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ABSTRACT

In order to efficiently design and deliver customized products, it is crucial that the process of
translating customer needs to engineering characteristics and into unique products is smooth and
without any misinterpretations. The paper proposes a method that combines design optimization with
value-driven design to support and automate configuration of customized products. The proposed
framework is applied to a case example with spiral staircases, a product that is uniquely configured for
each customer from a set of both standard and customized components; a process that is complex,
iterative and error-prone. In the case example, the optimization and value-driven design models are
used to automate and speed-up the process of delivering quotations and design proposals that could be
judged based on both engineering characteristics as well as their added value, thereby increasing the
knowledge at the sales stage. Finally, a multi-objective optimization algorithm is employed to generate
a set of Pareto-optimal solutions that contain four clusters of solutions that dominate the baseline
design. Hence the decision-maker is given a set of optimal solutions to choose from when balancing
different economical and technical characteristics.

Keywords: Optimisation, Product architecture, Digital / Digitised engineering value chains, Staircases

Contact:

Vidner, Olle

Linkdping University

Division of Product Realisation
Sweden

olle.vidner@liu.se

Cite this article: Vidner, O., Wehlin, C., Persson, J. A. Olvander, J. (2021) ‘Configuring Customized Products with
Design Optimization and Value-Driven Design’, in Proceedings of the International Conference on Engineering Design
(ICED21), Gothenburg, Sweden, 16-20 August 2021. DOI:10.1017/pds.2021.74

ICED21 741

https://doi.org/10.1017/pds.2021.74 Published online by Cambridge University Press


https://doi.org/10.1017/pds.2021.74

1 INTRODUCTION

In order for the process of configuring and delivering customer unique products to be more efficient and
simultaneously keeping it flexible, information handling and verification is crucial. Misinterpretations
of customer needs can be a source of errors in later stages, leading to delays, increased cost and wasted
resources. The early sales (or quotation) stage is the first important source of information which sets
the prerequisites for the process that is to follow. In product development, the design paradox (UlI-
man, 2010) is often used to address common challenges in product development processes. It illustrates
the lack of knowledge that characterizes the early stages of development where the design freedom is
at its highest, and the increased knowledge during later stages where costs of changes are increasing
exponentially.

In this paper the use of design optimization and value-driven design (VDD) is applied to a case exam-
ple with spiral staircases, a product that is designed uniquely for each customer, containing a set of
both standard and customized components, whose configuration process is complex, iterative and error-
prone. In the case example, the optimization and value-driven design models are used to increase the
knowledge at the quotation stage, and to support decision-makers. Through optimization with compu-
tational models, design alternatives of the staircase are generated according to the customer context and
are presented in terms of value for the different stakeholders. This enables the possibility to create fast
quotations based on verified configurations, without the need of manual iterations between the sales and
design department. This reduces the risk of errors due to misinterpretation and provides competitive
advantages.

Spiral staircases can be seen as mass customized products, meaning products developed and designed
in a process where each customer need is met from a set solution space through a stable, flexible and
responsive process (Piller, 2004). In order for this process to be efficient and reliable, a design automa-
tion approach has been applied, where knowledge-based models contain the rule base for generation of
feasible designed staircases through an optimization framework. This enables the generation of fast and
reliable quotations in a sales context, which is important for avoiding errors and delays often caused by
misinterpretations and assumptions based on experiences.

In this paper, we will show how VDD can be integrated into product configurators and how optimal
trade-offs can be made through the use of simple value models and multi-objective optimization. Addi-
tionally, a number of tools to aid the data processing within such configurators are described. Hence
the paper presents a novel approach combining VDD and multi-objective optimization together with
tools that support the decision-making process. The methods presented is then applied on an industrial
staircase example.

The remainder of the paper is outlined as follows. First a theoretical background is given in order to
introduce the different domains that the developed tools and methods are built upon. Thereafter the case
of industrial staircase configuration is described, followed by implementation and optimization results.
Finally the discussion and conclusion chapter summarizes the paper.

