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Introduction. A surface S of constant width is the 
boundary of a convex set K of constant width in euclidean 
3-dimensionaI space E . (See [ l ] pp. 127-139. ) 

Our f irst resu l t concerns the interdependence of five 
proper t ies which a curve on such a surface may pos se s s . Let 
S be a surface of constant width D > 0 which satisfies the 
smoothness condition that it be a 2-dimensionaI submaniiold 

3 2 
of E of c lass C . We use the symbols P, E, G, L, *, A to 
refer to proper t ies of a curve C on S as follows: 

Proper ty P: C is planar , i . e . C is the in tersec t ion 
with S of some plane M in E"̂  which pas se s through an 
in ter ior point of K. Since M is not the unique tangent plane 
to S at any point of C, C is a simple closed curve of c lass C~. 

Proper ty E: C is the locus of points of S where the 
outwardly directed surface normal vector N̂  sat isf ies an 
equation N * u . = 0 , for some fixed unit vector û . We cla im 
that C is a simple closed curve, which we shall call an 
equator of S. For , consider the projection of S onto a plane 
perpendicular to u. C is the inverse image of the continuous 
curve C | which is the boundary of the image of S. Now a 
surface S of constant width cannot contain any straight line 
segments , since for each pair of points of S (or indeed of the 
corresponding convex body K) there is contained in K a 
"spindle11 formed by intersect ing all bal ls of radius D containing 
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the two points ([l] p. 128). Hence each point of C^ is the image 
of exactly one point of C F u r t h e r m o r e , by the same proper ty 
of S, the natura l map from C^ to C is continuous, which 
proves that C is a simple closed curve. 

Proper ty G: C is a geodesic, which we can cha rac t e r i z e 
as a curve of c lass C on S with V para l le l to N, where £ 
is the unit tangent vector to C and ' denotes differentiation 
with respec t to a rc - leng th s. Curves with proper ty G we 
suppose to be a l ready prolonged indefinitely in both d i rec t ions 
or to be closed. Any segment of a geodesic can be so prolonged 
in the case of a compact surface of c lass C in E^ such as we 
have before us . (See [3], and [4] p. 133. ) 

P roper ty L: C is a line of curva ture . We cha rac t e r i ze 
these as being curves of c l a s s C^ having N' para l le l to t at 
each point. 

Proper ty *: C is a se If-antipodal curve . Let us f i rs t 
define what we mean by the antipodal curve to a given one. We 
take any curve C of c lass C^ (k < 2) on S, r ep re sen ted in 
t e r m s of a rc - l eng th by a C -function £(s) defined on ( -oo, oo) 
with values in S. Composing £(s) with the antipodal mapping 
r -* r* of S (where r * = r-DN) which is of c lass C , we get 
r(s)# which r e p r e s e n t s a curve of c lass C m , m = min { k, 1} , 
on S. This antipodal curve to C can be r e p a r a m e t r i z e d in 
t e r m s of i ts a rc - l eng th s*, and s*=f (s ) is of c lass C m . 
Now for a self-antipodal curve , we requ i re that we can choose 
a function f(s) so that £(s)* = £(f(s)) for al l r e a l s. By 
changing the sense of C if n e c e s s a r y , we can a r r a n g e for 
f(s) > s. A self-antipodal curve is closed, for 

r(s) =r(f(s))* = r(f(f(s))) , 

and hence f(f(s)) = s + I , where I > 0 is a constant. Thus r 
is periodic and C is closed. 

Proper ty A: C has all of the proper t ies P, E, G, L., *. 
Clearly C will then be a simple closed curve of c lass C on S, 
and the plane of C will contain the surface normal vec to r s N 
along C. 
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THEOREM I: If a curve C on a C surface of constant 
width has any pair of the proper t ies P, E, G, L, *, except for the 
pa i r s ( P , L ) , (E ,*) , (L ,* ) , then it has A. 

We shall show in section i after the proof of theorem I 
that for our c lass of surfaces S, exclusion of the pa i r s (P, L,), 
(E, *), (L, *) is real ly neces sa ry . 

Our second resul t concerns the inner m e t r i c on a surface 
S of constant width with no smoothness r e s t r i c t i ons . The inner 
distance p.(p,q) between two points p and q of S is the 

infimum of the lengths of rectifiable curves lying in S and 
connecting p and q. The maximum of the inner d is tances 
taken over all pa i rs of points of S is the inner d i amete r D. 
of S. (See [2] p. 73 ff. ) 1 

THEOREM II: Let S be a surface of constant width D 
in E 3 . Then 

(a) if S is a surface of revolution 

D. = TTD/2 , 
l 

(b) if S is not a surface of revolution 

TTD/3 < D. < TTD/Z . 
l 

The methods of proof for t heo rems I and II a r e e lementa ry . 

