
of the same solver and the same flow conditions. This will facilitate a clear assessment of
the differences in the performance of different wall models, both in terms of accuracy and
computational cost. Foregoing in view, in the present work, we test three wall models in a
3-D turbulent boundary layer (3DTBL) flow: an ODE equilibrium wall model (EQWM),
an integral non-equilibrium wall model (integral NEQWM) and a PDE non-equilibrium
wall model (PDE NEQWM). These three models respectively represent increasing model
complexity with correspondingly increasing physical fidelity for predicting 3DTBL. The
equilibrium wall model assumes that the velocity profile is unidirectional and neglects all
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non-equilibrium effects, while the latter two are capable of representing skewed velocity
profiles and incorporate some or all non-equilibrium effects, albeit in an averaged sense.

Before describing the 3DTBL in more detail, a few remarks are in order regarding
the suitability of the current choice of 3DTBL flow to conduct the comparative study
of wall models with different physical fidelity. Historically, much of the research on wall
turbulence has focused on statistically two-dimensional (2-D) equilibrium turbulence in
simple geometries (e.g. channel, pipe and flat plate). Different wall models perform equally
well therein, making it hard to justify the use of more complex models. Furthermore, many
practical flows of interest, such as those found on the swept wings of aircraft, wing/body
juncture, bow/stern regions of ships and turbomachinery, are strongly affected by the
mean-flow three-dimensionality. Such 3DTBLs challenge the validity of the theories and
models established from the canonical 2-D wall turbulence and thus provide a good stage
to exhibit the distinctive capabilities of different wall models. Therefore, the current study
of turbulent boundary layer with mean-flow three-dimensionality is well suited to test
different wall models and to explain the physical origins of the differences in the results of
these models.

The 3DTBLs can be classified as pressure-driven (also termed skew-induced (Bradshaw
1987) or inviscid-induced Lozano-Durán et al. 2020) or shear-driven (also termed
viscous-induced Lozano-Durán et al. 2020) ones, according to the mechanisms by
which the mean three-dimensionality is introduced into the flow. For the pressure-driven
3DTBLs, the cross-flow is induced by the imposition of spanwise pressure gradient. More
specifically, the mean three-dimensionality is produced by reorienting (tilting) the existing
mean spanwise vorticity to generate non-zero streamwise vorticity. This process is often
referred to as ‘inviscid skewing’ due to its quasi-inviscid nature, and streamwise variation
in the imposed spanwise pressure gradient often facilitates this vorticity tilting (Coleman,
Kim & Spalart 2000). Examples of this type of 3DTBLs include flows in a square duct with
a bend (Flack & Johnston 1994; Schwarz & Bradshaw 1994), in an S-shaped duct (Bruns,
Fernholz & Monkewitz 1999), over wing-body junctures (Rumsey 2018), over swept wings
(Bradshaw & Pontikos 1985) and over prolate spheroids (Chesnakas & Simpson 1994).
For the shear-driven 3DTBLs, the cross-flow is induced by the viscous diffusion of mean
spanwise shear from the wall. Examples of this class include flows within a spinning
cylinder (Bissonnette & Mellor 1974; Lohmann 1976; Driver & Hebbar 1989), over a
rotating disk (Littell & Eaton 1993), over turbomachinery and in Ekman layers. In the
present work, we are interested in the skew-induced cases which are more prevalent in
external hydrodynamics or aerodynamics applications.

Over the past decades, studies on a 3DTBL have unravelled its distinctive features which
set it apart from the canonical 2-D wall turbulence. First, the mean-flow direction in a
3DTBL varies along the wall-normal direction, resulting in a skewed velocity profile.
The law-of-the-wall, which is the characteristic of the canonical 2-D wall turbulence,
is therefore challenged in a 3DTBL. Second, the Reynolds shear stress vector is not
aligned with the mean velocity gradient vector in 3DTBLs. Thus, the Reynolds shear
stress response in a 3DTBL can lag behind or lead that predicted by the isotropic eddy
viscosity models which assume perfect alignment of the two. Third, a reduction in the
structure parameter (the ratio of the total Reynolds shear stress magnitude to twice the
turbulent kinetic energy) is often observed in 3DTBLs, whereas this parameter is nearly
constant (roughly 0.15) in the outer layer of a 2DTBL. The aforementioned features of
a 3DTBL pose a fundamental challenge to the validity of the underlying assumptions in
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many turbulence models (including wall models) that are based on a 2DTBL, and therefore
bring into question the reliability of these models when applied to practical flows.

The numerical studies of 3DTBLs using direct numerical simulation (DNS) and
large-eddy simulation (LES) have mostly focused on deformed 2-D wall turbulence. These
studies include channel flow subject to sudden cross-flow pressure gradients (Sendstad
1992; Lozano-Durán et al. 2020), channel flow with spanwise wall motions, channel flow
subject to mean strains (Coleman et al. 2000), a TBL over an idealized infinite swept wing
generated by a transpiration profile (Coleman, Rumsey & Spalart 2019), a TBL subject to
streamwise-varying pressure gradient (Bentaleb & Leschziner 2013) and a TBL on a flat
plate with a time-dependent freestream velocity vector (Spalart 1989). These numerical
studies are limited to relatively low Reynolds number and idealized 3DTBLs due to the
large computational cost. The present study focuses on a realistic, spatially developing,
pressure-driven 3DTBL over the floor of a duct with a bend (Schwarz & Bradshaw 1994),
which is at a considerably higher Reynolds number than the past studies but still provides
a good balance between the physical realism, the tractability of the underlying 3DTBL
mechanisms, and the computational cost of the simulations.

The major objectives of this work is to systematically compare wall models in a
skew-induced 3DTBL and to provide a physics-based explanation of their differing
performances. We consider the three aforementioned wall models that potentially span
the complete spectrum of the available RANS-based wall models with varying physical
details and complexity. A fully 3-D flow with no homogeneous direction is considered for
this purpose. Another objective is to understand the characteristics of the skew-induced
3DTBL, especially compared with the viscous-induced 3DTBL. The paper is organised as
follows. The computational details including the flow configuration, boundary conditions
and wall-model formulations are discussed in § 2. The flow statistics obtained from
WMLES are presented in § 3. Based on these results, the performance of different wall
models are compared and the characteristics of this pressure-driven 3DTBL are discussed
based on the anisotropy invariant map and the Johnston triangular plot. The effects of
different non-equilibrium terms in wall models in terms of predicting near-wall flow
direction are also quantified. Finally, conclusions are given in § 4.

2. Computational details

2.1. Flow configuration
The reference configuration for the present study is the experimental set-up of Schwarz &
Bradshaw (1994). While numerous experimental studies have been reported on 3DTBLs
(as discussed in Johnston & Flack 1996), our choice of the reference experiment was
motivated primarily by the following aspects of Schwarz & Bradshaw (1994) which
we found to be favourable to the goals of this study: (1) the highest Reynolds number
among the pressure-driven 3DTBLs experiments reported by Johnston & Flack (1996);
(2) availability of the mean velocity and full Reynolds stress profiles; and of (3) the skin
friction (magnitude and orientation) and pressure distribution along the wall. However,
some remarks are also in order regarding limitations of the experiment. First, direct
wall-stress data are not available, instead, a fit to the log law near y+ ≈ 100 was used for
indirect stress measurement. Second, the description of the zero-pressure gradient region
far upstream of the bend region for the purpose of computational fluid dynamics (CFD)
inflow generation is incomplete, therefore requiring an iterative procedure in the inflow
generation to match the reported statistics at the first streamwise measurement station.
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Figure 1. Schematic of the floor of the duct (reproduction from figure 1 of Schwarz & Bradshaw 1994).
The measurement locations in the experiment are marked as numbers 0–21 along the duct centreline. Two
coordinate systems are employed. Here, (x, y, z) is a fixed coordinate system with the origin located at the inlet
and (x′, y′, z′) is a curvilinear coordinate system aligned with the local duct centreline (measurements in mm).

The experiment featured a spatially developing incompressible turbulent boundary layer,
growing along the floor of a square duct with a 30◦ bend (see figure 1). It should be noted
that the boundary layer on the floor was very thin compared to the duct height, with δ99/D
ranging between 0.026 and 0.07 throughout the test section, where D is the width (or
height) of the square duct. The flow was far from being fully developed, and the secondary
flow near the corner regions was expected to have negligible influence on the centreline
region, which was the primary region of interest in the experiment.

Following Schwarz & Bradshaw (1994), two coordinate systems are employed here to
facilitate the presentation of the results: (x, y, z) denotes the global Cartesian coordinate
system; (x′, y′, z′) denotes a curvilinear coordinate system aligned with the local duct
centreline. Here, y = y′ are the wall-normal coordinates (distance from the floor of the
duct). In the experiment, the boundary layer on the floor was tripped using a trip wire at
the duct inlet located at x′ = 0, thus ensuring a turbulent boundary layer over the entire
floor of the test section. Boundary layers on the other three walls of the duct were not
tripped (Schwarz, private communication, 2019). The Reynolds number was moderately
high, with Reθ ranging between 4100 and 8500 (or Reτ roughly ranging between 1500 and
3900). The flow along the centreline upstream of the bend was reported to exhibit typical
characteristics of the canonical 2-D zero pressure gradient (ZPG) flat-plate boundary layer.
Mean-flow three-dimensionality was generated in the bend region approximately between
x′ = 1626 mm and x′ = 2224 mm due to the cross-stream pressure gradient induced by
the bend. The surface streamlines were deflected by up to 22◦ relative to the local duct
centreline. Downstream of the bend, the 3DTBL gradually returned to a 2DTBL owing to
the vanished spanwise pressure gradient. The experimental study focused on the boundary
layer along the local centreline where the streamwise pressure gradient was found to be
small.

