A TOPOLOGICAL CHARACTERIZATION OF GLEASON PARTS OF REAL FUNCTION ALGEBRAS

ΒY

S. H. KULKARNI AND B. V. LIMAYE

ABSTRACT. It is well-known that a topological space is a Gleason part of some complex function algebra if and only if it is completely regular and σ -compact. In the present paper, a Gleason part of a real function algebra is characterized as a completely regular σ -compact topological space which admits an involutoric homeomorphism.

Introduction. Garnett [1] has characterized a Gleason part of a complex function algebra as a completely regular σ -compact topological space. In [2], the authors have introduced real function algebras and their Gleason parts. The purpose of the present note is to characterize a Gleason part of a real function algebra as a completely regular σ -compact topological space admitting an involutoric homeomorphism.

Preliminaries and notations. Let X be a compact Hausdorff space, and denote by C(X) the complex Banach algebra of all complex-valued continuous functions on X, with the supremum norm.

Let $\tau: X \to X$ be an involutoric homeomorphism and $\sigma: C(X) \to C(X)$ be defined by

$$\sigma(f)(x) = f(\tau(x)), \qquad f \in C(X), \qquad x \in X.$$

A real function algebra A on (X, τ) is a uniformly closed real subalgebra of C(X) such that

(i) $\sigma(f) = f$ for all $f \in A$,

(ii) $1 \in A$, and

(iii) A separates the points of X, i.e., for $x_1 \neq x_2$ in X, there is $f \in A$ with $f(x_1) \neq f(x_2)$.

Let A be a real function algebra on (X, τ) and let Φ_A denote the set of all non-zero real-linear complex-valued homomorphisms of A. For $x \in X$, let $\phi_x(f) = f(x), f \in A$. Then $\phi_x \in \Phi_A$, and we identify x with ϕ_x . For $\phi \in \Phi_A$, let $\tau_0(\phi)(f) = \overline{\phi(f)}, f \in A$. Then it is easy to see that the natural involutoric

Received by the editors May 5, 1981 and in revised form October 2, 1981.

¹⁹⁸⁰ AMS Subject Classification Number 46J10.

[©] Canadian Mathematical Society, 1983.

homeomorphism $\tau_0: \Phi_A \to \Phi_A$ extends $\tau: X \to X$, i.e., $\tau_0(\phi_x) = \phi_{\tau(x)}$ for all $x \in X$.

It is proved in [2] that for $\phi, \psi \in \Phi_A$, the relation

$$\sup\{|\phi(f) - \psi(f)| |\phi(f) - \tau_0(\psi)(f)| : f \in A, ||f|| < 1\} < 4$$

is an equivalence relation on Φ_A . The equivalence classes under this relation are called the *Gleason parts of A*.

Let $B = \{f + ig : f, g \in A\}$. Then it is easy to see that ||f + ig|| = ||f - ig|| for $f, g \in A$, and hence B is a complex function algebra on X. B is called the *complexification of A*. Let Φ_B denote the set of all non-zero complex-linear complex-valued homomorphisms of B and consider $\alpha : \Phi_A \to \Phi_B$, defined by

$$\alpha(\phi)(f+ig) = \phi(f) + i\phi(g)$$

Then α is a bijection and $\alpha(\phi)|_A = \phi$ for all $\phi \in \Phi_A$.

LEMMA. Let B be any complex function algebra on X and $\tau: X \to X$ an involutoric homeomorphism such that $\sigma(B) = B$. If we let $A = \{f \in B: \sigma(f) = f\}$, then A is a real function algebra on (X, τ) and B is the complexification of A. Moreover, if $P \subseteq \Phi_B$ is a Gleason part of B, then $\alpha^{-1}(P) \cup \tau_0(\alpha^{-1}(P))$ is a Gleason part of A.

