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1. Introduction. A well-known class of Anosov diffeomorphisms arises as
follows. Let N be a simply connected nilpotent Lie group and let � be a lattice in
N; namely � is a discrete subgroup such that �\N is compact. If τ is a hyperbolic
automorphism (see § 2 for the definition) of N such that τ (�) = �, then we get a
diffeomorphism τ of �\N, defined by τ (�x) = �τ (x), for all x ∈ N, which is an Anosov
diffeomorphism of the compact nilmanifold �\N. Anosov diffeomorphisms arising in
this way are called Anosov automorphisms of nilmanifolds. Let K be a finite group
of automorphisms of N and let � be a torsion free discrete cocompact subgroup of
K � N. The �-action on N is given by (τ, x).y = xτ (y), where τ ∈ K and x, y ∈ N. Now
consider the quotient space �\N under the action of � on N. We call such a compact
manifold �\N an infranilmanifold. If f is a hyperbolic automorphism of N such that f
normalises the subgroup K in the group of automorphisms of N and f (�) = �, then f
induces a diffeomorphism f of the infranilmanifold �\N; we call such a f an Anosov
automorphism of an infranilmanifold �\N.

The only known examples of Anosov diffeomorphisms are on nilmanifolds and
infranilmanifolds. It is conjectured that any Anosov diffeomorphism is topologically
conjugate to an Anosov automorphism of an infranilmanifold. By a result of
A. Manning [8] all Anosov diffeomorphisms on nilmanifolds are topologically
conjugate to Anosov automorphisms. This highlights the question of classifying all
compact nilmanifolds which admit Anosov automorphisms. Indeed it is easy to see
that not all of them do. The first example (due to Borel) of a non-toral nilmanifold
admitting an Anosov automorphism was described by S. Smale [10]. Later L. Auslander
and J. Scheuneman [1] gave a class of nilmanifolds admitting Anosov automorphisms.

By a result of S. G. Dani [2] all nilmanifolds covered by free k-step nilpotent Lie
groups on n generators, with k < n, admit Anosov automorphisms. There have been
other recent constructions of compact nilmanifolds with Anosov automorphisms. (See
[3], [5], [6], [7] and other references therein.)

In this paper we associate a k-step nilmanifold (k ≥ 3) with each graph, and give
a necessary and sufficient condition, in terms of the graph, for the nilmanifold to
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admit Anosov automorphisms. We also prove some results on nonexistence of Anosov
automorphisms on certain 2-step and 3-step nilmanifolds.

2. Preliminaries. In this section we recall some definitions and preliminaries
concerning nilpotent Lie groups and nilmanifolds. We also recall results concerning
automorphisms of a 2-step nilmanifold associated with a graph. (See [3] for details.)

Let N be a simply connected nilpotent Lie group and N the Lie algebra of N.
Note that N is nilpotent. Let Aut(N) denote the group of Lie automorphisms of N.
Let Aut(N ) denote the group of Lie algebra automorphisms of N . Now Aut(N) is
isomorphic to the group Aut(N ), the isomorphism being given by τ �→ dτ , where dτ

is the differential of τ . Let � be a discrete subgroup of N such that �\N admits a finite
N-invariant Borel measure. We call such a subgroup a lattice in N. As N is a nilpotent
Lie group, a discrete subgroup � is a lattice in N if and only if �\N is compact. (See
Theorem 2.1 in [9].)

A nilmanifold is a quotient �\N, where N is a simply connected nilpotent Lie
group and � is lattice in N. An automorphism σ ∈ Aut(N ) is said to be hyperbolic if
all of its eigenvalues are of modulus different from 1. An automorphism τ ∈ Aut(N)
is said to be hyperbolic if all eigenvalues of the differential dτ are of modulus different
from 1.

Now we recall the construction of the 2-step nilmanifold associated with a given
graph and some results about its automorphism group. (See [3] for details.)

Let (S, E) be a finite simple graph, where S is the set of vertices and E is the set
of edges. Let V be a real vector space with S as a basis. Let W be the subspace of
∧2V spanned by {α ∧ β : α, β ∈ S, αβ ∈ E}, where ∧2V is the second exterior power
of V . Let N = V ⊕ W . We define the Lie bracket operation [ , ] on N as follows.
[ , ] : N × N → N is defined to be the unique bilinear map satisfying the following
conditions:

(i) for α, β ∈ S, [α, β] = α ∧ β if αβ ∈ E and 0 otherwise;
(ii) [α, β ∧ γ ] = 0 for all α, β, γ ∈ S;

(iii) [α ∧ β, γ ∧ δ] = 0 for all α, β, γ, δ ∈ S.

We call N (defined as above) the 2-step nilpotent Lie algebra associated to the graph
(S, E). Let N be the simply connected Lie group with Lie algebra N . Let � be the
subgroup of N generated by exp(S), where exp denotes the exponential map. It can
be seen that � is a lattice in N. A nilmanifold �\N is called the 2-step nilmanifold
associated with the graph (S, E).

For any σ ∈ S we define

�′(σ ) = {ω ∈ S : σω ∈ E} and �(σ ) = �′(σ ) ∪ {σ }.

