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Erdős–Ko–Rado theorem in Peisert-type
graphs

Chi Hoi Yip

Abstract. The celebrated Erdős–Ko–Rado (EKR) theorem for Paley graphs of square order states that
all maximum cliques are canonical in the sense that each maximum clique arises from the subfield
construction. Recently, Asgarli and Yip extended this result to Peisert graphs and other Cayley graphs
which are Peisert-type graphs with nice algebraic properties on the connection set. On the other hand,
there are Peisert-type graphs for which the EKR theorem fails to hold. In this article, we show that the
EKR theorem of Paley graphs extends to almost all pseudo-Paley graphs of Peisert-type. Furthermore,
we establish the stability results of the same flavor.

1 Introduction

Throughout the article, let p be an odd prime and q a power of p. Let Fq be the finite
field with q elements, F+q be its additive group, and F

∗
q = Fq/{0} be its multiplicative

group.
Given an abelian group G and a connection set S ⊂ G/{0}with S = −S, the Cayley

graph Cay(G , S) is the undirected graph whose vertices are elements of G, such that
two vertices g and h are adjacent if and only if g − h ∈ S. A clique in a graph X is a
subset of vertices in which every two distinct vertices are adjacent. Note that a subset
C of vertices in X = Cay(G , S) is a clique if and only if C − C ⊂ S ∪ {0}. This naturally
connects the concept of cliques in Cayley graphs with many interesting problems from
additive combinatorics.

Next, we introduce the main object in this article, defined in [1, 2].

Definition 1.1 (Peisert-type graphs) Let q be an odd prime power. Let S ⊂ F∗q2 be a
union of m ≤ q1 cosets of F∗q in F

∗
q2 , that is,

S = c1F
∗
q ∪ c2F

∗
q ∪⋯∪ cmF

∗
q .(1.1)

Then the Cayley graph X = Cay(F+q2 , S) is said to be a Peisert-type graph of type
(m, q).
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2 . Readers are warned to keep this in
mind when consulting the results in [2].
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The classical Erdős–Ko–Rado theorem [9] concerns the classification of maximum
intersecting families of k-element subsets of {1, 2, . . . , n}: when n ≥ 2k + 1, all maxi-
mum families are canonically intersecting (also known as stars) in the sense that all
sets in the family contain a fixed element. Unsurprisingly, in many extremal problems,
the only extremal configurations are given by those obvious constructions. The book
[12] by Godsil and Meagher consists of many modern algebraic approaches to proving
various EKR-type results.

In this article, we study the structure of maximum cliques in Peisert-type graphs;
equivalently, we study the interaction between the addition operation (coming from
C − C) and the multiplication operation (coming from those F

∗
q -cosets forming S)

over finite fields. From the perspective of EKR, Peisert-type graphs are nice objects
to study as they admit obvious choices of maximum cliques. Indeed, one can read
from the connection set S that c1Fq , c2Fq , . . . , cmFq are cliques in X containing
0. Moreover, Peisert-type graphs are based on cyclotomic constructions (due to
Brouwer, Wilson, and Xiang [8]) so that they are strongly regular, which implies
that c1Fq , c2Fq , . . . , cmFq are maximum cliques because of the Delsarte bound (see
[1, Theorem 7] for a different proof). Thus, translates of c1Fq , c2Fq , . . . , cmFq can
be regarded as canonical cliques in X. Since there are no other obvious maximum
cliques in X, in view of EKR-type results, we say the EKR theorem holds for X, or
equivalently, X has the strict-EKR property, provided that all maximum cliques in X are
canonical.