Proof. Since B is a complex function algebra, it is clear that A is a uniformly closed real subalgebra of C(X) and that $1 \in A$. To show that A separates the points of X, consider $x_1 \neq x_2$ in X. Since $\sigma(B) = B$, we note that $\sigma(h) \in B$ for every $h \in B$, and since

$$\sigma(h+\sigma(h)) = h+\sigma(h)$$

$$\sigma(h\sigma(h)) = h\sigma(h),$$

we conclude that $h + \sigma(h)$, $h\sigma(h) \in A$. First assume that $x_2 \neq \tau(x_1)$. Find $h \in B$ such that $h(x_1) = h(\tau(x_1)) = 1$ and $h(x_2) = 0$. Then $(h\sigma(h))(x_1) = 1$ and $(h\sigma(h))(x_2) = 0$. Next, let $x_2 = \tau(x_1)$. Find $h \in B$ such that $h(x_1) = i$ and $h(x_2) =$ 0. Then $(h + \sigma(h))(x_1) = i$ and $(h + \sigma(h))(x_2) = -i$. Hence x_1 and x_2 are separated by A. Thus, A is a real function algebra on (X, τ) . Also, since for every $h \in B$,

$$h = \frac{h + \sigma(h)}{2} + i \left(\frac{h - \sigma(h)}{2i} \right),$$

where $(h + \sigma(h))/2$, $(h - \sigma(h))/2i \in A$, it follows that B is the complexification of A.

Next, if $\phi \in \Phi_A$ and Q is the Gleason part of A containing ϕ , then it is proved in [2], Lemma 2.1 that $\alpha(Q)$ is the union of the Gleason parts of B containing $\alpha(\phi)$ or $\alpha(\tau_0(\phi))$. Now, let $P \subset \Phi_B$ be a Gleason part of B. Let $\alpha(\phi) \in P$ for some $\phi \in \Phi_A$ and let \overline{P} be the Gleason part of B containing

 $\alpha(\tau_0(\phi))$. For any $\psi \in \Phi_A$, $\|\alpha(\phi) - \alpha(\psi)\| < 2$ iff $\|\alpha(\tau_0(\phi)) - \alpha(\tau_0(\psi))\| < 2$. Hence $\alpha^{-1}(\overline{P}) = \tau_0(\alpha^{-1}(P))$. Thus,

$$\alpha^{-1}(P \cup \overline{P}) = \alpha^{-1}(P) \cup \alpha^{-1}(\overline{P})$$
$$= \alpha^{-1}(P) \cup \tau_0(\alpha^{-1}(P))$$

is a Gleason part of A. Q.E.D.

PROPOSITION. Let V be a complex function algebra on Φ_V and $\tau': \Phi_V \to \Phi_V$ be an involutoric homeomorphism such that $\sigma'(V) = V$. Let P' be a Gleason part of V and S' a hull-kernel closed subset of Φ_V such that $\tau'(S') = S'$ and $\tau'(P' \cap S') =$ $P' \cap S'$. Then there exists a real function algebra A, a Gleason part Q of A and a homeomorphism F of $P' \cap S'$ onto Q such that $F \circ \tau' = \tau_0 \circ F$.

Proof. Let U be the complex function algebra on the torus $T^2 = \{(e^{i\theta_1}, e^{i\theta_2}): 0 \le \theta_1, \theta_2 < 2\pi\}$ generated by the functions $z_1^n z_2^m$, where n and m are integers with $n + m\sqrt{2} \ge 0$. Let ψ_0 be the point in Φ_U represented by the Haar measure on the torus T^2 . Let

and

$$J = \{ z = (z_1, z_2) \in T^2 : \text{Re } z_1, \text{Re } z_2 \le 0 \}$$
$$X = (J \times \Phi_V) \cup (\Phi_U \times S').$$

Then X is a compact subset of $\Phi_U \times \Phi_V$. Let $U \otimes V$ be the complex function algebra on $\Phi_U \times \Phi_V$ generated by all functions of the form $(f \otimes g)(z, \psi) =$ $f(z)g(\psi)$, where $f \in U$ and $g \in V$. Let B denote the uniform closure of $\{h|_X : h \in U \otimes V\}$ in C(X). It is shown in the course of the proof of Theorem 1 of [1] that B is a complex function algebra on X, $\Phi_B = X$ and $P = \{\psi_0\} \times \{P' \cap S'\}$ is a Gleason part of B.