The computational domain is identical to the test section in the experiment, which
consisted of a square duct (D × D = 0.762 m × 0.762 m) with a total curved length of
L = 3.748 m, as shown in figure 1. Two grid resolutions are considered in the present
study: a coarse mesh with 8 million control volumes and a fine mesh with 38 million
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Figure 2. (a) Near-wall grid spacing distributions in wall units (based on the local skin friction) along the duct
centreline. (b) Near-wall grid spacing distributions (normalized by duct height D) along the duct centreline.
Solid lines, wall-parallel grid spacing (Δx = Δz); dashed lines, wall-normal grid spacing (Δy). Black, coarse
mesh; blue, fine mesh.

control volumes. Figure 2 shows the near-wall grid spacing distributions along the duct
centreline in the two meshes. The computational meshes are designed to maintain adequate
wall-modelled LES grid resolution in the test section such that the local boundary layer
contains approximately 16–23 and 32–45 cells across its thickness in the coarse and fine
computational meshes, respectively. Local grid adaptations were applied in the near-wall
region with the effect that the grid resolution transitions from the coarser isotropic-cell
region in the free stream (Δ = 0.008 m at y/D > 0.1) towards the finer near-wall region
on the duct floor through anisotropic grid refinements. This resulted in wall-parallel
grid resolutions (Δx = Δz) of 4 and 2 mm for the coarse and fine meshes, respectively.
In the region upstream of the bend (x′/L ≤ 0.43) where the boundary layer was thin
but grew fast, the wall-normal grid spacings were varied with x′ to keep the number
of boundary-layer-resolving cells approximately constant, resulting in Δy = 0.86 mm ∼
2.2 mm and Δy = 0.43 mm ∼ 1.1 mm for the coarse and fine meshes, respectively. At
x′/L ≥ 0.43, Δy was fixed at their maximum values aforementioned. Compared to Cho
et al. (2021) where WMLES of the same geometry using isotropic voronoi cells was
reported, the present study using anisotropic hexahedral cells deploys roughly the same
wall-normal resolutions and approximately twice coarser wall-parallel resolutions in and
downstream of the bend. Total cell counts are significantly reduced as a result, while
maintaining higher numbers of cells across the thickness of the local boundary layer.
The grid-resolution transition zones are located sufficiently away from the shear layer
on the duct floor, so that the solution therein is not affected by the accuracy degradation
associated with abrupt changes in grid resolution.

2.2. Inflow characterization and boundary conditions
Setting the appropriate boundary conditions in the simulation, particularly for the
reproduction of flow characteristics upstream of the bend region where a typical
equilibrium 2DTBL is expected, is crucial before attempting to compare the simulation
results with the experimental results at any downstream location. However, the experiment
reports flow statistics at the 22 locations shown in figure 1 along the duct centreline,
with the first measurement location being far downstream of the test section inlet (at
x′ = 826 mm). In the absence of this critical flow information at x′ = 0 mm, where the
boundary layer on the floor was tripped in the experiment, we resort to a synthetic
turbulence generation based on a digital filter approach (Klein, Sadiki & Janicka 2003) for

960 A29-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.143


X. Hu, I. Hayat and G.I. Park

0

0.02

0.04

0.06

0.2 0.4 0.6 0.8 1.0

δ99

x′/L
0

2000

4000

6000

8000

10 000

0.2 0.4 0.6 0.8 1.0
x′/L

Reθ

(a) (b)

Figure 3. Centreline distributions of (a) boundary layer thickness and (b) momentum thickness (coarse mesh).
Symbols, experiment; red dash–dotted line, equilibrium wall model; blue solid line, PDE non-equilibrium wall
model; green dashed line, integral non-equilibrium wall model. Black vertical dashed lines denote the start and
end of the bend region.

approximating the inflow boundary condition, rather than trying to replicate the trip-wire
transition in the experiment. This approach requires iterative guesses on the length of
the development region (if any) to be appended upstream of the nominal trip location in
the experiment (x′ = 0 mm), and the state of the inflow to be prescribed at the new inlet
location. It should be noted that the goal here is to reproduce the 2DTBL upstream of the
bend reasonably well, which then acts as the inflow for the 3DTBL within the bend, rather
than to exactly match the flow conditions at the test section inlet. After iterating on several
inflow conditions and the inlet location, we found that prescribing a flat-plate turbulent
boundary layer at Reθ = 2560 (Schlatter et al. 2010) at the nominal inlet (x′ = 0 mm)
reproduces the boundary layer statistics well at the first measurement location (station 0:
x′ = 826 mm). As shown in figure 3, the simulation agrees well with the experiment in
terms of the distributions of the boundary layer and momentum thicknesses. In figure 4, it
is observed that the profiles of the mean velocity and Reynolds stress components from the
present calculation agree well with the experiment at the first measurement station (station
0: x′ = 826 mm), as well as with a WRLES of a zero pressure gradient flat-plate boundary
layer (ZPGFPBL) at a comparable Reynolds number (Reθ = 4100, Schlatter et al. 2010).

The prescription of boundary conditions on the rest of the boundaries is relatively
straightforward. A subsonic Navier–Stokes characteristic boundary condition (Poinsot &
Lele 1992) is imposed at the outlet of the duct. No attempt was made to resolve the
boundary layers on the two side walls and the top wall which were not tripped in the
experiment. The no-slip boundary condition is applied to each of these walls. The wall
model is applied to the bottom wall, and the wall stress calculated from the wall-model
solution is used as the Neumann boundary condition on this wall. All walls are assumed
to be thermally adiabatic.

The computational time step was fixed at U∞Δt/D = 2.2 × 10−4 in all calculations
with the coarse mesh. All simulations were initialized with a uniform flow everywhere
in the domain. After ten flow-through times (L/U∞), the flow was observed to be free
from the initial transient and deemed fully developed. After this initial transient, the flow
statistics were accumulated over additional ten flow-through times.

2.3. Flow solver and subgrid scale (SGS) / near-wall modelling
The simulations were performed with CharLES, an unstructured cell-centred finite-volume
compressible LES solver developed at Cascade Technologies, Inc. The solver employs an
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Figure 4. (a) Mean velocity profile at the first measurement station in the experiment (station 0: x′ = 826 mm).
Black squares are from the experiment. Black dots, WRLES by Schlatter et al. (2010) at the same Reynolds
number (Reθ = 4100); red, equilibrium wall model; blue, PDE non-equilibrium wall model; green, integral
non-equilibrium wall model (solid lines represent coarse mesh results; dashed lines represent fine mesh results).
Black dashed lines denote the law of the wall (viscous sublayer: u+ = y+; log-law: u+ = 1

0.41 log y+ + 5.2).
(b) Reynolds stress profiles at the first measurement location (station 0: x′ = 826 mm). Big symbols are from
the experiment: circles, u′u′; stars, v′v′; triangles, w′w′; squares, u′v′. Different lines and dots have the same
denotations as in panel (a).

explicit third-order Runge–Kutta (RK3) scheme for time advancement and a second-order
central scheme for spatial discretization. More details regarding the flow solver have been
reported by Khalighi et al. (2011) and Park & Moin (2016a). The Vreman model (Vreman
2004) is used to close the SGS stress and heat flux. In Appendix A, the effect of SGS
stress models is discussed along with the results obtained with the dynamic Smagorinsky
model and dynamic tensor-coefficient Smagorinsky model (Moin et al. 1991; Lilly 1992;
Agrawal et al. 2022).

In WMLES, LES equations are solved on a coarse mesh, where the stress-carrying
eddies in the near-wall region are mostly unresolved. The LES mesh alone cannot represent
the sharp velocity gradients and the momentum transport near the wall. This causes
SGS models to produce insufficient levels of modelled stresses. Wall modelling aims to
compensate for such numerical and modelling errors in the underresolved near-wall region
of LES, by augmenting the total stresses directly through the imposition of the modelled
stress boundary condition at the wall in lieu of the no-slip condition. In the present work,
wall models solve simplified, vertically integrated or full RANS equations on a separate
near-wall mesh. The grid for wall models have fine resolution in the wall-normal direction
(with the exception of the integral non-equilibrium wall model, which does not require a
wall-normal grid), but the wall-parallel grid resolution (if any) is identical to or coarser
than the LES grid. All wall models in this study are driven by the LES states imposed
at their top boundaries, which are taken at a specified matching height in the LES grid.
At each time step, wall stress and heat flux obtained from the wall model are used as the
Neumann wall boundary condition for the LES. Figure 5 shows a schematic of the wall
modelled LES procedure employed in the present work.