The story of the EKR theorem in our setting begins with a celebrated result by
Blokhuis [6], who showed that the only maximum clique (containing 0,1) in the Paley
graph of order q2 is given by the subfield Fq . Recall that the Paley graph of order q2 is
Cay(F+q2 , (F∗q2)2), where (F∗q2)2 is the subset of squares in F

∗
q2 . One can easily show

that the subset of squares can be decomposed as the union ofF∗q -cosets, and verify that
Blokhuis’ result is equivalent to the EKR theorem for Paley graphs (see [12, Section
5.9] for a related discussion). Later, Sziklai [17] generalized the proof of Blokhuis,
and showed that if d ∣ (q + 1) and d ≥ 3, then the d-Paley graph Cay(F+q2 , (F∗q2)d)
has the strict-EKR property, in the same spirit. We refer to [2, Section 2.1] for more
historical discussion. Recently, Mullin [15] studied the same question for the Peisert
graph Cay(F+q2 , (F∗q2)4 ∪ g(F∗q2)4) (where q ≡ 3(mod 4) and g is a primitive root of
Fq2 ) and conjectured that the EKR theorem also holds. However, she remarked (see
also [2, Remark 2.19]) that it seems the idea of Blokhuis and Sziklai relies on the
subgroup structure of the connection set (which precisely corresponds to Paley graphs
and d-Paley graphs) and thus fails to extend to Peisert graphs. When d is even, one
can also ask the same question for the dth power Peisert graphs (see, for example, [2,
Definition 2.11]), defined similarly as d-Paley graphs.

The attempt to find a unified approach to prove the EKR theorem of these graphs
eventually led to the definition of Peisert-type graphs in [2]; indeed, the above four
families of graphs are special Peisert-type graphs [2, Lemma 2.10]. In [2, Theorem
1.3], Asgarli and Yip showed that the strict-EKR property holds for a Peisert-type
graph X of type (m, q) (with m ≤ q+1

2 and q sufficiently large) provided the existence
of a multiplicative character such that the character sum over each subset of the
connection set of X admits a small cancelation. When X is a Paley graph, Peisert
graph, or their generalizations, the choice of such a character is obvious; thus, this
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criterion gives rise to a new proof of the result by Blokhuis and Sziklai, as well as
resolves the conjecture by Mullin (except for the case when p is small compared
to logp q). However, it is not clear how to apply such a criterion to an abstractly
defined Peisert-type graph. Furthermore, given a Peisert-type graph, it seems difficult
to predict if it has the strict-EKR property by staring at its connection set. Indeed, one
can systematically construct an infinite family of Peisert-type graphs for which the
strict-EKR property fails [1, Section 5].

The stability of canonical cliques in Peisert-type graphs has also been studied. For
simplicity, we say a Peisert-type graph X with order q2 has the property ST(k) if each
clique in X with size at least q − k is contained in a canonical clique in X. From
the definition, it is clear that the strict-EKR property is equivalent to the property
ST(0). Thus, the property ST(k) (for k ≥ 1) refines the strict-EKR property. One
widely open conjecture, due to by Baker, Ebert, Hemmeter, and Woldar [3], states
that the second largest maximal clique in the Paley graph with order q2 has size q+r(q)

2 ,
where r(q) = 1 or 3, depending on q modulo 4. In other words, Paley graphs of order
q2 has the property ST( q−r(q)

2 − 1). To the best knowledge of the author, no partial
progress has been made for this conjecture. For d-Paley graphs of order q2 with d ≥ 3,
Sziklai [17, Theorem 1.3] showed they have the property ST(c√q) for some positive
constant c (depending on d); we refer to [2, Corollary 4.4] and [13, Section 6] for
some generalization and improvement on his results. However, all known results in
this direction assume the edge density of the graph being strictly less than 1/2. In
general, such type of stability questions is widely open for Peisert-type graphs.

In [1, Section 6], Asgarli, Goryainov, Lin, and Yip asked for a complete classification
of Peisert-type graphs with the strict-EKR property. This question is potentially very
challenging; indeed, it turns out to be a special case of a widely open problem
regarding the strict-EKR property of block graphs of orthogonal arrays [12, Problem
16.4.1]. In this article, we give some partial answers to this question by estimating the
number of Peisert-type graphs with the strict-EKR property. In other words, we study
how likely the strict-EKR property holds for a “random” Peisert-type graph. From the
probabilistic viewpoint, it seems plausible that there should be a threshold in terms
of m and q determining the prevalence (or not) of the strict-EKR property among
Peisert-type graphs of type (m, q). We remark that questions of a similar flavor have
been studied previously; for example, Balogh, Bohman, and Mubayi [5] studied EKR-
type results in random hypergraphs.