Define $\tau: X \to X$ as follows:

$$\boldsymbol{\tau}(\boldsymbol{z},\boldsymbol{\psi}) = (\bar{\boldsymbol{z}},\boldsymbol{\tau}'(\boldsymbol{\psi})), \qquad \boldsymbol{z} \in \Phi_{\boldsymbol{U}}, \qquad \boldsymbol{\psi} \in \Phi_{\boldsymbol{V}},$$

where $\bar{z} = (\bar{z}_1, \bar{z}_2)$ for $z = (z_1, z_2)$. Then τ is an involutoric homeomorphism on X. Moreover, if $f \in U$ and $g \in V$, then for all $z \in \Phi_U$ and $\psi \in \Phi_V$,

$$\sigma((f \otimes g)|_{\mathbf{X}})(z, \psi) = \overline{(f \otimes g)|_{\mathbf{X}}(\tau(z, \psi))}$$
$$= \overline{(f \otimes g)(\overline{z}, \tau'(\psi))}$$
$$= \overline{f(\overline{z})g(\tau'(\psi))}.$$

Now, if we let $f^*(z) = \overline{f(\overline{z})}$, $z \in \Phi_U$, then clearly $f^* \in U$, and if we let $g^*(\psi) = \overline{g(\tau'(\psi))}$, $\psi \in \Phi_V$, then by our assumption, $g^* \in V$. Hence $\sigma((f \otimes g)|_X) \in B$. It follows that $\sigma(B) = B$.

By the previous lemma, we see that $A = \{f \in B : \sigma(f) = f\}$ is a real function algebra on (X, τ) , *B* is the complexification of *A* and $Q = \alpha^{-1}(P) \cup \tau_0(\alpha^{-1}(P))$

is a Gleason part of A, where $\tau_0(\phi) = \overline{\phi}$ is the natural involutoric homeomorphism on Φ_A . Now, since the diagram

$$\begin{array}{c} \Phi_B \xrightarrow{\tau} \Phi_B \\ \uparrow & \uparrow^{\alpha} \\ \Phi_A \xrightarrow{\tau_0} \Phi_A \end{array}$$

commutes, and since

$$\tau(P) = \{\bar{\psi}_0\} \times \tau'(P' \cap S')$$
$$= \{\psi_0\} \times (P' \cap S')$$
$$= P,$$

it follows that $\tau_0(\alpha^{-1}(P)) = \alpha^{-1}(P)$. Thus,

$$Q = \alpha^{-1}(P)$$
 and $\tau_0(Q) = Q$.

Finally, define $F: P' \cap S' \to Q$ by $F(\psi) = \alpha^{-1}((\psi_0, \psi))$ for $\psi \in P' \cap S'$. Then F is a homeomorphism of $P' \cap S'$ onto Q and the diagram

$$\begin{array}{c} P' \cap S' \stackrel{F}{\longrightarrow} Q \\ \uparrow \\ r' \\ P' \cap S' \stackrel{F}{\longrightarrow} Q \end{array}$$

commutes, i.e., $F \circ \tau' = \tau_0 \circ F$. Q.E.D.

REMARK. It was proved in Theorem 1.3 of [2] that if $\phi \in \Phi_A$ for a real function algebra A on (X, τ) , then $\psi \in \Phi_A$ belongs to the Gleason part containing ϕ iff either $\|\phi - \psi\| < 2$ or $\|\bar{\phi} - \psi\| < 2$. Thus, $\bar{\phi}$ always belongs to the Gleason part containing ϕ . Let us consider the following question: Does there exist a Gleason part Q of a real function algebra A and $\phi \in \Phi_A$ such that $Q = \{\phi, \bar{\phi}\}$ but $\bar{\phi} \neq \phi$? The answer is in the affirmative, as the following example shows: Let V be the algebra of all complex-valued continuous functions on the closed unit disk D in the complex plane, which are analytic on the open unit disk D^0 . Then $\Phi_V = D$. Let $\tau' : \Phi_V \to \Phi_V$ be given by $\tau'(z) = \bar{z}, z \in D$. Then for every $f \in V, \sigma'(f)(z) = \bar{f}(\bar{z}'(z)) = \bar{f}(\bar{z}), z \in D$, also belongs to V, i.e., $\sigma(V) = V$. Thus, $A = \{f \in V: f(\bar{z}) = \bar{f}(z)\}$ is a real function algebra on (D, τ') and for any θ in $(0, \pi), \{e^{i\theta}, e^{-i\theta}\}$ constitutes a Gleason part of A. Note here that $\|e^{i\theta} - e^{-i\theta}\| = 2$ for any $\theta \in (0, \pi)$. This raises the following question: Does there exist a Gleason part Q of a real function algebra A and $\phi \in \Phi_A$ such that $Q = \{\phi, \bar{\phi}\}, \phi \neq \bar{\phi}$ and $\|\phi - \bar{\phi}\| < 2$. The construction in the earlier