In the present work, the location at which the wall-models take input from the LES
(matching height, denoted as hwm(x)) is fixed across different grid resolutions by setting
it to the centroids of the third off-wall cells or the top faces of the fifth off-wall cells in
the coarse and fine meshes, respectively, corresponding to 103hwm/D = 3 ∼ 7 or h+

wm =
175 ∼ 375 in inner units. This has the effect of fixing the wall-modelled regions in LES
during grid refinements, so that improvement in LES prediction is not associated with the
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Primal LES grid

Δ ≈ O(δ)

�y1
+ ≈ O(1)

Wall ( y = 0)

U(y)

ρ, ui, pδ

τω, qω

hωm

Inner-layer wall-model grid

Figure 5. Sketch of the wall-modelling procedure (reproduction from figure 1 of Park & Moin 2016a). Wall
shear stress (τw) and heat flux (qw) are solved from the wall model equations on a separate near-wall mesh.
Wall models are driven by the LES states imposed at their top boundaries while the no-slip condition is applied
at the wall.

change in wall-modelling details, but it is attributed largely to the grid adaptation. This
choice is also motivated by our experience with the flow solver, where restricting hwm
to the first off-wall cell or in the buffer layer produced non-trivial log-layer mismatch in
channel flow calculations, even with the filtration of the wall-model input as suggested by
Yang, Park & Moin (2017) for a structured pseudospectral/finite-difference code. Owen
et al. (2020a) reported a similar need for using the LES velocity further away from the
wall in their finite-element-based WMLES of channel and wall-mounted hump. Readers
are referred to Appendix B, where additional accounts on the matching height are provided
along with numerical experiments to examine the effect of varying matching height on the
prediction of mean three-dimensionality.

The three wall models considered in the present study are an equilibrium stress model
(EQWM) in the form of ordinary differential equations, an integral non-equilibrium wall
model (integral NEQWM) that solves the vertically integrated Navier–Stokes equations
and a PDE non-equilibrium wall model (PDE NEQWM) that retains the complexity of the
full Navier–Stokes equations. All three wall models parametrize the unresolved turbulence
in the wall-model domain in a statistical sense using simple RANS models based on the
mixing-length formulation. Note that the EQWM and PDE NEQWM have previously
been implemented in CharLES, and they have been tested extensively through various
studies (Bodart & Larsson 2012; Park & Moin 2014, 2016a,b; Park 2017). The integral
NEQWM was recently integrated into CharLES, the implementation aspects of which will
be discussed in a future article (Hayat & Park 2021). A brief description of each of these
models is given below.

The EQWM (Bodart & Larsson 2011; Kawai & Larsson 2012) solves the simplified
boundary layer equations which account only for the wall-normal diffusion:

d
dη

[
(μ + μt)

du||
dη

]
= 0, (2.1)

d
dη

[
(μ + μt)u||

du||
dη

+ (λ+ λt)
dT
dη

]
= 0, (2.2)

where η is the local wall-normal coordinate, u|| is the wall-parallel velocity magnitude, T is
the temperature, μ is the molecular viscosity, λ is the molecular thermal conductivity, and
μt and λt are the turbulent eddy viscosity and conductivity, respectively. It should be note
that Ma = 0.2 in the simulations (the Mach number was not reported in the experiment as
the authors of the experiment clearly assumed the flow was incompressible). Although the
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energy equation is solved, variations of thermodynamic variables are very small, and the
energy equation does not play an important role in the present study. The velocity vector is
assumed to be aligned with the LES velocity at the matching height. Owing to this intrinsic
assumption, the equilibrium wall model is incapable of predicting skewed velocity profiles
within the wall-modelled domain. Also, due to the unidirectionality and the condition
μ + μt > 0, the EQWM can represent monotonic velocity profiles only, and it cannot
predict velocity profiles with sign changes in the slope as found in the near-wall regions
of separated shear layers. The wall-model eddy viscosity μt is based on the following
mixing-length formula:

μt = κρy
√

τw

ρ
D, D = [1 − exp(−y+/A+)]2. (2.3)

However, the PDE NEQWM (Park & Moin 2014, 2016a) solves the full 3-D unsteady
RANS equations:

∂ρ

∂t
+ ∂ρuj

∂xj
= 0, (2.4)

∂ρui

∂t
+ ∂ρuiuj

∂xj
+ ∂p

∂xi
= ∂τij

∂xj
, (2.5)

∂ρE
∂t

+ ∂(ρE + p)uj

∂xj
= ∂τijui

∂xj
− ∂qj

∂xj
, (2.6)

where ρ is the density and ui is the velocity component, p is pressure and E = p/[ρ(γ −
1)] + ukuk/2 is the total energy. The stress tensor and heat flux are given by τij = 2(μ +
μt)Sd

ij and qj = −(λ+ λt)(∂T/∂xj). For the RANS closure, a novel mixing-length model
is used, which dynamically accounts for the resolved Reynolds stresses carried by the wall
model (Park & Moin 2014). The wall-model mesh for the PDE NEQWM has the same
wall-parallel grid content as in the coarse LES mesh, but it is refined in the wall-normal
direction to resolve the viscous sublayer.

Lastly, the integral NEQWM formulation solves a similar set of equations as the PDE
NEQWM, albeit in a wall-normal integrated form. Currently, this formulation is limited
to incompressible flows, and therefore the energy equation is not solved. For the sake
of brevity, only the 2-D formulation (the wall-normal and one wall-parallel velocity
components) is presented below, and the reader is referred to Yang et al. (2015) for the
details of full 3-D formulation. The vertically integrated momentum equation is given by

∂

∂t

∫ hwm

0
u dy + ∂

∂x

∫ hwm

0
u2 dy − ULES

∂

∂x

∫ hwm

0
u dy = 1

ρ

[
−∂p

∂x
hwm + τhwm − τw

]
,

(2.7)

where x and y represent the local wall-parallel and wall-normal coordinates, hwm is
the matching height, ULES is the time-filtered velocity from the LES solution at the
matching location. Here, τw = μ(∂u/∂y)|y=0 and τhwm = (μ + μt)(∂u/∂y)|y=hwm are the
shear stresses at the wall and at the matching location, respectively. The integral terms
are evaluated by assuming an analytical composite profile for the velocity within the wall
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model, which has the form:

u = uτ

y
δν

= u2
τ

ν
y, 0 ≤ y ≤ δi, (2.8)

u = uτ

[
1
κ

log
y

hwm
+ C

]
+ uτ A

y
hwm

, δi < y ≤ hwm, (2.9)

where the unknown parameters A, C, uτ and δi are determined from the solution of
(2.7) along with suitable matching and boundary conditions. For the full 3-D formulation
consisting of two wall-parallel velocity components, like that employed for the present
study, the composite profiles have a total of 11 unknown parameters. This approach
attempts to model the effects of pressure gradient and advection through the last term
in (2.9) representing linear departure from the log law.

It is worth mentioning here that in the original 3-D formulation of Yang et al. (2015), the
assumed form of the viscous-sublayer velocity profiles in the two wall-parallel directions
((C5) in Yang et al. 2015) resulted in inconsistent asymptotic behaviour of velocity near the
wall. This made the wall-stress predictions of the wall model highly sensitive to the choice
of the local x/z coordinate axes. In our current integral NEQWM formulation, we modify
the assumed viscous-sublayer profile to ensure consistent near-wall asymptotic behaviour
as given by the Taylor series expansion. The modified formulation is briefly described in
Appendix C, and its details along with its implementation in an unstructured solver are
presented by Hayat & Park (2021). A MATLAB implementation for the EQWM and the
modified integral NEQWM is available on GitHub at https://github.com/imranhayat29/
Wall-Models-for-LES.

A remark is in order regarding the overall cost of simulations with different wall
models. The computational costs of the three wall models were compared by running the
simulations on the fine LES mesh with 256 CPU cores for three convective flow-through
times. When the cost of the simulation without any wall model (no-slip LES) is taken as
the unity, the simulation costs are 1.27, 1.2 and 2.2 with the EQWM, the integral NEQWM
and the PDE NEQWM, respectively. The higher cost with the PDE NEQWM is due to the
inversion of a large linear system required as a part of implicit time advancement.

3. Results

Results from the WMLES simulations are discussed in this section. Overall characteristics
of the flow are first highlighted from the instantaneous flow field standpoint. Mean and
turbulence statistics obtained with different wall models are then assessed against the
experimental data. Furthermore, the three-dimensionality of the outer portion of the
boundary layer is examined with the aid of Reynolds stress anisotropy and the Johnston
triangular plot.