Our first main result shows that the strict-EKR property is prevalent when the
edge density of the graph is at most 1

2 . It is known that Peisert-type graphs with edge
density 1

2 are pseudo-Paley graphs [1, Corollary 5], that is, graphs that share the same
spectrum with some Paley graphs. Thus, our result shows that the EKR theorem for
Paley graphs extends to almost all pseudo-Paley graphs of Peisert-type; moreover, we
can say something stronger on the stability of canonical cliques.

Theorem 1.1 As q →∞, almost all Peisert-type graphs of type ( q+1
2 , q) have the

property ST(√q/2).

In many problems defined over finite fields, working over a prime field Fp is much
easier than working over a general finite field. Essentially, this is due to the existence
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of subfield obstructions over a general finite field. The same situation occurs in our
settings. When p is a prime, it is known that all Peisert-type graphs of type ( p+1

2 , p)
have the strict-EKR property [2] (see also Theorem 2.1). Our second main result
refines Theorem 1.1 when q = p is a prime.

Theorem 1.2 As p →∞, almost all Peisert-type graphs of type (⌊ 2p−2
3 ⌋, p) have

the strict-EKR property, and almost all Peisert-type graphs of type ( p+1
2 , p) have the

property ST(p/20).

On the other hand, we show that if the edge density of a Peisert-type graph is too
large, then the strict-EKR property almost surely fails.

Theorem 1.3 Let n ≥ 2 with the largest proper divisor being t, and let q = pn . As
p →∞, almost all Peisert-type graphs of type (q − o(pt), q) do not have the strict-EKR
property.

As suggested by numerical computations, the structure of maximum cliques could
be very complicated in Peisert-type graphs with the edge density strictly greater than
1/2. This is probably why the strict-EKR property of these graphs has not been studied
in the literature.

1.1 Structure of the article

In Section 2, we provide additional background and prove some preliminary results.
In Section 3, we study the strict-EKR property of Peisert-type graphs. Finally, in
Section 4, we study the stability of canonical cliques. The proof of Theorems 1.1 and 1.2
will be presented in Section 4, and the proof of Theorem 1.3 will be presented in
Section 3.

2 Preliminaries

2.1 EKR properties of Peisert-type graphs

In this subsection, we provide extra background on the known EKR properties of
Peisert-type graphs.

Theorem 2.1 (Asgarli and Yip [2, Theorem 1.2]) Let X be a Peisert-type graph of type
(m, q)with m ≤ q+1

2 , where q is a power of an odd prime p. Then each maximum clique
in X containing 0 is an Fp-subspace of Fq2 .

In particular, the above theorem immediately implies the strict-EKR property
for each Peisert-type graph of type (m, p) with m ≤ p+1

2 , which has been implicitly
observed by Lovász and Schrijver [14]. When q is a proper prime power and the
connection set of X has a nice algebraic structure (which is the case for Paley graphs,
Peisert graphs, and their generalizations), it turns out that Theorem 2.1 implies the
strict-EKR property [2, Theorem 1.3].
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The following theorem shows that all Peisert-type graphs with small edge density
have the strict-EKR property.

Theorem 2.2 (Asgarli, Goryainov, Lin, and Yip [1, Corollary 8]) If q > (m − 1)2, then
all Peisert-type graphs of type (m, q) have the strict-EKR property.

Theorem 2.2 is best possible if q is a square; see the counterexamples constructed
in [1, Theorem 9]. We refer to [2, Corollary 4.1] for a slightly stronger statement.