2 THEORETICAL BACKGROUND

The methods and tools elaborated on within this paper relies on four main theoretical areas: con-
figurators, i.e. the ability to develop customized solutions based on existing configurable modules;
multi-disciplinary and multi-objective optimization algorithms as drivers in the search for optimal
configurations; value-driven design methods to express the goal for the optimization; and finally
post-optimization analysis in order to support the decision-making.

2.1 Configurators

Efficient implementations of mass customization in industry are often based on some sort of product
configurator, as described by e.g. Hvam, Mortensen, and Riis (2008) and Tseng and Piller (2003). When
considering a product configurator and its actors together, this unity can be referred to as a configuration
system (Forza and Salvador, 2002).

In a case study conducted by Hvam, Haug, et al. (2013), it is concluded that the introduction of product
configuration systems could reduce the lead-time with as much as 90 percent (partly because of more
correct and timely specifications) and lead to increased sales, reduced costs, and formalized engineering
knowledge among other effects.
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In the context of a product that is the subject of a configuration system, Forza and Salvador (2002)
distinguish a product’s attributes into two main categories:
e Commercial characteristics: the product attributes (or requirements) that are to be defined by the
customer.
o Technical characteristics: the product attributes that are to be manually or automatically defined
by/through the configuration system, to achieve the given commercial characteristics.
This paper focuses on creating a configuration system for supporting the quotation process in the early
sales stage, where geometric models are simple mathematical relations that represents the connection
between the technical and commercial characteristics of the product. In order to conduct more detailed
modeling, alternative approaches could be used, such as the principle of High-level CAD templates
(HLCt:s) as described by Amadori et al. (2012) or the CAD templates approach integrating Knowledge
Based Engineering environments as described by Verhagen, Stjepandic, and Wognum (2015). Further-
more, Verhagen, Stjepandic, and Wognum (2015) also discuss the use of product configurators as a
means to achieve mass customization based on product modularity and supported by traditional design
engineering methods. This paper extends the methods described above by the inclusion of formal opti-
mization methods and the utilization of value-driven design to guide the product configuration process,
however using more simple geometric representations.

2.2 Optimization

Many engineering problems can be considered as optimization problems, where the engineer has a set of
parameters to tune in order to reach a certain goal. However, in practice many problems are much more
complex and involves not just one engineer but multiple departments within a company, where each
may have different conflicting objectives. Hence a problem may become multi-disciplinary (Simpson
and Martins, 2011) and multi-objective (Hwang, Paidy et al., 1980). Furthermore, in the general case
it might not be possible to obtain derivatives of the objective function, so methods that do not rely
on analytical derivatives and are able to handle multi-disciplinary and multi-objective problems are of
special interest for these types of problems. An example of such a method is the multi-objective genetic
algorithm NSGA-II (Deb et al., 2002), that is widely used in this type of application.

2.3 Value-driven design

Value-driven design is a methodology for considering technical systems under design through the per-
spective of economic theory (Collopy and Hollingsworth, 2011). Being a methodological framework, it
has several different interpretations and modes of implementation (Lee and Paredis, 2014). Within the
scope of this paper, it will however be referred to as the use of mathematical models, for transforming
technical traits of systems into basis for decision-making in monetary terms. Within the framework pre-
sented by Lee and Paredis (2014), this would represent Artifact-Focused Decision Making, where the
focus lies in maximizing the value of a given artifact under consideration. Value-driven design in this
regard has been utilized mainly within the aerospace industry (in examples such as in Castagne, Curran,
and Collopy (2009)), where design decisions have potentially large and complex consequences through-
out the product’s complete life-cycle (Price et al., 2012) but there is nothing in the term’s definition that
limits its utilization within other fields.