Some remarks are in order concerning the ways in which the main results are presented
in this paper. The primary interest of the experiment was to examine the effect of the mean
three-dimensionality in the absence of strong streamwise pressure gradient. To this end,
the experiment presented the key flow statistics along the floor centreline, where the axial
pressure gradient was observed to be nearly zero. It should be noted, however, that the
mean-flow trajectory near the wall deviates somewhat substantially from the centreline
as the flow passes through the bend region, as observed from the instantaneous flow
field (figure 7) and the near-wall streamlines (figure 10b). This leaves some ambiguity
in the interpretation of the statistics presented along the centreline, because any two
fluid particles on the centreline (in and after the bend region) would have travelled along
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Figure 6. Grid convergence of the EQWM LES. (a) Blue, mean-flow direction versus distance from the
wall; red, mean velocity magnitude profile. (b) Centreline distribution of the skin-friction coefficient and
(c) Reynolds-stress profiles. Red, u′u′; blue, −u′v′; green, v′w′. Solid lines, coarse grid; dashed line, fine grid.
Profiles in panels (a) and (c) are at x′ = 1875 mm (station 8). Black vertical dashed lines in panel (b) denote
the start and end of the bend region.

different Lagrangian trajectories, experiencing different history effects (most notably, they
are subject to different upstream axial/spanwise pressure gradients). With this limitation
in mind, we still choose to show our results along the centreline, as all experimental data
(except the wall-pressure) were presented as so.

3.1. Grid convergence
Figure 6 shows the mean-flow statistics and the Reynolds stresses at x′ = 1875 mm (the
eighth measurement station in figure 1), as well as the centreline skin-friction coefficient
Cf distribution obtained from the EQWM LES with the coarse and the fine grids described
in § 2.1. The skin-friction coefficient is defined as

Cf = τw
1
2ρU2

e
,

Ue

Uref
= (1 − Cp)

1/2, (3.1a,b)

where τw =
√

τ 2
w,x + τ 2

w,z is the magnitude of the mean wall shear stress vector and Ue is

the local free stream velocity. The pressure coefficient is defined as

Cp = p − pref
1
2ρU2

ref

. (3.2)

Following the experiment, pref is the static pressure at x′ = 0 mm and Uref is the free
stream velocity at x′ = 826 mm (defined at the spanwise centreline). Although only the
EQWM results are shown here for brevity, it is noted that the other two wall models
exhibited similar grid-convergence characteristics. In figure 6(a), both the mean velocity
and the mean-flow direction (defined by the angle between the mean velocity vector and
the free stream velocity vector) profiles obtained from the coarse-grid calculation are
already in good agreement with the experiment, and the results only improve marginally
with the grid refinement. More importantly, this points towards the grid convergence of
the results for the refinement level used in this study. Figure 6(b) shows the skin-friction
distribution along the centreline of the duct. Between the first and the last measurement
stations, we observe a reasonably converged Cf , with the fine-grid calculation producing
slight improvement in Cf . In figure 6(c), a similar trend is observed for all the Reynolds
stress components shown, with the exception of the streamwise component of the Reynolds
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Figure 7. Visualization of the near-wall vortical structures using the isosurfaces of Q (Q = Qrms, where Q is
the second invariant of the velocity gradient tensor), coloured by the distance from the floor of the duct. Flow
is from the bottom left to the top right. Surface oil visualization from the experiment (Schwarz & Bradshaw
1994) is shown in the inset (figure reprinted with permission from Schwarz & Bradshaw (1994).

normal stress, which shows noticeable variation with grid refinement in the near-wall
region; however, the Reynolds stresses in the outer portion of the boundary layer have
largely converged. Having established reasonable evidence of grid-convergence for most
of the flow statistics on the coarse grid, the remainder of this paper will focus largely on
discussing the results obtained with the coarse grid unless stated otherwise.

3.2. Instantaneous flow field
Figure 7 visualizes the vortical structures in the floor boundary layer. Near the inlet
(approximately within 20 times the inlet boundary-layer thickness from the inlet),
structures with less coherence resulting from the synthetic inflow turbulence generation are
observed. The floor boundary layer then gradually develops into a coherent fully developed
state far upstream of the bend region, which is also verified by the velocity profile at
x′ = 826 mm (figure 4) following the typical law of the wall observed in a 2-D turbulent
boundary layer. When the flow enters the bend region, a clear contrast of two boundary
layers with different origins (blue and red regions) are observed. The boundary layer in
the red region is thicker than that in the blue region, showing that a new boundary layer
is emerging from the concave sidewall within the bend region (at z < 0) and the original
boundary layer developed from the upstream section is turning rapidly towards the convex
side (at z > 0). This overall flow behaviour is visually in fair agreement with the surface
oil visualization in the experiment as shown in the inset in figure 7.

3.3. Mean-flow statistics
The cross-stream pressure gradient is the source of the mean three-dimensionality in the
bend region. It acts to deflect the streamlines close to the wall more strongly than those near
the free stream. It is therefore important to first establish close agreement in the pressure
distribution close to the bend between the simulation and the experiment. Note that in the
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Figure 8. Variation of the wall-pressure coefficient from coarse EQWM simulation (results from the other
wall models and resolutions are almost identical). Symbols are from the experiment. Colours denote different
spanwise locations corresponding to the inset figure. Here, z′ : 0 mm, ±127 mm, ±254 mm, ±368 mm.

0 0

1

2

3

4

5
(×10–3)(×10–3)

0.2 0.4 0.6 0.8 1.01000 2000 3000 4000 5000 6000 7000
1

2

3

4

5

6

7

Cf

Reθ
x′/L

(a) (b)

Figure 9. Centreline distribution of the skin-friction coefficient (Cf ). (a) Cf versus Reθ upstream of the bend.
(b) Cf versus axial location. Squares, experiment; red dash–dotted line, EQWM; blue solid line, PDE NEQWM;
green dashed line, integral NEQWM. In panel (a): black dotted line, ZPGFPBL empirical correlation ((9) in
Fernholz & Finley 1996); black dashed line, WRLES of ZPGFPBL (Eitel-Amor et al. 2014).

current case without flow separation, the pressure distribution is determined largely by
the wall geometry and the inviscid effect, presumably unaffected by the wall-modelling
details. Figure 8 shows the distribution of the static wall-pressure coefficient on the floor
of the duct. The wall-pressure probing lines are parallel to the duct centreline, as shown
in the inset figure. The figure shows good agreement between the simulation and the
experiment, except in the recovery region downstream of the bend. The axial pressure
gradient is almost zero along the centreline. However, a significant spanwise pressure
gradient starts to develop upstream of the bend, reaches a maximum within the bend region
and eventually decays to zero downstream of the bend. The reason for disagreement in the
recovery region remains unclear to us. While Cp in the experiment remains to be slightly
negative near the outlet, Cp in the simulation naturally vanishes to its upstream zero value
as the flow relaxes back to its 2-D ZPG state. Note that the experiment reported only the
centreline distribution in this region and that extending the duct further downstream in the
simulation did not change the trend.

Figure 9 shows the distribution of the skin-friction coefficient along the duct centreline.
The centreline mean-flow is expected to agree well with the canonical ZPG 2DTBL in
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Figure 10. (a) Centreline distribution of the surface flow turning angles with respect to the free stream
(γw = tan−1(τw,z/τw,x) is the wall shear stress direction, γ∞ = tan−1(We/Ue) is the free stream direction).
(b) Streamlines of wall shear stress. Squares, experiment; red line, equilibrium wall model; blue line, PDE
non-equilibrium wall model; green line, integral non-equilibrium wall model. Solid and dashed lines are for
coarse and find grids, respectively.

this region. A deviation of the skin friction from the ZPG 2DTBL near the inlet is the
artefact of the inflow treatment. Note that the synthetic inflow turbulence generation
methods when applied to DNS or wall-resolved LES of low Reynolds number are
known to produce a development length of 10–20 initial boundary layer thicknesses
(δin), through which coherence-lacking artificial structures mature into fully developed
turbulence (e.g. Patterson, Balin & Jansen (2021), Sandberg (2012), Larsson (2021) where
Reτ = 400 ∼ 500). The present high-Reynolds-number case simulated with very coarse
meshes produced longer development lengths (30–40δin). The flow was observed to be
fully developed from slightly upstream of the first measurement station, after which the
WMLES results are in reasonable agreement with the experiment as well as with an
empirical correlation (Fernholz & Finley 1996) and a wall-resolved LES of ZPG 2DTBL
(Eitel-Amor, Orlu & Schlatter 2014). In figure 9(b), slight overprediction of the skin
friction from WMLES is observed throughout the duct. A similar trend was reported by
Cho et al. (2021), where the EQWM was used with up to 76 million control volumes
in LES. It should be noted that the wall shear stresses were measured indirectly in
the experiment using a Preston tube and Patel’s calibration (Patel 1965) for a 2DTBL.
Patel (1965) reported that errors as large as 6 % could occur when a Preston tube is
used in flows with moderate streamwise pressure gradient. Next, we examine the mean
three-dimensionality of the flow in the duct. The variation of the surface flow direction
relative to the free stream direction is a measure of the mean-flow three-dimensionality.
As shown in figure 10(a), the cross-flow is almost zero in the upstream and it grows rapidly
as the flow approaches the bend. The resulting turning angle reaches the maximum near
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Figure 11. Profiles of the mean-velocity magnitude at five measurement locations (stations 4, 8, 12, 16 and
20, from left to right). Station 4 is upstream of the bend; station 8 is within the bend; stations 12, 16 and 20
are downstream of the bend. Red dash–dotted line, EQWM; blue solid line, PDE NEQWM; green dashed line,
integral NEQWM; magenta dotted line, no-slip LES; black circle, experiment. Profiles are shifted along the
abscissa by 1.