The following corollary is equivalent to the above theorem. We record it here
as it has potential applications in number theory and additive combinatorics. The
realization of this equivalence is also helpful in proving our main results.

Corollary 2.3 Let V ⊂ Fq2 be an Fp-subspace with size q. If V is not an Fq-subspace,
then at least√q + 1 many F∗q -cosets are needed to cover V/{0}.

Proof Suppose that the minimum number of F∗q -cosets needed to cover V/{0} is
m; say V/{0} ⊂ S ∶= ∪m

i=1c iF
∗
q . Then V is a clique in X = Cay(F+q2 , S) since V − V =

V ⊂ S ∪ {0}. It follows that V is a non-canonical clique in the Peisert-type graph X
that is of type (m, q), and thus X fails to satisfy the strict-EKR property. It follows
from Theorem 2.2 that m ≥ √q + 1. ∎

2.2 Connection with finite geometry

In this subsection, we recall some celebrated results from the theory of directions and
then discuss their connection with Peisert-type graphs.

We begin with some standard terminologies. Let AG(2, q) and PG(1, q) denote the
affine plane and the projective line overFq , respectively. Let U be a subset of AG(2, q);
the set of directions determined by U is defined to be

D(U) ∶= {[a − c ∶ b − d] ∶ (a, b), (c, d) ∈ U , (a, b) ≠ (c, d)} ⊂ PG(1, q).
Let D ⊂ PG(1, q) be a set of directions. We say that a subset U of AG(2, q) is a

D-set if D(U) = D, and U is said to be maximal with respect to D if D(U) ⊂ D and
D(U ∪ {v}) /⊂ D for any v ∈ AG(2, q)/U .

The theory of directions has been developed by multiple authors, notably Rédei [16]
and Szőnyi [19]. It is of particular interest to estimate ∣D(U)∣; the following theorem
summarizes the best-known results on the size of D(U) when q = p is a prime.

Theorem 2.4 Let U be a subset of AG(2, p) with ∣U ∣ = p.
• (Rédei and Megyesi [16]) If the points in U are not all collinear, then U determines at

least p+3
2 directions.

• (Lovász and Schrijver [14]) If U determines exactly (p + 3)/2 directions, then U is
affinely equivalent to the set {(x , x(p+1)/2) ∶ x ∈ Fp} .

• (Gács [10]) If U determines more than p+3
2 directions, then it determines at least ⌊ 2p+1

3 ⌋
directions.

The following theorem is analogous to Theorem 2.4 for q = p2.
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Theorem 2.5 (Gács, Lovász, and Szőnyi [11]) Let U be a subset of AG(2, p2) with
∣U ∣ = p2. If ∣D(U)∣ ≥ p2+3

2 , then either U is affinely equivalent to the set {(x , x(p2+1)/2) ∶
x ∈ Fp2}, or ∣D(U)∣ ≥ p2+p

2 + 1.

Proving direction results over AG(2, q) for general prime powers q appears to
be much harder. Indeed, the subfield obstructions would provide a major barrier
in proving extensions of Theorem 2.4 (see [4, 7] for a celebrated result of Blokhuis,
Ball, Brouwer, Storme, and Szőnyi). It is known that results similar to Theorem 2.4
can be very helpful in studying cliques in Paley graphs and more generally Peisert-
type graphs. In the literature, geometric properties of Peisert-type graphs have been
explored (see [1, 2, 6, 13, 14, 17]). Such geometrical interpretations of Peisert-type
graphs turn out to play an important role in proving their EKR-type properties; we
refer to Section 4.1 for a different connection, which is crucial in the proof of our
stability result.

There are also stability results in the theory of directions. Here, we list two results
by Szőnyi [18], whose proofs use tools from algebraic geometry.

Theorem 2.6 (Szőnyi [18]) Let U be a D-set of AG(2, q) consisting of q − n points
with 1 ≤ n ≤ √q/2. If ∣D∣ < (q + 1)/2, then U can be extended to a D-set V with ∣V ∣ = q.
Moreover, when q is a prime p, the assumption n ≤ √q/2 can be weakened to n < (p +
45)/20.

