NONOSCILLATION CRITERIA FOR ELLIPTIC EQUATIONS
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Sufficient conditions will be derived for the linear elliptic partial
differential equation

n n

(1) Lu = Z D(a.Du) +2 Z bDu+cu = 0
. iij . iTi
i, j=1 i=1

to be nonoscillatory in an unbounded domain R in n-dimensional

Euclidean space E". The boundary OR of R is supposed to have a
piecewise continuous unit normal vector at each point. There is no
essential loss of generality in assuming that R contains the origin.
Otherwise no special assumptions are needed regarding the shape of
R : it is not necessary for R to be quasiconical (as in [2]), quasi-
cylindrical, or quasibounded [1].

Our results are generalizations of the one-dimensional non-
oscillation theorems of Hille [3], Moore [5], Potter [6], and others.
An example of a nonoscillation criterion for (1) in the selfadjoint case
(bi =0, i=1,2,...,n) was given recently by Headley and the author

[2]. Nonoscillation criteria are obtained here for the general linear
elliptic equation (1) as a consequence of the author's comparison
theorem [7] and the one-dimensional theorems cited above. In the

special case that (1) is the Schr8dinger equation vzu + cu = 0 and R

coincides with En, Theorem 2 below reduces to a result of Glazman
[1]. Specialization of our results to the case n=1 immediately
yields new nonoscillation criteria for general second order ordinary
linear differential equations.

. 1 . ..
Points in E' are denoted by x = (x ,xz, . ,xn) and differentiation

i
with respect to x is denoted by Di’ i=1,2,...,n. Itis assumed
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that the functions aij R bi’ and c involved in (1) are real-valued and
continuous on R U &R, that the bi are differentiable in R, and
that the matrix (aij) is symmetric and positive definite in R . A

"solution' of (1) is supposed to be continuous in R (U 9R and have
uniformly continuous first partial derivatives in R, and all derivatives
involved in (1) are supposed to exist, be continuous, and satisfy (1) at
every point in R .

The following notations will be used:

erRﬂ{ern: [x]>r} ; Sr={xeRU8R: |x| = r}.

A bounded domain N C R is said to be a nodal domain of a
nontrivial solution u of (1) if and only if u=0 on 9N. The
differential equation (1) is said to be nonoscillatory in R if and only
if there exists a number s > 0 such that no nontrivial solution has
a nodal domain contained in R.s [1, p. 158].

Let g be the function defined by

(2) g(r) = max [c(x) - div b(x)], 0<r< o,
xe:Sr

where b(x) = (b1(x) , bz(x) yee e bn(x)) , xe¢R, and let C be the
function in R defined by the equation C(x) = g(lxl). Let \ (x) denote
the smallest eigenvalue of the matrix (aij(x))' xec¢R. Let f be an

: - . 1
arbitrary positive-valued function of class C (0, ©) such that

f(r) < min X\(x), 0<r< o,
xeSr

and define the function A in R by the equation A(x) = f(|x|). Then

n .
(3) = a, zz > )\(x)[zl2 > A(x)lzl2

for all x e R and all z ¢ E" . The following theorem is obtained by
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comparison of (1) with the separable equation

M B

(4) Di(ADiv) + Cv=0.

i=1

THEOREM 1. Equation (1) is nonoscillatory in R if the ordinary
differential equation

(5) ey + g = o

is nonoscillatory at r = o, i.e. if there exists a number a such that
every nontrivial solution of (5) has at most one zero in (a, «).

Proof. Suppose to the contrary that (1) is oscillatory in R .
Then there exists a nontrivial solution u of (1) with a nodal domain

Nr contained in Rr for all r > 0. The variation between (1) and (4)

is [7]

V[u] = f z a,DuDu - Alvu|2 + (C-c +div b)u.2 dx,
Nr ij J J )

which is positive by (2) and (3). Since (1) is majorized by (4), it
follows from the author's comparison theorem [7] that every solution of
(4) has a zero at some point of Nr' and hence at some point of Rr .

However, a routine separation of variables of (4) in hyperspherical
coordinates r, 91 , 92, . en " [4, p. 58] shows that (4) has radial
solutions v(x) = {¢(r) (r = lx] ), where { satisfies (5). Since (5)
is nonoscillatory, there exists a solution v(x) = {(r) of (4) and a

number T, such that v(x) is free of zeros in Rr for all r > Ty -

The contradiction establishes Theorem 1.

As a consequence of Theorem 41, any one of the known sets of
sufficient conditions for (5) to be nonoscillatory generates a nonoscillation
criterion for (1), for example, Moore's conditions
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dr

. n-1
1 < o and lim sup f X g(x)dx | < w0,
r

f(r) r = © 1

or Potter's conditions

* d
f _1r__ = + o0 and L > 2
1 r f(r)

1

\{ 1-n —l‘l
r [f(r)g(r) ] ¢ 7 (whenever the limit
P

-1
where L = lim e f(r)
T —> 00 .

exists) [5; 6].

In the case n=1, the differential equation (1) has the form
(1" [a(x)u']' + 2b(x)u' + c(x)u = 0, 0 < x < .
The definitions of f and g reduce to
f(x) = Nx) = a(x), g(x) = c(x) - b'(x),
and substitution into any nonoscillation criterion for (5) [e.g. Moore's

criterion above] immediately yields a nonoscillation criterion for (1').

The nonoscillation theorems below are obtained from Theorem 1
in the case that the differential operator L is uniformly elliptic in
Rs for some s > 0, i.e. there exists a positive number )\0 (the

ellipticity constant) such that \(x) > )\0 for all x ¢ Rs .

THEOREM 2. Egquation (1) is nonoscillatory in R if L is
uniformly elliptic in RS for some s >0 and

(6) lim sup rzg(r) < (n—2)2x0/4,

r —> o

where )\0 is the ellipticity constant.
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In the special case that (aij) is the unit matrix and b, = 0,
i

i=1,2,...,n, equation (1) reduces to the Schr¥dinger equation

2
v u + c(x)u =0, x ¢ R.

In this case, f(r) = \(x) = 1, 0<r =|x| < o, andif R

. . . n
coincides with E |

1

max c(x) .
|x| = ¢

g(r)

Theorem 2 then becomes Glazman's theorem [1, p. 158]:

The Schrbdinger equation is nonoscillatory in E" if

(n-2)°

lim sup rzg(r) < "

r —> o

THEOREM 3. Eguation (1) is nonoscillatory in R i L is
uniformly elliptic in RS for some s > 0 and

P
(7) lim sup rf h+(t)dt < )\0/4 s

r—> o r
+
where h (t) = max[h(t),0] and

h(t) = g(t) - %(n-u m-3n,t2,  0<t< .

To prove Theorem 2, it is sufficient to prove that (5) is

nonoscillatory at r = o in the case f(r) = )\0 . The hypothesis (6)

implies that there exist constants r, and Y such that

r2 g(r) < Y < (n- 2)2)\0 /4 for all r>r Thus the Euler equation

0

- -3
(n r 1{,')' +ovro ¢{ =0 is nonoscillatory, and also (5) is non-

0

oscillatory by Sturm's comparison theorem.
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To prove Theorem 3 we observe that {(r) satisfies (5) if and

(n-1)/2
T

only if ¢(r) ¢(r) satisfies the differential equation

(8) Ngd" * h(r)e = 0.
On account of the hypothesis (7), the equation
+
)\oy" + hi(r)y = 0.

.I_
is nonoscillatory by Hille's theorem [3]. Since h (r) > h(r), (8)
also is nonoscillatory by Sturm's comparison theorem.
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