the end of the bend and decays gradually thereafter. These observations are consistent
with the development of the spanwise pressure gradient. All three wall models predict
the general trend in the turning-angle variation correctly; however, the PDE NEQWM
gives the most accurate prediction among the three (especially within the bend region),
followed by the integral NEQWM and then the EQWM. The maximum difference between
the PDE NEQWM and the EQWM is roughly 5◦ occurring at x′/L = 0.49 within the
bend. Note that the total flow turning is an accumulative effect of the local flow change,
and the area under the curve in figure 10(a) can be thought of as an approximation of
the near-wall total flow turning angle. Related to this, figure 10(b) visually highlights
predictions of the near-wall flow direction by different wall models in terms of the select
surface streamlines calculated from the mean wall shear-stress vector. It can be clearly
seen that the flow deviates from the local centreline; however, the deviation is not predicted
evenly across the different wall models, consistent with our observation in the flow turning
angles in figure 10(a). The surface flow from the PDE NEQWM turns much more rapidly
than that from the EQWM. In figure 11, profiles of the mean-velocity magnitude are
compared between the different wall models and the experiment, at several locations
along the centreline, including upstream of, within and downstream of the bend. It can
be seen that the no-slip LES, which does not employ a wall model, gives a very poor
prediction of the mean velocity. Here, a higher momentum is imparted to the boundary
layer as a consequence of the underpredicted wall shear force. With the introduction
of wall modelling, a significant improvement is achieved in the predicted mean-velocity
profiles. In line with the predictions of the skin-friction coefficient in figure 9, the mean
velocity profiles across the three wall models are almost identical. Note that here, the
profiles only show the magnitude of the mean velocity, thus lacking information on the
three-dimensionality of the mean flow.

To complete this picture, figure 12 shows how the flow direction changes along the
wall-normal direction. The mean-flow three-dimensionality is the strongest at the wall
and becomes weaker with the increase in distance from the wall, as evident from the
diminishing cross-flow away from the wall. A difference of approximately 3◦ is observed
between the WMLES and the experimental results. However, the predicted angles from the
different wall models are almost identical, indicating that the difference in the wall-model
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Figure 12. Mean-flow direction relative to the local free stream as a function of wall distance. Red dash–dotted
line, EQWM; blue solid line, PDE NEQWM; green dashed line, integral NEQWM; magenta dotted line, no-slip
LES; black solid line, experiment. Symbols are used to differentiate stations along the duct floor centreline only
(square, station 0; triangle, station 6; diamond, station 10). Lines with the same symbols denote the results at
the same stations.

outputs (the wall shear force direction observed in figure 10b) is not felt by the LES
solutions away from the wall.

3.4. Reynolds stress
We now turn our attention to the turbulent content of the 3DTBL and its
role in distinguishing this flow from the canonical 2DTBL by examining the
Reynolds-stress-related statistics. Indeed, the Reynolds stresses in the 3DTBL exhibit
unique characteristics not seen in the 2DTBL, as we will see shortly.

Figure 13 shows the profiles of the Reynolds normal stresses at the same five centreline
locations which were chosen to depict the mean velocity profiles. Note that the experiment
did not have access to the Reynolds-stress data in the inner layer, therefore missing
information on the peak values and their locations. The no-slip LES acutely underpredicts
the Reynolds normal stress, pointing towards the grid resolution being insufficient for the
no-slip LES to resolve the near-wall eddies. All three wall models significantly improve
the prediction of the normal stresses, bringing the profiles closer to the experimental
results. The predicted Reynolds normal stresses in the wall-parallel directions show
remarkable agreement with the experiment, whereas those in the wall-normal direction are
underpredicted near the wall. Figure 14 shows the profiles of the Reynolds shear stresses,
where substantial improvement with wall modelling is also observed.

An important characteristic of the 3DTBL is that the Reynolds shear stress vectors
are not necessarily aligned with the mean velocity gradient vectors, which challenges
the fundamental assumption of the commonly used isotropic eddy viscosity model. The
directions of these two vectors are characterized by the angles defined as

γτ = tan−1

(
v′w′

u′v′

)
, γg = tan−1

(
∂W/∂y
∂U/∂y

)
. (3.3a,b)

Figure 15(a) clearly shows that the Reynolds shear stress vector lags behind the
mean velocity gradient vector within the bend where mean-flow three-dimensionality

960 A29-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

14
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.143


Wall-modelled LES of 3-D turbulent boundary layer

0

0.05

0.10

5 10 15 20

y/
D

ω′ω′/U2
ref ∗ 1000

0

0.05

0.10

2 4 6 8 10

y/
D

v′v′/U2
ref ∗ 1000

0

0.05

0.10

10 20 4030 50

y/
D

u′u′/U2
ref ∗ 1000

(a)

(b)

(c)

Figure 13. Reynolds normal stress profiles at the same five measurement stations as the mean velocity profiles
in figure 11. Red dash–dotted line, EQWM; blue solid line, PDE NEQWM; green dashed line, integral
NEQWM; magenta dotted line, no-slip LES; black circle, experiment. Profiles are shifted along the abscissa
by multiples of 10, 2 and 4 for u′u′, v′v′ and w′w′, respectively.

is strongest. Downstream of the bend where mean-flow three-dimensionality declines,
the difference between the two vectors also decreases (figure 15b). Furthermore, this lag
appears to be a function of the distance from the wall. The experiment shows that the
lag decreases with wall distance in the outer layer above y/δ99 ≈ 0.7 within the bend.
Downstream of the bend, the Reynolds shear stress vector even starts to lead to a mean
velocity gradient vector above y/δ99 ≈ 0.8, and this leads to increases with the wall
distance. These behaviours and the shear-stress angles therein are not captured well in
LES. We conjecture that computation of the angles in this region is prone to contamination
by numerical error or measurement noise, because both the Reynolds shear stress and the
mean velocity gradient values are very small there. At y/δ99 ≤ 0.7, a reasonable agreement
between the simulations and the experiment is observed, and results from the different wall
models not showing a notable difference.

3.5. Lumley triangle: anisotropy invariant map
We have noted that the Reynolds stresses from the simulations agree reasonably well with
the experiment. This makes it possible to further investigate the anisotropy of the Reynolds
stress in the outer layer of this 3DTBL using the WMLES solution. In this section, using
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Figure 14. Reynolds shear stress profiles at the same five locations as the mean velocity profiles in figure 11.
Red dash–dotted line, EQWM; blue solid line, PDE NEQWM; green dashed line, integral NEQWM; magenta
dotted line, no-slip LES; black circle, experiment. Profiles are shifted along the abscissa by multiples of 1.5, 2
and 1 for −u′v′, −u′w′ and v′w′, respectively.
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Figure 15. Directions (relative to the local free stream) of the mean velocity gradient vector and the Reynolds
shear stress vector: (a) station 10; (b) station 17. Red, EQWM; blue, PDE NEQWM; green, integral NEQWM;
black, experiment. Circle, angle between the Reynolds shear stress vector γτ and the local free stream; cross,
angle between the mean velocity gradient vector γg and the local free stream.
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the fine grid prediction, we employ the Lumley triangle to analyse the Reynolds-stress
anisotropy. Following Pope (2000), the normalized anisotropy tensor is defined as

bij = 〈uiuj〉
〈ukuk〉 − 1

3
δij. (3.4)

The anisotropy tensor has zero trace and thus has two independent principal invariants. It
is convenient to define two variables ξ and η, corresponding to the two invariants, as

6η2 = −2I2 = b2
ii = bijbji, (3.5)

6ξ3 = 3I3 = b3
ii = bijbjkbki. (3.6)

The state of anisotropy can be characterized by the above two variables ξ and η. All
realizable Reynolds-stress states must be located within a triangular region in the ξ–η

plane, which is known as the Lumley triangle. The boundary of the Lumley triangle
corresponds to some special states of the Reynolds-stress tensor: the origin corresponds
to the isotropic turbulence; the left corner point corresponds to the two-component (2C)
axisymmetric state; the right corner point corresponds to the one-component (1C) state;
the left straight line corresponds to the axisymmetric contraction and the right straight line
corresponds to the axisymmetric expansion; the top curve represents the two component
(2C) turbulence.