Proof This is essential [18, Theorem 4]. When q = p is a prime, one can use the
Stöhr–Voloch bound (instead of the Hasse–Weil bound) to get an improved upper
bound on the number of rational points of a curve so that [18, Theorem 4] can be
refined (see [18, Remark 3] and also [19, Theorem 5.1]). ∎

Theorem 2.7 (Szőnyi [18]) Let D ⊂ PG(1, q) with ∣D∣ = q+1
2 . Suppose that there is a

D-set U ⊂ AG(2, q) such that U is maximal with respect to D and ∣U ∣ = q − n with
1 ≤ n ≤ √q/2. Then PG(1, q)/D is the projection of an irreducible conic (with the
form X2 + aY 2 + bZ2 + cXY + dY Z + eZX = 0 defined in the projective plane) onto
the Y Z projective line. Moreover, when q is a prime p, the assumption n ≤ √q/2 can be
weakened to n < (p + 45)/20.

Proof This is essential [18, Proposition 6]. Note that in the original statement of
[18, Proposition 6], it was implicitly assumed that the infinity direction∞ ∶= [0 ∶ 1] is
in D (which was assumed at the beginning of the proof in [18, Theorem 4]); in general,
one needs to slightly modify the statement. The form of the conic is explicit from the
proof of [18, Proposition 6].

When q = p is a prime, although it is not explicitly stated in [18], one can derive
the same conclusion using [18, Remark 3] (see also the proof of Theorem 2.6). ∎

We will call a subset D ⊂ PG(1, q) bad if it satisfies the assumptions of Theorem 2.7.
We define Bq to be the collection of bad direction sets. The following two corollaries
are consequences of the above two theorems.
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Corollary 2.8 The collection Bq of bad direction sets in PG(1, q) has size at most q5.

Proof This follows from Theorem 2.7. Note that each D ∈ Bq arises from the
projection of a conic with the form X2 + aY 2 + bZ2 + cXY + dY Z + eZX = 0, with
a, b, c, d , e ∈ Fq . Since the number of such conics is at most q5 and each conic with
the above form gives rise to at most one bad direction set, the statement follows. ∎

Remark 2.9 One can get a better upper bound on ∣Bq ∣ using the transitive property
of projective general linear group PGL2(Fq), but it is not needed for our applications.

Corollary 2.10 Let U be a D-set of AG(2, q) consisting of q − n points with n ≤ √q/2.
If ∣D∣ ≤ (q + 1)/2 and D ∉ Bq , then U can be extended to a D-set V with ∣V ∣ = q.
Moreover, when q = p is a prime, the assumption n ≤ √q/2 can be weakened to n <
(p + 45)/20.

Proof When ∣D∣ < (q + 1)/2, this follows from Theorem 2.6.
Next assume that ∣D∣ = (q + 1)/2 and D ∉ Bq . Let U be a D-set with the above

assumption. Then Theorem 2.7 implies that U is not maximal with respect to D, that
is, U can be extended to a D-set U ′ with ∣U ′∣ = ∣U ∣ + 1, provided that ∣U ∣ < q. We can
then apply the same reasoning to U ′ since U ′ is still a D-set with D ∉ Bq . Thus, U ′
can be extended to a D-set U ′′ with ∣U ′′∣ = ∣U ′∣ + 1, provided that ∣U ′∣ < q. Applying
the same argument repeatedly yields a D-set V with ∣V ∣ = q. ∎

3 Prevalence of the strict-EKR property

Proposition 3.1 As q →∞, almost all Peisert-type graphs of type ( q+1
2 , q) have the

strict-EKR property. In particular, we have the EKR theorem for almost all pseudo-Paley
graphs of Peisert-type.