In this paper, value-driven design will serve as the basis for formulating objective functions and for
guiding the optimization algorithm in the search for product configurations with optimal value. The
main concept in use here is that of surplus value (V) in its basic form, where it represents the arithmetic
difference between the reservation price (Pr) and the total incurred costs of manufacturing the product
(Cinan), as formulated by Price et al. (2012):

VS = PR - Cman (1)

2.4 Post-optimization analysis

When running optimization studies, the obtained results might need to be considered as a set of solu-
tions, rather than one single optimal solution. This is especially true for multi-objective optimization
formulations, where it is generally difficult to select one single best design unambiguously out of the
Pareto-optimal set of solutions. Instead, a decision-maker may need to establish relations between design
variables, objectives and constraints, referred to as post-optimal or post-optimization analysis by Krus
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(2000). To establish these relations and to study the properties and trade-offs between different solutions
before deciding upon a solution to investigate further, a number of activities can be carried out, for
instance:

e filtering for feasible solutions in a solution set, i.e. discarding infeasible solutions;

e  selecting subsets of a solution set, such as the Pareto-optimal solutions;

e  grouping (or clustering) solutions with respect to certain variables;

e ranking solutions to obtain one "optimal" point, using e.g. TOPSIS (Hwang and Yoon, 1981), Grey
Relational Analysis (Martinez-Morales, Pineda-Rico, and Stevens-Navarro, 2010) or ELECTRE
(Wang and Triantaphyllou, 2008) methods.

These manipulations and analyses of different solutions posterior to the optimization run-time are all

here referred to as post-optimization analysis.

3 APPLICATION OF THE PROPOSED FRAMEWORK

Spiral staircases are products that are customer-unique and adapted for each sales case. They are
typically configured with a set of standard components; steps in a set of varying radii and in some
cases standard landings and railings types, and a set of customized components; center pillar, railings,
handrails and landings, all seen in figure 1.

The design of the spiral staircase is dependent upon several factors. For one, the environment and
the surrounding, which limits the possible entry and exiting angles for the staircase, and is concluded
with certain intervals of angles for each floor’s entry and exit, and additionally for each case of the pre-
ferred turning of the staircase; clockwise and counter-clockwise turning. Secondly, a free head clearance
(headroom) is required for a person to enter and walk the stair properly. These factors together limit the
possible rises of the stair and thus the step depth and height in the walking line, whose relational val-
ues are considered more or less comfortable to walk in. Beyond this, the staircase must satisfy varying
national legislative requirements, e.g. width and lengths between landings dependent on building capac-
ity and intention of use and safety requirements of minimal railing height and maximum gaps for child
safety, etc.

¢end

H
Figure 1. Photo of a manufactured spiral Figure 2. Schematic representation of a
staircase, consisting of 3 segments. spiral staircase segment and some
Reproduced from Weland AB (2016) important design parameters and
with permission. variables.

The design challenge lies in finding feasible combinations of values, representing the different design
factors mentioned above. These can be considered as a number of design variables, represented by x in
table 1 and visualized through figure 2.

Many staircases (such as the one depicted in figure 1) consist of multiple (N) segments in sequence,
where each segment (indexed by s) consist of ng steps. The problem complexity is further enhanced for
each introduced segment, since the segments cannot be considered in isolation. Modified characteristics
for one segment must be accommodated for in another segment.
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One way of taking on these challenges is by introducing a configurator, as has been previously demon-
strated by Poot et al. (2020). Here, the configuration process is partly manual and partly automated —
the user is responsible for inputting their requirements (i.e. the commercial characteristics) into the
configurator, while the configurator is responsible for the automatic search and evaluation of feasible
design solutions (i.e. the fechnical characteristics) that realizes the specific commercial characteristics.
That is, instead of letting the user define the solution to their specific problem (as is fairly common for
existing configuration systems), we propose an approach where the user defines the problem and the
configuration system automatically finds the solutions using optimization.

Configurator
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| |
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- . ‘ Pre-process —— \

User - {Commercial char.) ‘ problem !
o I |

Phe | |
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Figure 3. Conceptual overview of proposed product configuration system framework.

