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Abstract. For a commutative ring R with an ideal I , generated by a finite
regular sequence, we construct differential graded algebras which provide R-free
resolutions of Is and of R/Is for s � 1 and which generalise the Koszul resolution.
We derive these from a certain multiplicative double complex K. By means of a
Cartan–Eilenberg spectral sequence we express TorR

∗ (R/I, R/Is) and TorR
∗ (R/I, Is)

in terms of exact sequences and find that they are free as R/I-modules. Except for
R/I , their product structure turns out to be trivial; instead, we consider an exterior
product TorR

∗ (R/I, Is) ⊗R TorR
∗ (R/I, It) → TorR

∗ (R/I, Is+t). This paper is based on ideas
by Andrew Baker; it is written in view of applications to algebraic topology.

2000 Mathematics Subject Classification. 13D02, 13D07; 55U15.

0. Introduction. Let R be a commutative ring with unit and let I � R be an ideal
generated by a finite regular sequence r1, . . . , rn ∈ R; i.e. r1 is a non-zero divisor of R
such that R/(r1) �= 0, r2 a non-zero divisor of R/(r1) such that R/(r1, r2) �= 0 and so
on. The Koszul complex K , a differential graded algebra, provides a canonical R-free
resolution of R/I . The aim of this paper is to construct explicit R-free resolutions of
R/Is and Is, for s > 1, that generalise the Koszul resolution and enable us to compute
TorR

∗ (R/I, R/Is) and TorR
∗ (R/I, Is).

We derive these from a certain second quadrant double complex K with R-free
components that we call the extended Koszul complex. In formal analogy to the ordinary
Koszul complex, K is constructed as a tensor product of elementary double complexes
and carries a multiplicative structure. Its filtration by columns turns out to be a filtration
by ideals Fs(K) � K, so that the associated total complexes of Fs(K) and K/s = K/Fs(K)
are differential graded algebras. Via suitable augmentations, they provide resolutions
of Is and R/Is respectively.

The column-wise filtrations of R/I ⊗R Fs(K) and R/I ⊗R K/s give rise to Cartan–
Eilenberg type spectral sequences which converge to TorR

∗ (R/I, Is) and TorR
∗ (R/I, R/Is)

respectively. We show that they collapse at E2, express the Tor-groups by means of exact
sequences and find that they are free over R/I .

Except for R/I , their multiplicative structure, induced by the R-algebra structure
on R/Is and on Is, turns out to be trivial. However, the multiplications Is ⊗R It → Is+t

induce non-trivial exterior products

TorR
∗ (R/I, Is) ⊗R TorR

∗ (R/I, It) −→ TorR
∗ (R/I, Is+t)

that allow us to view
⊕

s�0 TorR
∗ (R/I, Is) as a bigraded algebra. It contains a copy of

the polynomial ring R/I [x1, . . . , xn] as a subalgebra, over which the whole algebra is
generated by the R/I-basis elements of TorR

k>0(R/I, I).
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This paper is based on ideas by Andrew Baker; he constructs in [1] resolutions
of R/Is and computes TorR

∗ (R/I, R/Is). His approach to the resolutions, however, is
conceptually different from the one presented here. He constructs them inductively, by
pasting together copies of the Koszul complex.

Note that Tate constructs in [11] for any R-algebra of the form R/M, where R is
a commutative Noetherian ring with unit and M � R an ideal, a differential graded
algebra which provides a free resolution. Applying the construction to R/Is, where I
is as above, does not give the resolution considered here.

The present paper originated in the course of the work on my PhD thesis, in view of
applications to algebraic topology. These will be discussed in [13], but at the suggestion
of the referee, we briefly indicate their nature.

In algebraic topology, one considers ring spectra E, which are multiplicative
objects in the stable homotopy category. They give rise to multiplicative homology
and cohomology theories, E∗(−) and E∗(−) respectively, defined on topological spaces
X . In particular, this means that the cohomology of a point, E∗ = E∗(∗) is a graded
commutative ring, and that E∗(X) is a graded module over E∗, for any space X . (See [3]
for a concise survey of cohomology theories.) Let K∗ = E∗/I be a quotient of E∗ by an
ideal I , generated by a regular sequence. If E is sufficiently well structured, it is possible
to realize K∗ topologically, by a module spectrum K over E [7, Section V]. In favourable
cases, K is even a ring spectrum, but at any rate it defines homology and cohomology
theories. There are natural transformations E∗(X) → K∗(X) of graded E∗-modules and
similarly for homology. An important example are the Johnson–Wilson theories E(n)
and the Morava-K-theories K(n) for a given prime p and n � 0. See [3]. Due to the
simpler coefficients K∗ of K , one expects K∗(X) to be more accessible than E∗(X). The
natural question is then if there is a way to get back. One idea, first considered (in a
special case) in [2], is to realize the I-adic tower

E∗ �� · · · �� E∗/I3 �� E∗/I2 �� E∗/I = K∗

I2/I3

��

I/I2

��

(0.1)

topologically. More precisely, the aim is to construct a diagram

E �� · · · �� E/I3 �� E/I2 �� E/I = K

I2/I3

��

I/I2

��

(0.2)

of module spectra over E in such a way that

Is/Is+1 −→ E/Is+1 −→ E/Is

are cofibre sequences and that, paralleling algebra (compare Remark 3.3), the spectra
Is/Is+1 are coproducts of suspensions of K . For any space X , such a diagram gives rise
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to one of E∗-modules (an arrow with a circle denotes a homomorphism of degree −1).