Let ∼ be an equivalence relation on S defined as follows: for α, β ∈ S, α ∼ β if either
α = β or �′(α) ⊂ �(β) and �′(β) ⊂ �(α). (See [3] for details.) Let {Sλ}λ∈� denote the
set of all equivalence classes in S with respect to the equivalence relation ∼, where �

is an index set. Sλ, (λ ∈ �), are called the coherent components of S. For each λ ∈ �,
let Vλ denote the subspace of V spanned by Sλ.

We recall some results. See [3].

THEOREM 2.1. Let (S, E) be a finite graph and letN = V ⊕ W be the 2-step nilpotent
Lie algebra associated with (S, E) (notation as above). Let G denote the subgroup of
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GL(V ) consisting of all restrictions, τ |V, such that τ ∈ Aut(N ) and τ (V ) = V. Then G
is a Lie subgroup of GL(V ) and the following conditions are satisfied.

(i) The connected component of the identity in G that we denote by G0 can be
expressed as (

∏
λ∈� GL+(Vλ)) · M, where, for each λ ∈ �, GL+(Vλ) denotes the subgroup

of GL(Vλ) consisting of all the elements with positive determinant and M is a closed
connected nilpotent normal subgroup of G.

(ii) The elements of � can be arranged as λ1, . . . , λk so that for all j = 1, . . . , k,⊕
i≤j Vλi is invariant under the action of G0.

LEMMA 2.2. Let λ1, . . . , λk be an enumeration of � such that assertion (ii) of
Theorem 2.1 holds. For each j = 1, . . . , k let N j = (⊕i≤j Vλi ) ⊕ W; also let N 0 = W.
Let τ be a Lie automorphism of N contained in the connected component of the identity
in Aut(N ). Then each N j is invariant under the action of τ . Let � be the (additive)
subgroup of N generated by S ∪ { 1

2 (α ∧ β : α, β ∈ S, αβ ∈ E}. If τ (�) = � then, for all
j = 1, . . . , k, the determinant of the action of τ on N j is ±1.

3. k-step nilmanifold associated with the graph. In this section we associate a k-
step (k ≥ 3) nilmanifold (i.e. covered by a k-step simply connected nilpotent Lie group)
with every graph and we give a necessary and sufficient condition for such nilmanifolds
to admit an Anosov automorphism.

Starting with a graph (S, E) we define a k-step (k ≥ 3) nilpotent Lie algebra as
follows. Let (S, E) be a finite graph, where S is the set of vertices and E is the set of
edges. Suppose that N denotes the 2-step nilpotent Lie algebra associated with (S, E)
(see § 2); i.e. N = V ⊕ W , where V is a vector space with S as a basis and W is the
subspace of ∧2V spanned by {α ∧ β : α, β ∈ S, αβ ∈ E}.

Let N k(V ) be a free k-step nilpotent Lie algebra on V . (See [1] for the definition.)
We denote by Hk the k-step nilpotent Lie algebra N k(V )/J , where J denotes an ideal
of N k(V ) generated by all elements [α, β] such that αβ is not an edge. Let NK be the
simply connected nilpotent Lie group with Lie algebra Hk. Suppose that �k is the
(additive) subgroup of Hk generated by the elements of the type [α, [β, . . .]], where
α, β, . . . ∈ S. Then there exists a �-subalgebra �0

k of Hk that is contained in �k such
that �k = exp(�0

k) is a subgroup of Nk, and τ (�k) = �k if and only if τ (�0
k) = �0

k, for
any automorphism τ of Hk. (See § 2 in [1].) We note that �k is a lattice in Nk. We call
a nilmanifold �k\Nk a k-step nilmanifold associated with the graph (S, E).

4. Anosov automorphisms of �k\Nk, (k ≥ 3). We give a necessary and sufficient
condition for the nilmanifold �k\Nk to admit an Anosov automorphism.

NOTATION 4.1. Suppose that H is a k-step nilpotent Lie algebra. For any subset
M of H we denote [M, M] by M1, [M, [M, M]] by M2, and inductively we denote
[M, Mn−1] by Mn for all n such that 3 ≤ n ≤ k − 1.

Let (S, E) be a graph and �k\Nk a k-step nilmanifold (k ≥ 2) associated with
(S, E). We refer to § 2 and § 3 for the notation.

REMARK 4.2. We note that any automorphism of N can be extended to an
automorphism of Hk. The automorphism group Aut(Hk) is the semidirect product
of Aut(N ) and a connected group. This can be seen by observing that Aut(Hk) is a
semidirect product of Aut(Hk/Hk−1

k ) and Hom(V,Hk−1
k ); also Aut(Hk/H2

k) is the same
as Aut(N ).
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THEOREM 4.3. �k\Nk admits an Anosov automorphism if and only if the following
conditions hold.

(i) For every λ, |Sλ| ≥ 2;
(ii) If |Sλ| = l, with 2 ≤ l ≤ k, and α, β ∈ Sλ, then αβ is not an edge.

Proof. Suppose that, for each λ ∈ �, (i) and (ii) hold. We shall prove that there
exists a hyperbolic automorphism τ ∈ Aut(Hk) such that τ (�k) = �k.