The evolution of the Reynolds stress anisotropies through the bend is shown in figure 16.
Comparisons to a statistically 2-D channel flow at Reτ = 2003 (Hoyas & Jimenez 2006)
and a transient statistically 3-D channel flow at Reτ = 546 (Lozano-Durán et al. 2020) can
be also made from these data shown in figure 16(d). Lozano-Durán et al. (2020) studied a
transient three-dimensional channel flow, where an initially statistically one-dimensional
flow in a doubly periodic channel evolves to a new state after a sudden imposition of a
spanwise pressure gradient. This flow models a shear-driven 3DTBL, and it can be used
for comparison to the pressure-driven case discussed in the current work. Right upstream
of the bend, the wall-normal distribution of the anisotropies away from the wall shows
some similarity to that in the 2-D channel (figure 16a), exhibiting a characteristic S-shape
lying close to the axisymmetric-expansion (AE) limit. As the flow passes through the
bend, the left cusp of this S curve rapidly dislocates towards inside the triangle, leaving
less points close to the AE limit. The non-monotonic decrease of the anisotropies (with
increasing wall distance) is also observed vividly, which is only weakly present in the
2-D channel. Although station 18 is considerably downstream of the bend region, the
anisotropies are still seen to further depart from its 2-D behaviour. This is consistent
with the observation in figure 15 that the Reynolds stresses respond more slowly than
the mean to the imposed three-dimensionality. Also, in figure 16(d), note the similarity
of the anisotropy distributions in the duct and the shear-driven 3DTBL from the transient
channel flow, although departure from the 2-D behaviour is much stronger in the duct case.

3.6. Triangular plot
In the present work, the mean three-dimensionality in the outer layer is created by the
inviscid skewing mechanism, where the streamwise vorticity is produced by reorientation
of the spanwise vorticity. A popular way of representing the cross-flow so developed is
the ‘Johnston triangular plot’ (Johnston 1960), which is the triangular plot of Us against
Un, where Us and Un are along and normal to the local free stream direction, respectively.
In particular, the outer-layer mean velocity profile of the skew-induced 3DTBLs can be
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Figure 16. Lumley triangle of the WMLES results along the wall-normal direction: (a) station 4; (b) station
10; (c) station 12; (d) station 18. Coloured dots, fine grid PDE NEQWM result (all the wall models give almost
identical results, and thus only PDE-NEQWM is shown here); black dash–dotted line, canonical 2-D channel
flow at Reτ = 2003 (Hoyas & Jimenez 2006); red solid line, shear-driven 3DTBL from transient channel at
Reτ = 546 at t+ = 192 (Lozano-Durán et al. 2020). Colour bar denotes the wall distance normalized by the
local boundary layer thickness.

accurately approximated by the Squire–Winter–Hawthorne (SWH) relation (Hawthorne
1951; Squire & Winter 1951; Bradshaw 1987):

Un

Ue
= 2γe

(
1 − Us

Ue

)
, (3.7)

where γe is the free stream turning along the streamline. This is a special case of the
vorticity transport equation in which viscous terms and Reynolds stresses are neglected.
The SWH relation shows up as a straight line with a negative slope towards the right end
of the triangular plot. In figure 17, we present the mean velocity for the current bent duct
flow and a temporally developing shear-driven 3-D channel flow from Lozano-Durán et al.
(2020) in the triangular plot. It is observed that the mean velocities in the outer layer from
the duct flow satisfy the SWH formula well, whereas they deviate from the SWH relation
in the shear-driven case, as expected. The slope in the SWH relation represents the free
stream turning angle with respect to the upstream flow, and the free stream slope in the
triangular plot (figure 17a) therefore increases towards the downstream direction.

The wall model solutions (defined only close to the wall) are also visualized along with
the outer LES solution in figure 18. It gives us a vivid picture of the different wall models’
capabilities to depict skewed mean-velocity profiles. In the triangular plot, the wall model
solutions are from the origin to the third cell LES solutions (coarse grid resolution).
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Figure 17. Johnston triangular plots. (a) WMLES of the bent square duct (all the wall models give almost
identical results, and thus only PDE-NEQWM is shown here): square, station 0; circle, station 4; triangle,
station 6; cross, station 8; diamond, station 10; star, station 12. (b) DNS of the shear-driven 3DTBL from
the transient channel flow at Reτ = 546 at t+ = 192 (Lozano-Durán et al. 2020). Red straight line, the SWH
formula (3.7). Colour bar denotes the wall distance normalized by the local boundary layer thickness.
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Figure 18. Johnston triangular plot of LES and wall-model solutions. (a) Cross-flow developing stage: square,
station 0; circle, station 4; triangle, station 6; cross, station 8; diamond, station 10; star, station 12. (b) Cross-flow
decaying stage: square, station 12; circle, station 14; triangle, station 16; cross, station 18; diamond, station
20; star, station 21. Red solid straight line, relation given by the SWH formula (3.7); red dash–dotted line,
EQWM; blue solid line, PDE NEQWM; green dashed line, integral NEQWM. Lines with symbols represent
the WMLES solution similar to figure 17(a). Colour bar denotes the wall distance normalized by the local
boundary layer thickness.

The EQWM, due to its unidirectional assumption, cannot describe skewed mean-velocity
profiles, and it shows up as a straight line starting from the origin in the triangular plot.
However, the PDE NEQWM and the integral NEQWM are able to represent skewed
mean-velocity profiles. They show up as curved lines in the triangular plot, implying that
the flow direction changes with the wall distance. During the cross-flow developing stage
(figure 18a), the difference between the two NEQWM solutions and the EQWM solution
gradually grows. Notice that the PDE NEQWM is able to represent a richer variation of the
slope (flow direction) along the wall-normal direction than the integral NEQWM. During
the cross-flow decaying stage (figure 18b), the difference among three wall model solutions
gradually decreases. All three wall model solutions become almost unidirectional close to
the end of the duct.

3.7. Quantification of the non-equilibrium contributions to the wall shear stress direction
In this section, the non-equilibrium effects neglected in the EQWM are analysed through
the full RANS equations used in the non-equilibrium wall models. This analysis highlights
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the importance of accounting for the non-equilibrium effects in wall modelling for accurate
prediction of the surface flow direction, as well as the subtle difference in how these effects
are incorporated in different wall models. Our analysis is based on the solutions of the PDE
NEQWM and the integral NEQWM. Ideally, this analysis should be done in a priori sense
using the fully resolved flow fields, as attempted by Hickel et al. (2012). This was deemed
infeasible in the present case due to the high Reynolds number.

Assuming incompressible flow, the time-averaged momentum equations in the PDE
NEQWM can be recast as

∂

∂y

[
(ν + νt)

∂〈u〉
∂y

]
= Sx, (3.8)

∂

∂y

[
(ν + νt)

∂〈w〉
∂y

]
= Sz, (3.9)

where Sx and Sz are the non-equilibrium source terms comprising the following terms
(S = A + P − D):

advection Ax = ∂〈u〉2

∂x
+ ∂〈u〉〈v〉

∂y
+ ∂〈u〉〈w〉

∂z
+ ∂〈u′u′〉

∂x
+ ∂〈u′v′〉

∂y
+ ∂〈u′w′〉

∂z
, (3.10)

advection Az = ∂〈w〉2

∂z
+ ∂〈v〉〈w〉

∂y
+ ∂〈u〉〈w〉

∂x
+ ∂〈w′w′〉

∂z
+ ∂〈v′w′〉

∂y
+ ∂〈u′w′〉

∂x
, (3.11)

pressure gradient Px = 1
ρ

∂〈P〉
∂x

, (3.12)

pressure gradient Pz = 1
ρ

∂〈P〉
∂z

, (3.13)

lateral diffusion Dx = ∂

∂x

[
(ν + νt)

∂〈u〉
∂x

]
+ ∂

∂z

[
(ν + νt)

∂〈u〉
∂z

]
, (3.14)

lateral diffusion Dz = ∂

∂x

[
(ν + νt)

∂〈w〉
∂x

]
+ ∂

∂z

[
(ν + νt)

∂〈w〉
∂z

]
. (3.15)

By integrating (3.8) and (3.9) twice, the following expressions of the wall shear stress
for the PDE NEQWM are obtained:

τw,x =
ULES −

∫ hwm

0

∫ y

0
Sx dy

ν + νt
dy∫ hwm

0

1
ν + νt

dy
, (3.16)

τw,z =
WLES −

∫ hwm

0

∫ y

0
Sz dy

ν + νt
dy∫ hwm

0

1
ν + νt

dy
, (3.17)

where ULES and WLES are the LES velocity components at the matching location. A
similar expression has been reported by Wang & Moin (2002). As shown in the previous
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Figure 19. Centreline distribution of the non-equilibrium contributions (from PDE NEQWM). Red solid line,

ULES/Uref ; red dashed line, WLES/Uref ; black solid line, −Ix/Uref ; black dashed line, −Iz/Uref .

sections, ULES and WLES are almost identical among the simulations with the different
wall models. The wall shear stress direction, which is the quantity of interest exhibiting
the most significant difference among the three wall models, is then expressed as

τw,z

τw,x
= WLES − Iz

ULES − Ix
, (3.18)

where Iz = ∫ hwm
0 (

∫ y
0 Sz dy/(ν + νt)) dy and Ix = ∫ hwm

0 (
∫ y

0 Sx dy/(ν + νt)) dy. When all the
non-equilibrium effects are neglected (i.e. letting Sx = Sz = 0), this relation reduces to
the wall shear stress direction predicted by the EQWM which assumes unidirectional flow
(τw,z/τw,x = WLES/ULES). The fidelity with which the constitutive terms of Ix and Iz are
modelled is, therefore, crucial to the performance of wall models in predicting the surface
flow direction.