Proof Let q = pn . We need to estimate the number of graphs that fail to have the
strict-EKR property. Since Cayley graphs are vertex-transitive, it suffices to consider
maximum cliques containing 0. Thus, it is equivalent to estimating the number of
graphs admitting at least one non-canonical maximum clique containing 0.

By Theorem 2.1, all non-canonical maximum cliques containing 0 are Fp-
subspaces. The number of Fp-subspaces of size q in Fq2 is given by the Grassmannian

# Gr(n, 2n)(Fp) =
(p2n − 1)(p2n − p)⋯(p2n − pn−1)
(pn − 1)(pn − p)⋯(pn − pn−1) ≤ p2n2

= q2n .

Let V be an Fp-subspace of size q in Fq2 , such that V does not have the subfield
structure in the sense that V is not an Fq-subspace. By Corollary 2.3, we need at least√q + 1 many F

∗
q -cosets to cover V/{0}. Let X = Cay(F+q2 , S) be a Peisert-type graph

of type ( q+1
2 , q), such that V is a (maximum) clique in X. Then V = V − V ⊂ S ∪ {0}.

It follows that S must be the union of q+1
2 many F

∗
q -cosets, with at least √q + 1 of

them having been prescribed. It follows that the number of such graphs X is at most
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(
q + 1 − (√q + 1)

q+1
2 − (

√q + 1)
),

which accounts for the number of graphs that fails to satisfy the strict-EKR property
due to the appearance of the non-canonical maximum clique V.

To conclude, the density of graphs that fails to satisfy the strict-EKR property is at
most

q2n ⋅ (q+1−(√q+1)
q+1

2 −(
√q+1))

(q+1
q+1

2
)

= q2n ⋅
√q

∏
j=0

q+1
2 − j

q + 1 − j
≤ q2n

2
√q

= exp(2n log q −√q log 2) ≤ exp(2(log q)2 −√q log 2),

which tends to 0 as q →∞. This completes the proof. ∎

The proof of Theorem 1.3 is similar to the proof of Proposition 3.1, but we instead
consider the “most efficient” non-canonical maximum clique in terms of the number
of F∗q -cosets needed to cover it.

Proof of Theorem 1.3 Let V ⊂ Fq2 be an Fpt -subspace of size q such that V is not
an Fq-subspace. Note that the intersection between V and an F

∗
q -coset (together with

0) is an Fpt -subspace. Thus, the intersection between V and each F
∗
q -coset has size

0 or at least pt − 1. It follows that at most q−1
pt−1 many F

∗
q -cosets are needed to cover

V/{0}.
We consider the family of Peisert-type graphs of type (m, q). Let X = Cay(F+q2 , S)

be a Peisert-type graph of type (m, q), such that V is a (maximum) clique in X. Note
that V is a non-canonical clique in X provided that S is the union of m many F

∗
q -

cosets, with at most q−1
pt−1 of them having been prescribed in order to cover V/{0}. It

follows that the density of Peisert-type graphs of type (m, q) without the strict-EKR
property (due to V) is at least

(q+1−(q−1)/(pt−1)
m−(q−1)/(pt−1) )
(q+1

m )
=
(q−1)/(pt−1)−1

∏
j=0

m − j
q + 1 − j

≥ ( m − (q − 1)/(pt − 1) + 1
q + 1 − (q − 1)/(pt − 1) + 1

)
(q−1)/(pt−1)

= (1 − q + 1 −m
q + 2 − (q − 1)/(pt − 1))

(q−1)/(pt−1)

≥ 1 − q − 1
pt − 1

⋅ q + 1 −m
q + 2 − (q − 1)/(pt − 1) ,

where we used Bernoulli’s inequality for the last step. If q −m = o(pt), then the above
lower bound approaches to 1 as p →∞. This shows that almost surely the strict-EKR
property fails to hold under the given assumptions. ∎

The following corollary follows from Theorem 1.3 immediately.