We have V = ⊕λ∈� Vλ. (See § 2 for the notation.) For each λ ∈ �, let �λ be
the subgroup of Vλ generated by Sλ. There exists gλ ∈ GL(Vλ) such that gλ(�λ) =
�λ if and only if the matrix representing gλ with respect to the basis Sλ belongs
to GL(dλ, �), where dλ = |Sλ|. For each λ ∈ � there exists a matrix Aλ ∈ GL(dλ, �)
with the eigenvalues c1, c2, . . . cdλ

such that |ci1 ci2 · · · cir | = 1, for all r with 1 ≤ r ≤
min (k, dλ − 1), and for all i1, i2, . . . , ir ∈ {1, 2, . . . , dλ}. The existence of such elements
can be proved by using a result of S. G. Dani. (See Corollary 4.7 in [4].) Let gλ

denote the transformation from GL(Vλ) whose matrix with respect to the basis Sλ

is Aλ. By the above observation gλ(�λ) = �λ. We choose natural numbers jλ, λ ∈ �,
such that |∏λ∈�(cλi1 cλi2 · · · cλinλ

)jλ | = 1, for all subsets � of � such that |�| ≥ 2 and
2 ≤ ∑

λ∈� nλ ≤ k, where cλij ’s are eigenvalues of gλ. Let g ∈ GL(V ) be the element

whose restriction to Vλ is gjλ
λ , for each λ ∈ �.

There exists τ ∈ Aut(N ) such that g is the restriction of τ to V . (See Theorem 2.1.)
We know that τ , constructed as above, is a hyperbolic automorphism of N . This can
be seen from the proof of Theorem 1.1 in [3] and the hypothesis of the theorem. Let
τ be an automorphism of Hk obtained by extending τ . We note that τ (�k) = �k, by
construction. We shall prove that τ is hyperbolic as a linear transformation. Suppose
that if possible τ has an eigenvalue, say c, of absolute value 1. Then c must be an
eigenvalue of the restriction of τ to Vn, where 3 ≤ n ≤ k (see Notation 4.1), since τ is
hyperbolic on N .

Now using the fact that τ (Vλ) = Vλ, for all λ ∈ � and recalling the construction of
g, we see that there exists λ ∈ � such that |Sλ| = n and Vn

λ is nonzero. (See Notation 4.1.)
But by the condition in the hypothesis αβ is not an edge, for all α, β ∈ Sλ. Hence
[α, β] = 0, for all α, β ∈ Sλ. This contradiction shows that τ is hyperbolic. Hence
�k\Nk admits an Anosov automorphism.

Conversely suppose that �k\Nk admits an Anosov automorphism. Hence there
exists τ ∈ Aut(Hk) such that τ (�k) = �k and τ is a hyperbolic linear transformation.
Let τ ∈ Aut(N ) denote an automorphism of N induced by τ . We can assume that
τ (�) = �, where � is the subgroup of N (with respect to addition) generated by the
subset S ∪ { 1

2 (α ∧ β) : α, β ∈ S, αβ ∈ E}. As τ is a hyperbolic linear transformation,
|Sλ| ≥ 2 for every λ, and if |Sλ| = 2 then αβ is not an edge for αβ ∈ Sλ. (See Theorem 1.1
in [3].) We may assume that τ is contained in the connected component of the identity
in Aut(N ). (See Remark 4.2). Let G denote the subgroup of GL(V ) consisting of all
restrictions τ |V such that τ ∈ Aut(N ) and τ (V ) = V . We write the elements of � as
λ1, λ2, . . . , λm such that, for all j = 1, . . . , m,

⊕
i≤j Vλi is invariant under the action of

G0, where G0 is the connected component of the identity in G. (See Theorem 2.1.) Now
suppose that there exists λ ∈ � such that |Sλ| = l, where 3 ≤ l ≤ k and αβ ∈ E, for all
α, β ∈ Sλ. Let j, with 1 ≤ j ≤ m, be such that λ = λj. Consider the induced action of
τ on N j/N j−1, where N j = (⊕i≤j Vλi ) ⊕ W . We note that each N j is invariant under
the action of τ . (See Lemma 2.2.) As the determinant of the induced action of τ on
N j/N j−1 is ±1, the product of the eigenvalues θ1, θ2, . . . , θl of the induced action is ±1.
Since the action is hyperbolic, at least two eigenvalues, say θ1 and θ2, are distinct. Hence
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there exist v1, v2, . . . , vl ∈ V�
λj

(the complexification of Vλj ) such that τ (vi) = θivi + xi,
where xi ∈ N�

j−1, for all 1 ≤ i ≤ l. We note that v1 and v2 are linearly independent,
since θ1 and θ2 are distinct. We write vi = ∑

α∈Sλj
ai

αα, where ai
α ∈ � for all α ∈ Sλj and

1 ≤ i ≤ l. As v1 and v2 are linearly independent and αβ ∈ E, for all α, β ∈ Sλj , we have
[v1, v2] = 0 in N�. Hence [vl, [· · · , [v2, v1] · · ·]] = 0 in Hk. Let x = [vl, [· · · , [v2, v1] · · ·]].
By considering the complexification of τ and τ we have τ�(x) = (

∏l
i=1 θi)x + y, where

y belongs to the complexification of [N j, [N j, · · · [N j,N j−1] · · ·]](l−1) times, which we
denote by W ′. We note that

∏l
i=1 θi = ±1 and x /∈ W ′. Hence we have an eigenvalue ±1

for the induced action of τ on (N l
j)

�/W ′ which is a contradiction, since by assumption
τ is hyperbolic. This shows that αβ is not an edge for all α, β ∈ Sλ, where |Sλ| = l, 1 ≤
l ≤ k. This completes the proof of the theorem. �

EXAMPLES 4. (i) Let (S, E) be a complete graph; that is αβ ∈ E, for all α, β ∈ S.
Then the corresponding k-step nilmanifold admits an Anosov automorphism if and
only if |S| > k.