To separate the non-equilibrium contributions from the flow direction predicted by the
EQWM, we can first reorganize (3.18) as

τw,z

τw,x
= WLES

ULES

(
1 − Iz/WLES

1 − Ix/ULES

)
. (3.19)

For the present flow, it is shown in figure 19 that Ix is relatively small compared to ULES,
which permits the use of a truncated Taylor series expansion of 1/(1 − Ix/ULES),

τw,z

τw,x
= WLES

ULES

(
1 − Iz

WLES

)[
1 + Ix

ULES
+ O

(
Ix

ULES

)2
]

. (3.20)

Equation (3.20) can be further expanded as

τw,z

τw,x
= WLES

ULES

(
1 − Iz

WLES
+ Ix

ULES
+ · · ·

)
. (3.21)

The terms Ix/ULES and Iz/WLES can be viewed as representing the corrective contributions
from the non-equilibrium effects to the surface flow direction predicted by the EQWM.
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Figure 20. Centreline distribution of the non-equilibrium contribution to the flow direction. Solid line,
Ix/ULES; dashed line, −Iz/WLES; dotted line, total non-equilibrium correction. Blue, NEQWM; green, integral
NEQWM. Black vertical dashed lines, start and end of the bend region.

In essence, (3.21) enables the surface flow angle to be decomposed into distinct
contributions originating from the equilibrium and the non-equilibrium terms. Although
not shown here for brevity, this truncated relation was found to provide almost identical
description as the actual wall flow direction (τw,z/τw,x). Note that (3.21) applies to the
integral NEQWM as well. However, the terms Ix and Iz therein are largely modelled using
the assumed velocity profile, in contrast to the PDE NEQWM where these terms are largely
solved for using the full RANS equations.

To further compare the wall models, we plot the two leading order terms of (3.21) for
the two non-equilibrium wall models in figure 20 (all non-equilibrium terms are zero for
EQWM and they are not plotted.) Several interesting observations are made. First, the two
non-equilibrium wall models show that the total non-equilibrium angle corrections are
large at the beginning of the bend region and that they gradually decrease to zero towards
the end of the duct. That is, the non-equilibrium models properly sense the region where
non-equilibrium effects are important and attempt to model them therein. Second, the two
non-equilibrium wall models produce comparable distributions of Ix/ULES, implying that
the axial (x) contents of the non-equilibrium effects are modelled almost identically by the
two wall models. Third, the difference between the wall models appears to be concentrated
in −Iz/WLES, i.e. in the way the models sense and model the cross-flow (z) component of
the non-equilibrium effects. The integral NEQWM underpredicts −Iz/WLES throughout
the duct compared to the PDE NEQWM. Furthermore, within the bend, the signs of this
term are opposite in the two wall models. This term comprises advection (Az), pressure
gradient (Pz), lateral diffusion (Dz) and WLES. Among these terms, Pz and WLES are
imposed largely from the LES solution (which are seen to be identical from the simulations
using the two wall models), and D is seen to be negligible in its magnitude. Therefore, we
conjecture that the difference of −Iz/WLES in the integral wall model originates largely
from its assumed velocity profile, which is directly used in computing the advection
term Az. It should be noted that the lines representing −Iz/WLES in figure 20 show rapid
changes in the upstream region (0.2 ≤ x′/L ≤ 0.4) because the spanwise velocity WLES
is almost zero therein. This makes these terms ill-behaved (division by 0) in this region
with an extreme data range. It should also be noted that these terms will be multiplied by
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Figure 21. Centreline distribution of the surface flow turning angles with respect to the free stream (γw is
the wall shear stress direction, γ∞ is the free stream direction): (a) including all non-equilibrium effects;
(b) including diffusion only; (c) including pressure gradient only; and (d) including advection only. Red
dash–dotted line, EQWM; blue dashed line, PDE NEQWM; blue solid line with circles, reconstruction with
non-equilibrium contributions; black squares, experiment; black vertical dashed line, start and end of the bend
region.

WLES/ULES in the end, as in (3.21). When WLES is almost zero, the flow angle will just be
zero. Therefore, the focus should be on the bend and the downstream regions.

Furthermore, the individual contributions from different non-equilibrium effects are
also analysed. Starting from (3.18) with Ix = Iz = 0 (corresponding to the EQWM
prediction), we examine the change in the surface flow turning angle by systematically
including the contributions from various non-equilibrium effects (advection, pressure
gradient and lateral diffusion) to Ix and Iz. Note that this is done in a post-processing
manner using the solution of the PDE NEQWM. The results are shown in figure 21.
When all the non-equilibrium effects are taken into account, the reconstructed surface flow
turning-angle agrees with the PDE NEQWM prediction, as expected. The lateral diffusion
terms have negligible contributions to the surface flow turning angle. The pressure gradient
and advection terms are significant within the bend, where the mean three-dimensionality
develops. However, these terms appear to have a competing effect within the bend. The
pressure gradient tends to make the flow deviate more from the local free stream, while
the advection tends to make the flow deviate less from the local free stream. These two
contributions largely cancel out each other, but a subtle balance between the two appears
to be crucial in prediction of the surface flow direction.

4. Conclusion

In the present work, we have studied a spatially developing pressure-driven 3DTBL
over the floor of a square duct with a 30◦ bend using WMLES. The major focus of
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this study is to contrast the performance of three commonly used wall models in a
high-Reynolds-number pressure-driven 3DTBL.

These models represent varying degrees of physical fidelity: the EQWM solves the
simplified boundary-layer equations which neglect all non-equilibrium effects and assume
the flow is unidirectional in the wall-modelled region; the PDE NEQWM solves unsteady
3-D RANS equations which maintain much of the non-equilibrium effects; and the integral
NEQWM represents a compromise between the two models. Algebraic complexity is
kept low thanks to the presumed velocity profile, while the non-equilibrium effect is
represented by the linear perturbation to the logarithmic law of the wall.

The mean-flow statistics and the Reynolds stresses are predicted reasonably well by the
WMLES under the current grid resolutions, which are too coarse for the no-slip LES.
The more comprehensive PDE NEQWM does show improvement against the integral
NEQWM (which is in turn better than the EQWM) in predicting the direction of mean
wall shear stress. The error in the local wall shear force direction accumulates along the
surface streamlines, leading to significant difference of the surface flow at the end of the
duct. Budget analyses have been conducted to elucidate precise mechanisms by which the
three wall models produce different predictions of the wall shear stress directions given
almost identical inputs. For the present flow, the surface flow direction is shown to have
separable contributions from the equilibrium part of the wall models and the integrated
non-equilibrium effects (advection and pressure transports). It was shown that a difference
in how the cross-flow component of the non-equilibrium contribution is modelled leads to
different behaviours of the models. Additionally, the pressure gradient and the advection
are shown to have a competing effect in deflecting the surface flow within the bend.
Although these terms largely cancel out each other, neglecting any of them produces large
errors in the surface flow direction, and a subtle balance between the two appears to be
crucial in prediction of the surface flow.

However, such difference in the wall shear stress direction predicted by the wall models
appears to be not felt by the (outer) LES solution. The three wall models produce almost
the same mean velocity and Reynolds stresses profiles. A possible explanation for this
phenomenon comes from the nature of the pressure-driven 3DTBL. In the duct flow under
consideration, the mean-flow three-dimensionality in the outer layer is largely controlled
by the ‘inviscid skewing’ mechanism, which is not affected by the near wall viscous
effects. In this class of 3DTBL, the outer-layer mean-flow appears to be robustly set up
by the inviscid effect, provided that the momentum drain by the wall is specified with
reasonable accuracy only (in particular, its magnitude rather than the direction).

The characteristics of the 3DTBL are also analysed. The anisotropy of turbulence
along the wall-normal direction is investigated with the Lumley triangle. Compared to
the 2DTBL, a large inward pointing sharp corner is presented in the Lumley triangle plot
of 3DTBL in the downstream section. This large sharp corner represents a non-monotonic
decrease of anisotopy for increasing wall distance. When the mean cross-flow is generated
by the inviscid effect (reorientation of spanwise vorticity), the relation between spanwise
and streamwise velocity in the local free stream coordinate system in the outer part of
the boundary layer shows as a straight line predicted by the SWH formula. In the present
duct flow, the outer LES results show good agreement with the SWH formula, which
shows that the ‘inviscid skewing’ mechanism is the major effect for generating mean
three-dimensionality in the outer layer. The triangular plot of the inner wall-model solution
reveals that the PDE NEQWM is most capable of representing the change in the flow
direction along the wall-normal direction. The EQWM is most restrictive in this sense
with its unidirectional flow assumption. The integral NEQWM is in between the two.
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Appendix A. Effects of the SGS modelling

To evaluate the effects of SGS modelling on the prediction of the mean three
dimensionality, another WMLES (with EQWM) was performed with the dynamic
Smagorinsky model (DSM) (Moin et al. 1991; Lilly 1992) using the coarse mesh. Since
there is no homogeneous direction available in this flow, the commonly deployed practice
of averaging the model expression along the homogeneous spatial directions to regularize
the behaviour of the model coefficient is replaced with averaging over neighbour cells
using the test filter. It was observed that the DSM produces a similar eddy viscosity field
as the Vreman model does. The results of the near wall flow turning and flow direction
with respect to wall distance are shown in figure 22. The DSM results are almost identical
to the Vreman model results. Although not shown for brevity, similar trends were observed
in all other flow statistics.