1. Proof of theorem I. We do not always mention the 
differentiability of C in this proof, but it is easy to check that 
at each stage the differentiability is enough for the operat ions 
c a r r i e d out. 

1. ) (P, *) => A: Let u be perpendicular to the plane of C 
By *, for each point on C given by a position vec tor r , the 
point jr - DN is on C, so that N is in the plane of C, and 
N - u = 0 . ~* 

Therefore E holds. N is perpendicular to £ and in a fixed 
plane with £, so V is para l le l to N and N1 to t, giving 
G, L, and hence A. 
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2. ) ( P , E) ^ A, s ince E => * . 

3. ) ( P , G) =v> A: P =$£ • u = 0 for s o m e uni t v e c t o r a. F r o m 
G, it fol lows tha t N • u = 0, hence E and A hold . 

4. ) (E , G) => A: Le t u be a unit v e c t o r such tha t N • u = 0. 
Then by G (r^ u) ' ' = t1 • u = 0 ; and t h e r e f o r e £• u = a s + b 
( a , b c o n s t a n t s ) . But by E, r̂  i s p e r i o d i c , so a = 0 and 
r • u = b , i. e. P h o l d s and h e n c e A. 

5 . ) (E , L) =£> A: N - u = 0 = ^ N ' - u = 0, h e n c e by L £• u = 0 , 
r - u = c o n s t . T h e r e f o r e P ho lds and hence A. 

6. ) (G, L) =$> A: N X t 1 = Nf X t = 0 so N X t = u for s o m e unit 
v e c t o r u. T h e r e f o r e E , P , and A hold . 

7. ) (G, *) =i> A: (Th i s p a r t i s m o r e diff icult t han the o t h e r s . ) 
If £ i s a point on C, t hen the p r i n c i p a l n o r m a l l ine to C a t 
r i s , by G, the s a m e a s the s u r f a c e n o r m a l l ine a t jr ; 
s i m i l a r l y a t r* . But the s a m e l ine i s the s u r f a c e n o r m a l a t 
r and r * ([1] , p . 127) . C i s t h e r e f o r e a B e r t r a n d c u r v e 
wi th r e s p e c t to i t s e l f a s m a t e . 

L e t t*(s) =^t(f(s)), * * ( s ) = * ( f ( s ) ) , n*(s ) =n(f (s ) ) be 
r e s p e c t i v e l y the uni t t a n g e n t v e c t o r , c u r v a t u r e , p r i n c i p a l 
n o r m a l v e c t o r to C, w rhere f i s the funct ion u s e d in def in ing 
p r o p e r t y * . Now V and t*1 = f /<*n* a r e , by G, bo th in 
the d i r e c t i o n of N . K e n c e V - t * = t / t * f = 0 . T h i s l e a d s to 
the w e l l - k n o w n r e s u l t c o n c e r n i n g B e r t r a n d c u r v e s ( t - t * ) 1 = 0 , 
i. e. t and t* r e m a i n a t a f ixed ang le a f r o m e a c h o t h e r , 
0 < a < 2TT , t * = c o s a t + s in a b . 

We conc lude the proof of 7. ) by sp l i t t i ng i t in to two c a s e s : 

C a s e a. ) a £ TT : Le t R be the pos i t i on v e c t o r of a f ixed point 
on C. We w i s h to show 

(1) [ ( R - r ) • (t + t*) ] f < 0 for a l l r on C . 

A s s u m i n g (1) i s p r o v e d , we use the fact tha t (R-r) • (t+t*) i s 
p e r i o d i c and v a n i s h e s for r = R to get ( R - r ) * (t+t#) = 0 . 
S ince th i s ho lds for a r b i t r a r y R on C, and s ince a ± TT 
i m p l i e s t + t* i 0, we see tha t C is p l a n a r . But t h e n a - TT , 
a c o n t r a d i c t i o n showing t h a t c a s e a. ) canno t o c c u r . 
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Proof of (1): We use the S e r r e t - F r e n e t formulas ([4] p. 14) 
on r* = r + Dn to get 

•**•» **\ / * - \ 

(2) f t* = t + D(Tb - Kt) • 

1 
Remark: n(s) = - N(s) is of c lass C , since N̂  is a 

c lass C* function on S and jr(s) is of c lass C^ by G. 
F u r t h e r m o r e , the b inormai vector b(s) =t(s) X n(s) to C is 

, ~+ *** - ^ i 

also C 1 . 