https://doi.org/10.4153/CMB-1983-008-3 Published online by Cambridge University Press

March

proposition can be used to answer this question affirmatively. With V, τ' and σ' as described above, let $P' = D^0$ and $S' = \{i/2, -i/2\}$. Then P' is a Gleason part of V, S' is hull-kernel closed in Φ_V and $\tau'(P' \cap S') = \tau'(S') = S' = P' \cap S'$. Hence by the earlier proposition, there exists a real function algebra A, a Gleason part Q of A and a homeomorphism F of S' onto Q with $F \circ \tau' = \tau_0 \circ F$. Let $\phi = F(i/2)$. Then $\overline{\phi} = F(-i/2)$ and $Q = \{\phi, \overline{\phi}\}$. Moreover, the proof of the earlier proposition shows that $P = \alpha(Q)$ is a Gleason part of the complexification B of A. Hence $\|\alpha(\phi) - \alpha(\overline{\phi})\| < 2$, which in turn implies that $\|\phi - \overline{\phi}\| < 2$, by Theorem 2.2(a) of [2].

THEOREM. Let A be a real function algebra on (X, τ) and $Q \subset \Phi_A$ a Gleason part of A. Then Q is a completely regular σ -compact topological space and $\tau_0: Q \rightarrow Q$.

Conversely, let K be a completely regular, σ -compact topological space and let $\tau: K \to K$ be an involutoric homeomorphism. Then there is a real function algebra A, a Gleason part $Q \subset \Phi_A$ and a homeomorphism F of K onto Q such that $F \circ \tau = \tau_0 \circ F$.

Proof. If $Q \subset \Phi_A$ is a Gleason part of a real function algebra A, then Q is completely regular since it is a subset of the compact Hausdorff space Φ_A . Now, by Theorem 1.3 of [2],

$$\psi \in Q$$
 iff $\|\phi - \psi\| < 2$ or $\|\overline{\phi} - \psi\| < 2$.

For natural numbers *n* and *m*, let $A_n = \{\psi \in \Phi_A : \|\phi - \psi\| \le 2 - 1/n\}$ and $B_m = \{\psi \in A : \|\bar{\phi} - \psi\| \le 2 - 1/m\}$. Then A_n and B_m are closed subsets of Φ_A , and hence they are compact. Since

$$Q = \left(\bigcup_{n} A_{n}\right) \cup \left(\bigcup_{m} B_{m}\right),$$

it follows that Q is σ -compact. That τ_0 maps Q into Q is also clear.

Conversely, let K be a completely regular σ -compact topological space, and $\tau: K \to K$ an involutoric homeomorphism. Let

$$K' = \begin{cases} K \cup \{\infty\}, & \text{if } K \text{ is compact,} \\ \beta K, & \text{if } K \text{ is non-compact,} \end{cases}$$

where βK denotes the Stone-Cech compactification of K. First note that τ can be extended as an involutoric homeomorphism of K'.