(ii) Let (S, E) be a cycle on 4 vertices. The corresponding k-step nilmanifold
admits an Anosov automorphism for all k ≥ 2. In particular, we get an example of
20-dimensional 3-step nilmanifold admitting an Anosov automorphism.

(iii) A complete bipartite graph (S, E) is a graph in which S is a disjoint union of two
subsets S1 and S2, each containing at least two elements, and E = {αβ : α ∈ S1, β ∈ S2}.
In this case S1 and S2 are the coherent components. Hence the k-step nilmanifold
associated with a complete bipartite graph admits an Anosov automorphism for all
k ≥ 2. In particular, if we choose S1 and S2 such that |S1| = m and |S2| = n we get an
example of an l-dimensional 3-step nilmanifold admitting an Anosov automorphism,
where

l = m(n − 1)2 − (n − 2)(n − 1)m
2

+ n(m − 1)2 − (m − 2)(m − 1)n
2

+ 2mn.

(iv) Let (S, E) be a “magnet” graph with core C; i.e. C is a subset of S such that its
complement in S contains at least two elements and E = {αβ : α ∈ C, β ∈ S, α = β}.
The k-step nilmanifold associated with (S, E) admits an Anosov automorphism if and
only if k < |C|.

5. Nonexistence of Anosov automorphisms on certain 2-step nilmanifolds. In this
section we prove some results on nonexistence of Anosov automorphisms on certain
nilmanifolds. Let N� be the 2-step nilpotent Lie algebra over �, associated to the
graph (S, E). Let X = [α, β] + [γ, δ], where α, β, γ, δ are distinct vertices in S such
that αβ, γ δ, αγ, αδ ∈ E. Let H� denote the quotient N�/〈X〉, where 〈X〉 is the one-
dimensional subspace spanned by X . Let H = N /〈X〉. It was proved in [5] that if the
graph (S, E) is a complete graph (i.e. αβ ∈ E for all α, β ∈ S), then H� does not admit
a hyperbolic automorphism whose characteristic polynomial has integer coefficients
and unit constant term. (See Theorem 3.2 of [5].) We prove a similar result for an
arbitrary graph.

THEOREM 5.1. The 2-step nilpotent Lie algebra H�, defined as above, does not admit
a hyperbolic automorphism whose characteristic polynomial has integer coefficients and
unit constant term.

NOTATION 5.2. We recall that N = V ⊕ W . (See § 3.) We decompose H as
H = V ⊕ W ′, where W ′ = W/〈X〉. Let G be the subgroup of GL(V ) consisting of
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all restrictions τ |V such that τ ∈ Aut(H) and τ (V ) = V . Let G be the subgroup
of GL(V ) consisting of all restrictions τ |V such that τ ∈ Aut(N ) and τ (V ) = V .
It can be seen that subgroups G and G of GL(V ) are Lie subgroups. Let G (resp.
G) be the Lie algebra of G (resp. G). Let G0 (resp. G

0
) be the connected component

of the identity in G (resp. in G). Let D (resp. D) be the Lie subalgebra of G (resp. of
G) consisting of all endomorphisms in G (resp. in G) that are represented by diagonal
matrices with respect to the basis S. Note that D consists of all the endomorphisms
in D that are contained in G. For η, ζ ∈ S, let Eηζ be the element of End(V ) such that
Eηζ (ζ ) = η and Eηζ (ξ ) = 0 for all ξ ∈ S, ξ = ζ .

NOTATION 5.3. Recall that X = [α, β] + [γ, δ], where α, β, γ, δ are distinct vertices
in S such that αβ, γ δ, αγ, αδ ∈ E. Let S′ = {α, β, γ, δ}. Let Wφ′ψ ′

φψ denote the subspace
of End(V ) spanned by Eφψ and Eφ′ψ ′ , where {φ,ψ, φ′, ψ ′} = S′.

PROPOSITION 5.4. The Lie algebra G, defined as above, is spanned by D, W γβ

αδ ∩ G,
W δα

βγ ∩ G, W δβ
αγ ∩ G, Wβδ

γα ∩ G, and the elements of G of the following type: (i) Eηζ , where
η = ζ , η, ζ /∈ S′, (ii) Eηζ , where η ∈ S′ and ζ /∈ S′, (iii) Eηζ , where η /∈ S′ and ζ ∈ S′,
(iv) Eαβ , Eγ δ, Eβα, Eδγ .