Both the Vreman model and DSM are isotropic eddy viscosity models, which assume
a perfect alignment between the strain-rate tensor and the SGS stress tensor. This is
likely invalid in 3DTBL, similar to the well-known misalignment of the Reynolds stress
tensor and the mean strain-rate tensor in 3DTBLs in the RANS context. Agrawal et al.
(2022) recently proposed a dynamic tensor-coefficient Smagorinsky model (DTCSM),
where the SGS stress tensor is related to the filtered rate-of-strain tensor through
a second-order tensor of model coefficients with four independent parameters. This
tensor-coefficient-based SGS model is also examined under the same numerical set-up
as with the DSM model. The results of flow directions are presented in figure 23. The
effect of DTCSM is shown to be most pronounced in the region where the mean-flow
three-dimensionality is strongest. It is noted that the surface flow turning angles (wall
model, figure 23a) and the mean-flow direction near the wall (LES, figure 23b) are
both underpredicted with the DTCSM as compared to the other SGS models deployed.
However, the prediction seems to improve as the distance from the wall increases
(figure 23b). Within 0.015 ≤ y/D ≤ 0.025, DTCSM and Vreman results are almost the
same. Further away from the wall, the DTCSM results have better agreement with the
experiment.

Appendix B. Effects of the matching height

The wall-model/LES matching height (hwm), which dictates the extent of the
wall-modelled region, is an implicit model parameter in the majority of wall models.
Previous studies reported potential sensitivities of WMLES results with respect to hwm
(Kawai & Larsson 2012; Yang et al. 2017). Log-layer mismatch associated with over- or
underprediction of the wall shear stress is known to occur when this interface is placed near
the wall-adjacent cells in LES or when hwm lies below the buffer layer. Some remedies,
such as filtering the wall-model input in time (Yang et al. 2017), taking the model input
from farther away from the wall (Kawai & Larsson 2012) or a combination of the two
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Figure 22. (a) Centreline distribution of the surface flow turning angles with respect to the free stream (γw =
tan−1(τw,z/τw,x) is the wall shear stress direction, γ∞ = tan−1(We/Ue) is the free stream direction). Squares,
experiment; red solid line, EQWM with Vreman model; red dashed line, EQWM with DSM. (b) Mean-flow
direction relative to the local free stream as a function of wall distance. Red solid line, EQWM with Vreman
model; red dashed line, EQWM with DSM; black solid line, experiment. Symbols are used to differentiate
stations along the duct floor centreline only (square, station 0; triangle, station 6; diamond, station 10). Lines
with the same symbols denote the results at the same stations.
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Figure 23. (a) Centreline distribution of the surface flow turning angles with respect to the free stream (γw =
tan−1(τw,z/τw,x) is the wall shear stress direction, γ∞ = tan−1(We/Ue) is the free stream direction). Squares,
experiment; red solid line, EQWM with Vreman model; blue dashed line, EQWM with DTCSM. (b) Mean-flow
direction relative to the local free stream as a function of wall distance. Red solid line, EQWM with Vreman
model; blue dashed line, EQWM with DTCSM; black solid line, experiment. Symbols are used to differentiate
stations along the duct floor centreline only (square, station 0; triangle, station 6; diamond, station 10). Lines
with the same symbols denote the results at the same stations.

(Owen et al. 2020b), are reported to resolve this issue. In the present study, we adopt the
method of Kawai & Larsson (2012), as it was shown effective enough to eliminate log-layer
mismatch issue in the previous studies (Park & Moin 2014, 2016a). The practice of using
the information away from the wall for wall modelling can, however, pose a challenge to
the wall models in complex flows. It is often argued that wall models can better reflect
the local near-wall flow when operating with the near-wall information, particularly in
separated flows with locally reversed fluid motion, and in 3DTBLs where the flow direction
changes with wall distance. Sensitivity of the WMLES results to hwm has not been reported
in 3DTBLs to the best of our knowledge. This issue is discussed in this section using the
three wall models deployed in the present study.

To test the effects of the matching height on the prediction of the mean three
dimensionality, WMLES with double the matching height of the original simulations were
performed using the three wall models on the coarse mesh. The new matching height
is still found to be well within the log layer, and the log-layer mismatch is avoided as
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Figure 24. (a) Centreline distribution of the surface flow turning angles with respect to the free stream (γw =
tan−1(τw,z/τw,x) is the wall shear stress direction, γ∞ = tan−1(We/Ue) is the free stream direction). Squares,
experiment; red line, EQWM; blue line, PDE NEQWM; green line, integral NEQWM. Dashed lines denote
calculations run with double the matching height. Solid lines denote the baseline calculations as in figure 10.
(b) Mean-flow direction relative to the local free stream as a function of wall distance. Red solid line, EQWM
with the original matching height; red dashed line, EQWM with double the matching height; black solid line,
experiment. Symbols are used to differentiate stations along the duct floor centreline only (square, station 0;
triangle, station 6; diamond, station 10). Lines with the same symbols denote the results at the same stations.

in the original calculations. While the outer-layer flow statistics in the LES were found
to be largely unchanged, notable changes in the surface flow angle were found. From
figure 24(a), it is clear that prediction of the near wall flow turning becomes worse when
hwm is increased. Note that the PDE NEQWM is much less sensitive to change in hwm
compared to the other two wall models: the changes in the prediction with the PDE
NEQWM simulation are smaller than those with the other two wall models when the
matching height is doubled, particularly for the maximum turning angle (max(γw − γ∞)).
This is consistent with the fact that the PDE NEQWM has the superior capability among
the three models of representing the flow-direction variation with respect to wall distance,
as discussed in figure 18(a). However, the EQWM assumes a unidirectional flow within the
wall model, imposing the flow direction from the LES at the matching height. This makes
the EQWM result sensitive to hwm when the flow direction varies with wall distance. The
integral NEQWM models the two wall-parallel velocity components separately, assuming
a linear sublayer near the wall and a linear departure from the log law elsewhere. This
appears to render the sensitivity of the integral NEQWM to be in between the PDE
NEQWM and the EQWM, albeit it is closer to the EQWM. As noted earlier, this change
in the surface flow direction appears to have limited impact on the outer layer of 3DTBLs
driven with the inviscid skewing mechanism. From figure 24(b), the mean-flow direction
with respect to the wall distance shows negligible difference for the two matching heights.

Appendix C. Modifications to the original integral NEQWM

In the original 3-D integral NEQWM formulation of Yang et al. (2015), the assumed
velocity profiles for the two wall-parallel velocity components in the viscous sublayer
were given by

u = uτ,x
y
δν

,

w = uτ,z
y
δν

,

⎫⎪⎬
⎪⎭ (C1)
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where uτ,x ≡ (τw,x/ρ)1/2 and uτ,z ≡ (τw,z/ρ)1/2 are the local x and z components of
friction velocity, δν is the viscous length-scale obtained from the consistent relation u4

τ =
u4
τ,x + u4

τ,z and y is the wall-normal distance from the wall. In our current formulation, we
modify the sublayer profile as follows:

u = sign(uτ,x)
u2
τ,x

uτ

y
δν

,

w = sign(uτ,z)
u2
τ,z

uτ

y
δν

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C2)

where sign() operator outputs the sign of the quantity within the parenthesis.
The desired asymptotic behaviour of velocity near the wall is given by the Taylor series

expansion as

u = u(0) + ∂u
∂y

∣∣∣∣
w

y + O( y2) ≈
(

τw,x

μ

)
y, (C3)

where u(0) is zero due to the no-slip condition and the higher order terms are ignored as
y → 0. With the original formulation (C1), the following asymptotic behaviour is obtained
(derivation is provided by Hayat & Park 2021):

u =
(

τw,x

μ

)
y

1√
cos2 θ + cos θ sin θ

, (C4)

where θ = arctan(τw,z/τw,x). Note that θ is dependent on the choice of local x/z coordinate
system through the respective components of the predicted wall shear stress along those
coordinate axes. The additional factor 1/

√
cos2 θ + cos θ sin θ in (C4) compared to (C3)

is what renders the original formulation inconsistent. It can be shown (Hayat & Park 2021)
that the new choice of assumed sublayer profile in (C2) always results in the consistent
near-wall asymptotic behaviour as given by (C3), irrespective of the choice of local x/z
coordinate system. Therefore, consistent results are obtained with arbitrary choices of the
local wall-parallel coordinate axes in our current formulation.

Further improvements to the original integral NEQWM include those on the
implementation side. Specifically, the model is extended to unstructured solvers, which
require the spatial gradients within the wall model to be computed using the cell-based
gradient routine of the LES solver. This requires exchanging information between wall
model and LES solvers, for which new communication protocols have been implemented.
For details of this implementation, the reader is referred to the work of Hayat & Park
(2021).
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