Corollary 3.2 As q →∞ with q being a square, almost all Peisert-type graphs of type
(q − o(√q), q) do not have the strict-EKR property.
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4 Stability of canonical cliques

4.1 An explicit correspondence

Let q be a fixed odd prime power. We establish an explicit connection between
the structure of maximum cliques of Peisert-type graphs and the direction sets
determined by subsets U ⊂ AG(2, q) with ∣U ∣ = q. The observation is based on the
idea of realizing a Peisert-type graph projectively (as opposed to affinely, which was
the idea in the previous works [1, 2]). We start by picking a fixed v ∈ Fq2/Fq so that
{1, v} forms a basis of Fq2 over Fq . This allows us to identify Fq2 and AG(2, q) via the
embedding π∶Fq2 → AG(2, q), where

π(a + bv) = (a, b), ∀a, b ∈ Fq .

We also define the map σ ∶AG(2, q)/{(0, 0)} → PG(1, q) such that

σ((a, b)) = [a ∶ b], ∀(a, b) ∈ AG(2, q)/{(0, 0)}.

Let X be a Peisert-type graph X = Cay(F+q2 , S) of type (m, q). We define the
direction set determined by X to be D(X) ∶= σ(π(S)). Since S is the union of m many
F
∗
q -cosets inF

∗
q2 , it follows thatD(X) is a subset of PG(1, q)with size m. The following

proposition describes the explicit connection that will be very helpful in establishing
our main results.

Proposition 4.1 Let X = Cay(F+q2 , S) be a Peisert-type graph, and let C ⊂ Fq2 . Then,
we have the following correspondences:
• C is a clique in X if and only if D(π(C)) ⊂D(X), equivalently, π(C) is a D-set for

some D ⊂D(X).
• If ∣C∣ = q, then C is a canonical clique in X if and only ∣D(π(C))∣ = 1 and D(π(C)) ⊂
D(X).

Proof Let C be a clique. Let x , y ∈ C with x ≠ y. Let π(x) = (a, b) and π(y) =
(c, d). Since C is a clique, it follows that x − y = (a − c) + (b − d)v ∈ S. Therefore,
the direction

[a − c ∶ b − d] = σ((a − c, b − d)) = σ(π(x − y)) ∈ σ(π(S)) =D(X).

This shows that D(π(C)) ⊂D(X). Conversely, it is also easy to verify that D(π(C)) ⊂
D(X) implies that C is a clique.

If C is a canonical clique, then C − C = αFq for some α ∈ F∗q2 , so

D(π(C)) = σ(π((C − C)/{0})) = σ(π(α))

is a singleton set. Conversely, if ∣D(π(C))∣ = 1, then all points in π(C) are collinear,
and it is easy to verify that C = π−1(π(C)) is a canonical clique. ∎

Remark 4.2 Proposition 4.1, together with [2, Theorem 3.2], immediately imply
Theorem 2.1. This new proof is much simpler than the original proof in [2, Theorem
1.2].
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4.2 Proof of Theorems 1.1 and 1.2

In Proposition 3.1, we have shown that almost all Peisert-type graphs of type ( q+1
2 , q)

have the strict-EKR property. The next proposition shows that the strict-EKR prop-
erty can be strengthened to the property ST(√q/2) in the generic case.

Proposition 4.3 Let X be a Peisert-type graph of type ( q+1
2 , q) with the strict-EKR

property. If D(X) ∉ Bq , then X has the property ST(√q/2). Moreover, if q = p is a
prime, then X has the property ST(p/20).

Proof Let C be a clique in X with ∣C∣ ≥ q −√q/2. To show X has the property
ST(√q/2), it suffices to show that C is contained in a canonical clique. Let U = π(C)
and let D = D(U); Proposition 4.1 implies that U is a D-set with D ⊂D(X). Thus,
∣D∣ ≤ q+1

2 and D ∉ Bq . It follows from Corollary 2.10 that U can be extended a D-set
V with ∣V ∣ = q. In particular, by Proposition 4.1, C′ ∶= π−1(V) is a maximum clique
in X with C ⊂ C′. Since X has the strict-EKR property, C′ must be a canonical clique.
Therefore, X has the property ST(√q/2). The proof for the case that q = p is a prime
is similar. ∎

Remark 4.4 Let X be the Paley graph of order q2. We know that X has the strict-EKR
property [6]. If we can show that D(X) ∉ Bq , then one can apply Proposition 4.3 to
get the first nontrivial progress toward the conjecture by Baker et al. [3] mentioned in
the introduction. However, it seems more inputs from algebraic geometry are needed
to understand the distribution of rational points of conics.