The spiral staircase design problem is however characterized such, that for each defined set of com-
mercial characteristics, there is a large candidate set of feasible technical characteristics. Getting an
overview of this set and making a decision is therefore hard. While it would be possible to let the
configurator choose one candidate automatically, this would extend the responsibility of the system to
correctly identify the single best solution. However, as pointed out by Collopy (2012), design is inher-
ently uncertain and deterministic system models might not be fully able to manage these uncertainties
and make good decisions autonomously. Instead, we want the human actors of the configuration system
to be able to make the final decisions on technical characteristics, with constructive support from the
configurator. Thus, the configurator is responsible for finding and presenting good solutions, while the
human actors are responsible for selecting the best solution. More importantly, the basis on which the
decision-maker acts is not only of a technical nature, but it is also coupled with the configuration’s antic-
ipated value. The architecture of this proposed product configuration system framework is summarized
and represented in figure 3.

3.1 Computation and optimization model

To evaluate solutions to the design problem, a number of computational models are employed to give
quantitative measures on dependent product properties, given the values of a set of independent design
properties. All models are defined by relatively simple mathematical expressions or database lookups,
implemented in the Python programming language.

The different computational models are integrated by using the OpenMDAO software library (Gray
et al., 2019) to define components, variables and connections between these. Here, certain model inputs
are defined as design variables while certain outputs are defined as responses, i.e. constraints and objec-
tives (as seen in table 1). The computational models are connected according to figure 4, where X is
the vector of design variables and y . are vectors of the corresponding model’s output variables. The
meaning and content of the variables used are summarized in table 1 and selectively described below.
The geometry discipline model encapsulates the calculation of the complete staircase trajectory and step
properties (e.g. depth, height), represented by yyeometry- All these estimations are carried out through
explicit mathematical rules, for instance relating the step depths and heights to the number of steps and
the given start/end angles. A concrete example is the definition of the segment sweep angle Gsyeep for a
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Figure 4. Schematic XDSM diagram (Lambe and Martins, 2012) for the calculation and
optimization model, showing the NSGA-II driver controlling the four computational models
along the main diagonal, executed in series (as indicated by the process arrows). Symbols

in the upper and lower diagonals signify dependencies of the computational models and the
optimization driver, respectively.

Table 1. Overview of input and output variables, along with their roles in the
optimization formulation.

Name Description Role

X Design variables:
e Start and end angle (¢start,s and Pengd,s) of each segment Design variable
e Extra revolution angles (Pextra,s) for each segment Design variable
e Number of steps per segment (7y) Design variable
e Outer radius (r) Design variable
e Turning direction Design variable

fgeometry Geometry representation:
o Sweep angle (Psweep,s) of each segment
e Step depth (d;) in each segment Constraint
e Step height (4,) in each segment Constraint
Veosting ~ Costing estimations:
e Material cost (Cyar)

e Manufacturing cost (Cyan) Objective
Vusabitity ~ Usability measurements:
e Minimum headroom (HR,,;,) Constraint
e Violation of usability ideals (/V5)
Vvalue Product value estimations:
e Reservation price (Pg) Objective

e Surplus value (Vy)

given segment s, where @exira s 1s divisible by 360 (i.e. complete revolutions):

¢sweep,s = ¢end,s - ¢start,s + ¢extra,s ¢extra,s|360 (2)

To make cost estimations, the costing model looks up material costs (Cy,4;) for different components in a
database. For instance, knowing the staircase radius and the number of steps (from x) makes it possible
to estimate an important part of the material costs. Based on the material costs, the total manufacturing
costs are estimated simply through scaling by a factor k¢,

Cman = Cmar * kaa,, (3)

The usability model evaluates design solutions from a usability (or ergonomics) perspective, giving
metrics such as the minimum occurring headroom HR,; and the relations between step depth and
height in each segment of the staircase. Furthermore, it calculates a measurement /s of how much a
certain segment s violates certain ideal usability measurements.
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With all calculations above carried out, the product value can be estimated by the value model, based
upon the surplus value definition, see equation (1). The reservation price P of a given design solution
is given by the sum of all N segments’ corresponding price contributions. These contributions are in
turn based on the assumption that each segment s has a nominal reservation price Ppom that can be
degraded by a certain factor kgegrad,s:

N
Pr = anom,s * (1 — kdegrad,s) (4)

s=1

One segment’s nominal reservation price consists of two terms: (1) a fixed unit price term Py [SEK]
and (2) a variable term pp , * Hy * r, based on height and radius where py - [SEK/m?] is a constant, Hj
[m] the height of the corresponding segment and » [m] the radius of the staircase. That is, a segment’s
nominal reservation price increases monotonously with an increased height and radius:

Pnom,s:Ps +pH,r*Hs*r (5)

The price degradation factor Agegrad,s 1S based on the assumption that bad usability will impair the stair-
case’s utility and therefore also its reservation price. Thus, the ideal violation /¥ (from ysp;iiry) 18 used
to calculate this degradation:

kdegrad,s = min(/V, kgegrad) * kgegrad 6)

Assuming that 7V € [0,00), the constants kg_,.,4 and k2 degrad CaN be selected so that a certain violation
yields the antlclpated price degradation. In the examples evaluated within the context of this paper,

kgegrad = land kdegrad = 0.9, meaning that the reservation price degrades linearly such that

Vy=0= kdegrad,s =0.0 IVy>1= kdegrad,s =09 (7)

That is, segments with "bad" usability (/V; > 1) lose 90 percent of their nominal reservation price.

3.2 Optimization formulation

To find solutions that minimizes/maximizes the objectives and satisfies the constraints defined, an opti-
mization driver is set to control the model. In this case, an NSGA-II (Deb et al., 2002) implementation
for OpenMDAO (Vidner, 2020a) has been developed and utilized to solve the problem formulation.
Since the overall goal of the optimization strategy is geared towards design exploration (i.e. finding
multiple "good" designs rather than one "best" design), the optimization objective is not to only maxi-
mize Vg (as would perhaps be the obvious choice). Rather, a bi-objective formulation is used, defined to
maximize Pg and to minimize Cpgy, as Vg = Pr — Cpay - This is for increasing the selection pressure
towards design exploration in the genetic algorithm and has been observed to yield solutions that dom-
inate those of a single-objective formulation for this specific problem, in the same number of function
evaluations.

Thus, the optimization formulation used is summarized by equation (8).

maximize Pg(X) and
minimize Cy,q, (X)
with respectto  x )
subject 0 hjower < hs(X) < hypper forall s € [1,N]
dlower = ds()_c) = dupper forall se [I,N]
HRmin(J_C) = HRmin,lower

where ()jower and ()upper are given bounds, adjustable for different cases.

3.3 Execution and results

The optimization application has been tested with input data based on an actual customer case for a
three-floor staircase. A baseline design in the form of a manual solution for the same case has been used
as a basis for comparison and as reference for relative measurements presented below. The optimization
driver has been set to evaluate 52 individuals through 50 generations. During optimization runtime, all
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variable values have been automatically stored in an xarray dataset (Hoyer and Hamman, 2017) through
the use of the Scop extension for OpenMDAO (Vidner, 2020b).

The left part of figure 5 shows this full dataset in objective space, indicating that the optimization
algorithm has put a majority of its effort towards evaluating designs leading up to, and along, the

emerging Pareto-frontier in the lower-right part of the diagram.

Full design set (2600 designs)

Feasible design subset (1381 designs)

5 2.5 S ~
z 2 12 OB
g 2 S
z z
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Figure 5. Scatter plots of design sets from optimization execution, in objective space.
Selected designs are marked with a circle and Design ID (see table 2). One point is one
evaluated design and all points have the same opacity. All three dimensions are relative to
the baseline design. The utopian point lies towards the lower-right corner.