Proof. Let Y ∈ G. Then Y can be expressed as Y = Y0 + ∑
η,ζ∈S,η =ζ aηζ Eηζ , where

Y0 ∈ D (see Notation 5.2) and aηζ ∈ �. By using the fact that Eζ ζ ∈ G for all ζ /∈ S′, we
observe that aηζ Eηζ is contained in G for all η, ζ /∈ S′. (See the proof of Proposition 3.1
in [3].) We note that Eαα + Eγ γ , Eββ + Eδδ , Eββ + Eγ γ are contained in G. Since
[Eζ ζ , [Eαα + Eγ γ , Y ]] and [Eζ ζ , [Eζ ζ , [Eαα + Eγ γ , Y ]]] are in G for ζ /∈ S′, aζαEζα +
aζγ Eζγ and aαζ Eαζ + aγ ζ Eγ ζ are contained in G. Now as Eαα + Eδδ ∈ G, we have
aζαEζα and aαζ Eαζ are in G. Similarly we can see that aηζ Eηζ ∈ G, for all η ∈ S′ and
ζ /∈ S′; also aηζ Eηζ ∈ G, for all η /∈ S′ and ζ ∈ S′. We also have [Eββ + Eγ γ , [Eββ +
Eδδ, [Eαα + Eγ γ , Y ]]] ∈ G. This shows that Z = aγ δEγ δ + aβαEβα − aδγ Eδγ − aαβEαβ ∈
G. Also [Eββ + Eγ γ , Z] ∈ G. Therefore we get aγ δEγ δ + aβαEβα + aδγ Eδγ + aαβEαβ ∈
G. Hence aγ δEγ δ + aβαEβα and aδγ Eδγ + aαβEαβ are contained in G. Since [Eαα +
Eγ γ , aγ δEγ δ + aβαEβα] ∈ G, we have aγ δEγ δ − aβαEβα ∈ G and so aγ δEγ δ ∈ G. Hence
we have proved that if aγ δ = 0 then Eγ δ ∈ G. Similarly it can be proved that Eβα ∈ G
if aβα = 0, Eαβ ∈ G if aαβ = 0, and Eδγ ∈ G if aδγ = 0. Now Z′ = [Eαα + Eγ γ , [Eββ +
Eδδ, [Eαα + Eγ γ , Y ]]] ∈ G, and hence

[Eββ + Eδδ, [Eαα + Eγ γ , Y ]] + Z′ ∈ G.

As aαβEαβ and aγ δEγ δ are contained in G, we have aαδEαδ + aγβEγβ ∈ G. Similarly we
can prove that aβγ Eβγ + aδαEδα ∈ G. As Y ∈ G, by the observations above we have
Z′′ = Y0 + aαγ Eαγ + aγαEγα + aβδEβδ + aδβEδβ ∈ G. Considering the element [Eαα +
Eδδ, Z′′] we prove that aαγ Eαγ + aδβEδβ ∈ G and aγαEγα + aβδEβδ are in G. Hence we
have now Y0 ∈ G. As Y0 is in D, Y0 ∈ D. Hence we have proved our claim that G is
spanned by D, W γβ

αδ ∩ G, W δα
βγ ∩ G, W δβ

αγ ∩ G, Wβδ
γα ∩ G, and the elements of G of the

type (i)-(iv) as stated. �

PROPOSITION 5.5. Any automorphism T in G
0

is induced by an automorphism T in
G0, with T(〈X〉) = 〈X〉.

Proof. We shall prove the following results. If the element from the type (i)-(iv)
in the statement of Proposition 5.4, considered as an element of End(V ), is in the
Lie algebra G, then that element is in G. (See Notation 5.2.) We shall also prove that
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W γβ

αδ ∩ G, W δα
βγ ∩ G, W δβ

αγ ∩ G, and Wβδ
γα ∩ G are contained inG. Let I denote the identity

transformation in GL(V ).
(i) If Eηζ ∈ G, where η = ζ , η, ζ /∈ S′, then τ = I + Eηζ ∈ G. We shall prove that

�′(η) ⊂ �(ζ ). (See § 4.) Suppose that ξ /∈ �(ζ ). Then we have [ξ, ζ ] = 0. As τ ∈ G, it is
the restriction of a Lie automorphisms of H, and hence we get that [τ (ξ ), τ (ζ )] = 0 in
H. Therefore we have [ξ, ζ + η] = c([α, β] + [γ, δ]), where c ∈ �. As [ξ, ζ ] = 0, we have
[ξ, η] = c([α, β] + [γ, δ]) and so c = 0. Hence ξ /∈ �′(η). This shows that �′(η) ⊂ �(ζ ),
and so Eηζ ∈ G, where η = ζ , η, ζ /∈ S′. (See Proposition 4.1 in [3].)

(ii) Consider the element Eηα, where η /∈ S′. Suppose that Eηα ∈ G Let τ = I +
Eηα. If ζ /∈ �(α), then [ζ, α] = 0. As τ ∈ G, we have [ζ, α + η] = 0 in H. By the same
argument as above we have [ζ, η] = 0. Hence �′(η) ⊂ �(α), so that Eηα ∈ G.

By similar arguments we can prove our claim for the elements of the type (ii), (iii)
and (iv).