Now, we are ready to present the proof of Theorem 1.1.

Proof of Theorem 1.1 By Proposition 3.1, as q →∞, almost all Peisert-type graphs
of type ( q+1

2 , q) have the strict-EKR property. By Corollary 2.8, as q →∞, almost all
Peisert-type graphs X of type ( q+1

2 , q) satisfies D(X) ∉ Bq since the map X ↦D(X)
is injective, and q5/( q+1

(q+1)/2) → 0. Therefore, Proposition 4.3 allows us to conclude
that as q →∞, almost all Peisert-type graphs of type ( q+1

2 , q) have the property
ST(√q/2). ∎

Finally, we discuss the situation, where q = p is a prime. In this case, we can prove
stronger results with the help of Theorem 2.4.

Proposition 4.5 As p →∞, almost all Peisert-type graphs of type (⌊ 2p−2
3 ⌋, p) have

the strict-EKR property.

Proof Let C be a non-canonical clique (containing 0) in a Peisert-type graph X
of type (⌊ 2p−2

3 ⌋, p). By Proposition 4.1, U = π(C) is a D-set for some D ⊂D(X)
with ∣D∣ ≥ 2. Note that if ∣D∣ > p+3

2 , then ∣D∣ ≥ ⌊ 2p+1
3 ⌋ by Theorem 2.4, which is

impossible since ∣D(X)∣ = ⌊ 2p−2
3 ⌋. Therefore, in view of Theorem 2.4, we must have
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∣D(U)∣ = p+3
2 ; furthermore, U is affinely equivalent to the set {(x , x(p+1)/2) ∶ x ∈ Fp}.

It follows that there exists an invertible matrix M ∈ GL2(Fp) such that

U = M{(x , x(p+1)/2) ∶ x ∈ Fp}.

Since ∣GL2(Fp)∣ < p4, the number of possible direction sets D = D(U) is at most p4.
As a quick summary, if X is a Peisert-type graph X of type (⌊ 2p−2

3 ⌋, p) without
the strict-EKR property, then it must contain a non-canonical clique C such that
∣D(π(C))∣ = p+3

2 and D(π(C)) ⊂D(X); furthermore, the number of possible candi-
dates for D(π(C)) is at most p4. This allows us to mimic the proof of Proposition 3.1
and conclude that the density of Peisert-type graphs X of type (m, p)with m = ⌊ 2p−2

3 ⌋
such that the strict-EKR property fails is at most

p4 ⋅
((p+1)− p+3

2
m− p+3

2
)

(p+1
m )

< p4

( p+1
m )(p+3)/2

< p4

( 3
2 )(p+3)/2 → 0

as p →∞. This completes the proof. ∎

When q = p2, we can also provide the following improvement on Proposition 3.1.

Proposition 4.6 As p →∞, almost all Peisert-type graphs of type ( p2+p
2 , p2) have the

strict-EKR property.

Proof By Proposition 3.1, as p →∞, almost all Peisert-type graphs of type
( p2+1

2 , p2) have the strict-EKR property. To prove the stronger result, one can mimic
the proof of Propositions 3.1 and 4.5 with the help of Theorem 2.5. We omit the
detailed analysis, since the proof would be very similar. ∎

We conclude the article by proving Theorem 1.2.

Proof of Theorem 1.2 It follows from Propositions 3.1, 4.3, and 4.5. The proof is
similar to the proof of Theorem 1.1. ∎
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