Let I = K' - K. (*I* will be a singleton set if *K* is compact.) For $i \in I$, let D_i be the closed unit disk in the complex plane and Y_I the product of D_i 's with $i \in I$. Let A_I be the subalgebra of $C(Y_I)$ generated by the coordinate functions $z_i, i \in I$, where $z_i(p) = p_i$. Then $\Phi_{A_I} = Y_I$. Let θ be the origin in Y_I , that is, $z_i(\theta) = 0$ for all $i \in I$, and let P_0 be the Gleason part of Φ_{A_I} containing θ . Let

 $V = \{ f \in C(K' \times Y_I) : f|_{\{x\} \times Y_I} \in A_I \text{ for all } x \in K' \text{ and } f|_{K' \times \{\theta\}} \text{ is constant} \}.$

Then $\Phi_V = K' \times Y_I \approx$, where \approx identifies $K' \times \{\theta\}$ to a point. Also, $P' \equiv \{(x, z) \in \Phi_V, z \in P_0\}$ is a Gleason part of V, since P' is the union of several copies of P_0 whose centres are identified. (See [1], proof of Theorem 2.)

Let $\tau': \Phi_V \to \Phi_V$ be defined by $\tau'(x, z) = (\tau(x), \bar{z}), x \in K', z \in Y_I$, where $\bar{z}_i(p) = \bar{p}_i$ whenever $z_i(p) = p_i$. From the definition of *V*, it is easy to see that for every $f \in V$, the function f^* defined by $f^*(x, z) = \overline{f(\tau(x), \bar{z})}, (x, z) \in \Phi_V$, also belongs to *V*.

Now, we show that there exist a hull-kernel closed set S' in Φ_V such that $\tau'(S') = S'$ and $\tau'(P' \cap S') = P' \cap S'$ and a homeomorphism $G: K \to P' \cap S'$ such that $G \circ \tau = \tau' \circ G$. Then an application of the earlier proposition would complete our proof.

Case (i). Let K be compact, so that $K' = K \cup \{\infty\}$. Since $\{\infty\}$ is isolated in K', there is a continuous function $h: K' \to [\frac{1}{2}, 1]$ such that $h^{-1}(1) = \{\infty\}$ and $h(\tau(x)) = h(x)$ for all $x \in K$. Let $S' = \{(x, h(x)): x \in K'\} \subset \Phi_V$. Then the function g(x, z) = (h(x) - z)/(3h(x) - z) vanishes exactly on S' and belongs to V. Hence S' is hull-kernel closed. Also, $\tau'(S') = S'$ and $\tau'(P' \cap S') = P' \cap S'$ since for $(x, h(x)) \in P' \cap S'$, we have

$$\tau'((x, h(x)) = (\tau(x), h(x)) = (\tau(x), h(x)),$$

which is in $P' \cap S'$. Let $G: K \to P' \cap S'$ be defined by G(x) = (x, h(x)). Then G is a homeomorphism of K onto $P' \cap S'$ and $G \circ \tau = \tau' \circ G$.

Case (ii). Let K be non-compact, so that $K' = \beta K$. Write $K = \bigcup_{n=1}^{\infty} K_n$, where $K_n \subset K_{n+1}$, $\tau(K_n) = K_n$ and each K_n is compact. Then for each $t \in K' - K$, there exists a continuous function $h_t: K' \to [\frac{1}{2}, 1]$ with $h_t(t) = 1$, $h_t(x) \le 1 - 2^{-n}$ for all $x \in K_n$ and $h_t(\tau(x)) = h_t(x)$ for all $x \in K$. Let $G: \beta K \to \Phi_V$ be defined by G(x) = (x, H(x)), where $(H(x))_t = h_t(x)$ for each $t \in I$. Then G is a homeomorphism of βK onto $S' = G(\beta K)$, and $G(K) = P' \cap S'$. Also, as in Case (i), it follows that $\tau'(S') = S'$, $\tau'(P' \cap S') = P' \cap S'$ and that $G \circ \tau = \tau' \circ G$. Finally, S' is hull-kernel closed in Φ_V because $S' = \bigcap \{g_t^{-1}(0): t \in I\}$, where

$$g_t(x, z) = (h_t(x) - z_t)/(3h_t(x) - z_t).$$
 Q.E.D.

REFERENCES

J. Garnett, A topological characterization of Gleason parts, Pacific J. Math., 20 (1967), 59-63.
S. H. Kulkarni and B. V. Limaye, Gleason parts of real function algebras, Canadian J. Math. 33 (1981), 181-200.

DEPARTMENT OF MATHEMATICS INDIAN INSTITUTE OF TECHNOLOGY POWAI, BOMBAY 400 076, INDIA

1983]