We shall prove that any element of W γβ

αδ ∩ G, considered as an element of End(V ),
is contained in G. Suppose now that the linear combination of Eαδ and Eγβ , say aEαδ +
bEγβ , is in G. Then τ = I + t(Eαδ + bEγβ ) ∈ G, t = 0. We show that the subspace of
∧2V , W ′ say, spanned by the set of all ζ ∧ η such that ζη is not an edge, is ∧2τ -invariant.
Let ζ, η ∈ S such that ζ = η and ζη is not an edge. If neither of ζ and η is contained in
{δ, β}, then ∧2τ (ζ ∧ η) = ζ ∧ η. If ζ = δ and η = β, then as τ ∈ G, we have τ [ζ, η] = 0
in H, and hence [taα + δ, η] = c([α, β] + [γ, δ]) in N , where c ∈ �. Therefore either
a = 0 or αη is not an edge. In both the cases we have ∧2τ (ζ ∧ η) ∈ W ′. Similarly if
ζ = β and η = δ we are through. Now if ζ = δ and η = β, we have τ [δ, β] = 0 in
H. Hence [taα + δ, tbγ + β] = c([α, β] + [γ, δ]) in N , where c ∈ �. As δβ is not an
edge and αγ is an edge, we have t2ab[α, γ ] + ta[α, β] + tb[δ, γ ] = c([α, β] + [γ, δ]) in
N , and hence ab = 0 and a = −b. Therefore τ = I . Thus we have proved that W ′ is
∧2τ -invariant. Therefore τ ∈ G, and hence aEαδ + bEγβ ∈ G.

Similarly we see that our claim holds for the elements of W δα
βγ ∩ G, W δβ

αγ ∩ G, and

Wβδ
γα ∩ G.

By using the argument above, Proposition 5.4 and Theorem 2.10.1 in [11], we see
that there exists an open neighbourhood U of I in G

0
such that any automorphism

contained in U can be lifted to an automorphism ofN that keeps an ideal 〈X〉 invariant.
Hence any automorphism T in G

0
can be lifted to an automorphism T in G0 such that

T(〈X〉) = 〈X〉. (Use Proposition 3.18 in [12].) �

Proof of Theorem 5.1. Suppose θ ∈ Aut(H�) is a hyperbolic automorphism such
that its characteristic polynomial has integer coefficients and unit constant term. Since
Aut(H) has finitely many connected components, by replacing θ by its suitable power we
may assume that θ is contained in the connected component of the identity in Aut(H).
By Proposition 5.5, we see that there exists an automorphism θ contained in the
connected component of the identity of Aut(N ) such that its characteristic polynomial
has integer coefficients and unit constant, θ (X) = X , and θ has an eigenvalue 1 of
multiplicity 1. We can assume that the matrix of θ with respect to the basis S ∪ E is an
integer matrix.

We have θ (N j) = N j, for each j = 1, . . . , k, where N j = (⊕i≤j Vλi ) ⊕ W and
λ1, . . . , λk is an enumeration of � such that for all j = 1, . . . , m,

⊕
i≤j Vλi is invariant

under the action of G0. (See § 2.) Let πj : N j → Vλj denote the canonical projection
for each j = 1, . . . , k. Let θλj : Vλj → Vλj be given by θλj = πj ◦ θ .

We have W = ∑
λ,µ∈�[Vλ, Vµ]. All the eigenvalues of θ on W are pairwise products

of the eigenvalues on Vλ’s. Also aλaµ occurs as an eigenvalue of θ |W if and only if
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there exists ζ ∈ Sλ and η ∈ Sµ (notation is as before) such that ζη is an edge, where aλ

is an eigenvalue of θλ and aµ is an eigenvalue of θµ As 1 is an eigenvalue of θ , there
exist λ and µ in � such that ζη is an edge for ζ ∈ Sλ and η ∈ Sµ, and aλaµ = 1, aλ and
aµ being eigenvalues of θλ and θµ respectively.

We shall prove that λ = µ. Suppose that λ = µ. Let a′
λ be a conjugate of aλ over �,

a′
λ = aλ. Then aµ = a−1

λ and a−1
λ′ are conjugates over �. The minimal polynomial of aµ

over � divides the characteristic polynomial of θµ. Hence a−1
λ′ occurs as an eigenvalue

of θµ. As, by our assumption, ζη is an edge for all ζ ∈ Sλ and η ∈ Sµ, aλ′a−1
λ′ occurs

as an eigenvalue of θ , where aλ = a′
λ, and hence we arrive at a contradiction, as the

multiplicity of the eigenvalue 1 is 1. Therefore λ = µ. Hence there exists λ ∈ � such
that the restriction of a graph (S, E) on Sλ is complete and aλa′

λ = 1 for the same
eigenvalues aλ and a′

λ of θλ, and X ∈ [Vλ, Vλ], which is not possible (by Theorem 3.2
of [4]). This completes the proof of the theorem. �

REMARK 5.6. Let H be the simply connected nilpotent Lie group corresponding
to the Lie algebra H. Let � be a lattice in H corresponding to H�. (See [4].)
Then Theorem 5.1 shows that the nilmanifold �\H does not admit an Anosov
automorphism.