Taking the sca la r product of (2) with t and b success ively , 
we get 

(3) V cos a = 1 - D * 

(4) fT sin a = T D . 

By the smoothness condition on S 1-D>C < 0. For Af t 

being the curva ture of a geodesic, is a no rma l curva ture of S 
at r , which is at l eas t equal to the l e s s e r /< of the two 

** a 
pr incipal cu rva tu res at r . The sum R + R * of the c o r r e s -

— a a 
ponding pr incipal radi i of curvature at £ and r* is D, and 
t , R * > 0 , so 0 < R 
a a a 

R , R * > 0, so 0 < R < D and X > D" 1 . 

So we get cos a < 0 from (3), and 

(5) T = tan a (D~ - /f) . 

Differentiating the sca la r product in (1) we obtain for the 
left m e m b e r 

(R - r) • n [(1 + cos a)X - sin ar ] - 1 - cos a . 
**•* *v* v̂* 

Since R l ies on S, 0 < (R - r) -n < D, and so (1) will hold if 

D[(l + cos a)/< - sin a tan a (D « /^)] - 1 - cos a 

= (1 + cos a) (cos a)"" (D/<- 1) < 0 

which is indeed the case! 

19 

https://doi.org/10.4153/CMB-1966-002-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-002-2


Case b. ) a =TT, t* = -t : Let R be fixed on C. We calculate 
easi ly that 

[ ( R - r ) - t X ( r - r* ) ] ' = 0 , hence 

(R-r) -t X ( r - r* ) = 0 . 

Since R is a r b i t r a r y on C, P holds and hence A a l so . 

This completes the proof of theorem I. 

Let us now turn our attention to the exceptional c a s e s in 
theorem I. 

8. ) (P, L): If S is a surface of revolution, al l of the pa ra l l e l s 
a re lines of curva ture and planar , but only the one of l a rges t 
d iameter will have A. 

9. ) (E, *): There a r e equators which a re non-planar on every 
surface of constant width except a sphere , by a theorem of 
Blaschke ([1] p. 142). 

10. ) (L, *): On any part of a surface of constant width which is 
spher ica l , any C* curve has L, and it is easy to const ruct 
curves with (L, *) but not A, since the antipodal curve to any 
curve with L also has L. 

2. Proof of theorem II. If p ( p , q ) = D . , c o n s i d é r a 
i x 

plane M through p and q. The c i rcumference of the 
perpendicular projection of S on M is TTD by Barb ie r 1 s 
pr inciple , so the curve M Ci S contains p and q and has 
length<_ TTD. (See [1] p. 47. ) This implies D. < T T D / 2 . 

If D. =TTD/2 , then every plane M through p and q must 

in te rsec t S in an equator. Consider a plane Q perpendicular 
to the line pq and intersect ing pq in c. The curve Q 0 S 
has at each one of its points d a support line in Q which is 
perpendicular to cd. Hence Q 0 S must be a c i rc le with 
centre c, i. e. S is a surface of revolution with axis pq. 
(To see that Q 0 S is a c i rc le , let n rays radiate from c at 
equal angles in Q and observe how the dis tances along these 
r ays to Q H S can be es t imated. Then let n -* oo. ) 
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To show that D > TTD/3, we need only r eca l l that If p and 
i — 

q a r e any antipodal points of S, then the r rspindle" formed by 
intersect ing ai l bails of radius D containing p and q is con
tained in K. 

If equality were attained in D. > TT D / 3 , then we would 

have for each pair of antipodal points p, q of S a plane M 
through p and q such that Mfl S would be a Reuleaux 
tr iangle of width D with ve r t i ces p, q, r. But it is easy to 
see that then there can be no such tr iangle with two of its 
ve r t i ces being r and the midpoint of the side p, q of the 
original Reuleaux t r iangle . This is a contradiction. Thus 
D. > irD/3. 

i 

This completes the proof of theorem II. 

3. Quest ions. 

1. ) Can the inequality D. > TTD/3 be improved? 

2. ) One can show (by putting "bumps" and antipodal "flat tenings" 
on a sphere) that there a r e surfaces of constant width which have 
non-closed geodesies . Is the sphere the only surface of constant 
width al l of whose geodesies a r e c losed? 

3. ) Using the inequality 

- 1 
( r * u ) î f = A ' n - u > - D N - u 

one can show that every geodesic ray cuts every equator N • u = 0 
on a C^ surface of constant width. In fact, given any planar 
equator , any geodesic segment of length TTD mus t cut that 
equator . Are there s t ronger r e su l t s than the above? 

4. ) Is there a simple " inner" c r i te r ion that a surface be of 
constant width? 
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