From the full dataset, the feasible subset has been extracted, where feasible refers to designs that
(1) satisfy all optimization constraints and (2) have a positive surplus value. These 1381 designs are
represented in the right part of figure 5.

In order to reduce the amount of data used for decision-making, while still maintaining representative
information on the solution diversity, the feasible solutions have been grouped with respect to the radius
(r) value. Within each one of these groups, the design with the highest surplus value (V) have been
selected. These designs along with the baseline design are represented in table 2 and marked in figure 5
to visualize their relative positions in objective space. While design B is similar to the baseline design,
they are both dominated by designs A, C, D and E.

Table 2. Selected designs for decision-maker to consider, along with baseline design.

Design ID Radius Sweep angle Step count  Rel. Pg Rel. Cran Rel. Vg

[mm)] per segment [°] per segment ] [ -]
A 900 300, 285 14, 15 0.94 0.74 1.25
Baseline 1000 260, 280 14, 15 1.00 1.00 1.00
B 1000 281, 284 14, 16 1.02 1.03 1.01
C 1100 241, 277 14, 16 1.08 0.94 1.28
D 1200 235, 245 14, 16 1.12 1.04 1.24
E 1300 243, 249 15, 16 1.16 1.20 1.10
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4 DISCUSSION AND CONCLUSIONS

A value-driven design based formulation is here used in a two-fold sense: to guide the optimiza-
tion (computerized decision-making) and to give value-based insights on design decisions to humans
(computer-supported decision making). It is shown in section 3.3 that this formulation and the method
described successfully finds and selects designs that are similar to the baseline, and additionally, it suc-
ceeds in finding solutions that dominate the baseline, indicating that the method have the potential to
find even more valuable solutions in less time than what it would take for an engineer to do the same.
Through implementation of this method in a sales context, the uncertainty associated with the initial
development stages can be reduced already at the quotation stage, and also lead to the build-up of
product knowledge (as the design space is searched and confined). This could imply a number of effects
for the company adopting the approach. First off is the competitive advantage of being able to quickly
generate reliable sales support and quotations to provide to the customer. Secondly, this potentially
implies elimination of errors, otherwise prone to occur later in the process, due to assumptions made in
the quotation stage, leading to increased costs. Finally, the amount of resources needed in the process
could potentially be significantly reduced through the automation of repetitive tasks.

This first implementation of the value formulation as objective in the optimization is a simplified
representation and is by that an obvious candidate for improvement of the overall framework. The
optimization could also be performed on a higher level than only for one isolated sales process, mean-
ing that the objective would be to maximize the overall surplus value for several or all current sales
processes in the company. In either case, combining the optimization and configurator architecture with
a visualization solution could further improve the usability of the proposed framework, by providing the
user with accurate representations of the calculated solutions.

While even the simplistic value model presented here may give some indications on the utility of value
models in optimization-based product configurators, further investments must be made into the valida-
tion of the specific model. It does not take the product’s lifecycle into account and might therefore be
fairly limited in its applicability. On the other hand, the lifecycle of a spiral staircase is not very complex
once it has been delivered. The product may be highly usable and sometimes even mandatory due to
safety regulations, but may not always bring that much tangible value in return for the investments that
it incurs. Yet still, it is clear that some designs can be more valuable than others and that no design is
much less valuable than a design — having a design in place might enable the use of a facility. However,
adapting and applying the presented approach onto categories of products with more complex relations
between their lifecycle and their value, is seen as an even more exciting area of further research.

In the case example demonstrated above, optimization and value-driven design are used to system-
atically explore the design space and generate design alternatives for spiral staircases. The design
alternatives are presented in terms of value for the main stakeholders (i.e. supplier and customer), as an
interpretation of the technical specifications of the staircases. This abstraction can be a support for both
technically-oriented and business-oriented users, as it might help in viewing the product in its bigger,
economic perspective. By developing the approach further and taking it into new fields of the indus-
try, it might serve as valuable support for human decision-makers in the very early stages of product
development.
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