6. Nonexistence of Anosov automorphisms on 3-step nilmanifolds. In this section
we study quotients of certain 3-step nilpotent Lie algebras. Let (S, E) be a graph. Let
V be a vector space over � with a basis as S. Let F3(V ) denote the free 3-step nilpotent
Lie algebra over the rationals on V . Let Q = F3(V )/I. Here I is an ideal of F3(V )
generated by the elements [α, β], where α, β ∈ S and αβ is not an edge. We decompose
Q as Q = V ⊕ W ⊕ V3, where V3 is the space spanned by all [α, [β, γ ]] such that
α, β, γ ∈ S, and βγ is an edge. Let X be a nonzero vector in V3. Let M = Q/〈X〉,
where 〈X〉 denotes the ideal generated by X in Q which is a one-dimensional subspace
spanned by X in Q.

PROPOSITION 6.1. Let θ be an automorphism of M. Then there exists θ , an
automorphism of Q such that θ (X) = cX, where c is a nonzero rational. Furthermore
θ induces an automorphism θ ′ of M such that both θ and θ ′ have the same eigenvalues;
also we have θ (V ) = V, θ (W ) = W and θ (V3) = V3.

Proof. Consider the linear endomorphism T of V defined by T(α) = π (θ (α)) for all
α ∈ S, where π is a natural projection of M onto V with respect to the decomposition
of M as M = V ⊕ W ⊕ V3/〈X〉, and α denotes the coset in M represented by α. Note
that T is an automorphism of V . For, if T(v) = 0, v ∈ V , then θ (v) ∈ [M,M]. But as
θ is an automorphism of M, we must have v = 0.

We then have a Lie algebra automorphism T of F3(V ) such that T |V = T .
We prove that T(I) = I. Suppose α, β are in S such that αβ is not an edge. By
definition, T [α, β] = [π (θ (α)), π (θ(β))]. Now as αβ is not an edge, we have [α, β] = 0.
Hence [θ (α), θ (β)] = 0 in M. This implies that [π (θ(α)), π (θ(β))] ∈ V3. Hence we have
[π (θ(α)), π (θ(β))] = 0 in Q. Hence in F3(V ), we have [π (θ (α)), π (θ(β))] ∈ I. Thus we
have proved that T(I) = I and hence T factors through an automorphism of Q. Let
θ denote the automorphism of Q induced by T .

We claim that θ (X) ∈ 〈X〉. We note that θ (Y ) = θ (Y ) in M, for all Y ∈ V3, where
bar is taken to denote the elements in M represented by elements in Q. Now θ (X) = 0
inM, as θ is an automorphism ofM. This implies that θ (X) ∈ 〈X〉 inQ. Hence we have
θ (X) = cX , where c is a nonzero rational. By definition of θ , θ (V ) = V, θ (W ) = W ,
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and θ (V3) = V3. Let θ ′ be the automorphism of M induced by θ . Then both θ and
θ ′ induce the same linear endomorphism on M/[M,M]. Hence θ and θ ′ have same
eigenvalues. �

NOTATION 6.2. Let {Sλ}λ∈� denote the family of coherent components (see § 2)
of the graph (S, E). Let E be the set of all unordered pairs λµ with λ,µ ∈ �, such
that αβ ∈ E, for α ∈ Sλ and β ∈ Sµ. We recall that Vλ denotes the subspace of V
spanned by Sλ (λ ∈ �). Let λ1, . . . , λk be an enumeration of � such that assertion (ii)
of Theorem 2.1 holds. Let N j = (⊕i≤j Vλi ) ⊕ W for j = 1, . . . , k.

THEOREM 6.3. The Lie algebra M does not admit a hyperbolic automorphism whose
characteristic polynomial has integer coefficients and unit constant term.

Proof. Let θ be a hyperbolic automorphism of M such that the characteristic
polynomial of θ has integer coefficients and unit constant term. Let θ be an
automorphism ofQ as obtained in the previous proposition. Let τ be an automorphism
ofN induced by θ . As θ is a hyperbolic automorphism, and θ (X) = X , 1 is an eigenvalue
of θ of multiplicity 1. Since the characteristic polynomial of θ has integer coefficients
and unit constant term, we may assume that the matrix of θ has all integer entries (by
replacing θ by some power of θ if necessary.) As Aut(N ) has finitely many components,
we may assume that θ lies in the connected component of the identity of Aut(Q) and
τ lies in the connected component of the identity of Aut(N ). Hence θ (N j) = N j. (See
Lemma 2.2.)

Let πλj : N j → Vλj denote the canonical projection. Let θλj be an endomorphism
of Vλj defined by θλj (v) = πλj (θ (v)), for all v ∈ Vλj . We note that θλj is an automorphism
of Vλj .

All the eigenvalues of θ restricted on V3 are of the following type:
(i) δλδµδν , where δλ, δµ, and δν are the eigenvalues of θλ, θµ, and θν respectively and

µν ∈ E ; see Notation 6.2.
(ii) δλδ

′
λδ

′′
λ , where δλ, δ

′
λ, δ

′′
λ are the eigenvalues of θλ and the restriction of (S, E) to

Sλ is a complete graph.
As θ |V3 has an eigenvalue 1, we have the following two cases.

Case (i). Suppose δλδµδν = 1, where δλ, δµ, and δν are the eigenvalues of θλ, θµ,
and θν respectively, and µν ∈ E . Now as µν ∈ E , δµδν occurs as an eigenvalue of θ |W .
Thus we have an invertible matrix, say A, with integer entries such that δµδν is an
eigenvalue of A. Also we have an invertible matrix, say B, with integer entries having
δλ = (δµδν)−1 as an eigenvalue. Hence there exists an eigenvalue of the type δ′

µδ′
ν of

A and δ′
λ = (δ′

µδ′
ν)−1 of B such that δ′

µ, δ′
ν and δ′

λ are the eigenvalues of θµ, θν and
θλ respectively, and δ′

µδ′
ν = δµδν . This contradicts the fact that the multiplicity of the

eigenvalue 1 is 1.

Case (ii). Suppose δλδ
′
λδ

′′
λ = 1 for some λ ∈ � such that the restriction of (S, E)

on Sλ is complete and δλ, δ
′
λ, δ

′′
λ are the eigenvalues of θλ. If δλ = δ′

λ = δ′′
λ , then δ3

λ = 1,
which is a contradiction, since θ is hyperbolic. Hence we may assume that δ′

λ = δ′′
λ . Let

V�
λ denote the complexification of Vλ. Suppose that Y, Y ′, Y ′′ ∈ V�

λ are eigenvectors
corresponding to the eigenvalues δλ, δ

′
λ, δ

′′
λ . We consider the complexification of Q

and θ also. As δ′
λ = δ′′

λ, Y ′ and Y ′′ are linearly independent. Hence [Y, [Y ′, Y ′′]] = 0
in Q and also we have θ [[Y, [Y ′, Y ′′]] = [Y, [Y ′, Y ′′]]. If all the δλ, δ

′
λ, δ

′′
λ are distinct,

then consider [Y ′, [Y, Y ′′]], which is an eigenvector corresponding to the eigenvalue 1.
Also [Y ′, [Y, Y ′′]] and [Y, [Y ′, Y ′′]] are linearly independent. This is not possible as
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the eigenvalue 1 has multiplicity 1. If δλ = δ′′
λ and Z ∈ W � is an eigenvector of θ

corresponding to the eigenvalue δ2
λ, then consider [Y ′, Z], which is an eigenvector

of θ corresponding to the eigenvalue 1. Also [Y ′, Z] and [Y, [Y ′, Y ′′] are linearly
independent. This is a contradiction. Similarly we get a contradiction if δλ = δ′

λ. This
proves the theorem. �

REMARK 6.4. Theorem 6.3 shows that the nilmanifold �\M, where M is the
simply connected nilpotent Lie group corresponding to the Lie algebra M ⊗ � and �

is a lattice in M corresponding to M, does not admit an Anosov automorphism. In
particular, a nilmanifold �\M, where � corresponds to the rational Lie algebra given
by a quotient of free 3-step nilpotent Lie algebra by a one-dimensional ideal, does not
admit an Anosov automorphism.

ACKNOWLEDGEMENTS. I am very grateful to Professor S. G. Dani for his valuable
help. I express my gratitude to Professor J. Lauret for his helpful comments and
suggestions. I would like to thank TWAS, Trieste-Italy and CIEM, National University
of Cordoba, Argentina for their support.

REFERENCES

1. L. Auslander and J. Scheuneman, On certain automorphisms of nilpotent Lie groups,
in Global analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif. 1968) (Amer. Math.
Soc., Providence, 1970), 9–15.

2. S. G. Dani, Nilmanifolds with Anosov automorphisms, J. London Math. Soc. (2) 18
(1978), 553–559.

3. S. G. Dani and M. G. Mainkar, Anosov automorphisms on compact nilmanifolds
associated with graphs, Trans. Amer. Math. Soc. 357 (2005), 2235–2251.

4. K. Dekimpe, Hyperbolic automorphisms and Anosov diffeomorphisms on
nilmanifolds, Trans. Amer. Math. Soc. 353 (2001), 2859–2877.

5. K. Dekimpe and S. Deschamps, Anosov diffeomorphisms on a class of 2-step
nilmanifolds, Glasgow Math. J. 45 (2003), 269–280.

6. J. Lauret, Examples of Anosov diffeomorphisms, J. Algebra 262 (2003), 201–209.
Corrigendum: 268 (2003), 371–372.

7. J. Lauret and C. Will, Anosov diffeomorphisms on nilmanifolds up to dimension 8,
appeared in http://arXiv.org/abs/math/0406199

8. A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math. 96
(1974), 422–429.

9. M. S. Raghunathan, Discrete subgroups of Lie groups (Springer-Verlag, 1972).
10. S. Smale, Differential dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817.
11. V. S. Varadarajan, Lie groups, Lie algebras and their representations, Graduate Texts in

Mathematics No. 102 (Springer Verlag, 1984). (Reprinted edition).
12. Frank W. Warner, Foundations of differentiable manifolds and Lie groups (Springer-

Verlag, 1983).

https://doi.org/10.1017/S0017089505002958 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002958