E∗(X) �� · · · �� (E/I3)∗(X) �� (E/I2)∗(X) ��

◦������

��������

K∗(X)

◦��
���

�����
��

I2/I3 ⊗K∗ K∗(X)

��

I/I2 ⊗K∗ K∗(X)

��

This forms an unrolled exact couple (see [4]) and hence yields a spectral sequence

Es,t
1 = (Is/Is+1 ⊗K∗ K∗(X))t =⇒ Es+t(X).

An understanding of the image of the tower (0.1) under the functor Ext∗,∗
E∗ (−, K∗), as

provided by the present paper, makes the nature of a topological I-adic tower (0.2)
transparent and leads to an easy construction.

It is a pleasure to express my gratitude to my supervisor Alain Jeanneret from
the University of Berne and Andrew Baker from the University of Glasgow for many
interesting discussions and for ongoing support. In particular, I would like to thank
Andrew Baker for inviting me to spend a year at the University of Glasgow, as well
as the Mathematics Institute in Berne for giving me the opportunity to do so. I would
like to thank the people from the Mathematics Department in Glasgow, in general, for
offering an inspiring and stimulating atmosphere during my stay, and the referee for
useful suggestions.

1. Multiplicative double complexes. We define the notion of “double complex”
which is most suitable for our purposes and describe a natural way of forming tensor
products; this allows us to consider multiplicative double complexes. References for
background material for this section are [8, VII.], [9, X.9] and [12].

Given an abelian category A, we can form the category Ch(A) of chain complexes
in A, whose morphisms are the chain maps. As Ch(A) in turn is abelian, in a canonical
way, we can iterate the construction.

DEFINITION 1.1. A double complex is an object C of DC(A) = Ch(Ch(A)).

We display the components Cp of a double complex C as the columns of a lattice
Cp,q. By definition, the differential dp: Cp → Cp−1 is a chain map, so that the squares
in the lattice commute. Note that one often means by a double complex a lattice Cp,q

whose rows and columns are chain complexes, as here, but whose squares anticommute.
We denote the components Cp,q → Cp−1,q of the differential of C by dh

p,q (the hori-
zontal differentials) and the components Cp,q → Cp,q−1 of the differentials of the
columns Cp of C by dv

p,q (the vertical differentials) when the indices are clear from
the context, we omit them. We also use the convention Cp

q = C−p,q.
By replacing the vertical differential dv

p,q by (dv
p,q)′ = (−1)pdv

p,q, we can pass from
a double complex C, as defined above, to one with anticommuting squares that we
denote by C◦.

The total complex Tot⊕(C◦) of C◦ has components

(Tot⊕(C◦))k =
⊕

p+q=k

Cp,q
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and differential given by d = dh + (dv)′. Following MacLane, we call this complex the
condensation of C and denote it by C•.

Assume now that 〈A, ⊗ , e〉 is an abelian, symmetric monoidal category (where e
is the unit). We shall refer to the bifunctor ⊗ as the “tensor product”.

Recall that Ch(A) inherits a symmetric monoidal structure from A. Namely, for
two chain complexes (C, d) and (D, d ′), the tensor product C ⊗ D is defined by

(C ⊗ D)k =
⊕

p+q=k

Cp ⊗ Dq, (1.2)

with differential given by

dp ⊗ 1 + (−1)p 1 ⊗ d ′
q: Cp ⊗ Dq −→ (C ⊗ D)p+q−1.

Embedding A in Ch(A) in the usual way, e is a unit in Ch(A) for ⊗. The symmetry
isomorphism τ̂ : C ⊗ D −→ D ⊗ C is defined as

τ̂ (c ⊗ d) = (−1)klτ (c ⊗ d) (1.3)

for c ⊗ d ∈ Ck ⊗ Dl, where τ : Ck ⊗ Dl −→ Dl ⊗ Ck is the given symmetry isomorphism
in A.

Iterating this procedure, we get a symmetric monoidal structure on DC(A). From
the definition, the components (columns) of the tensor product C ⊗ D of two double
complexes C and D consist of a direct sum of tensor products of columns of C and D.
Note that C ⊗ D has the analogous property for the rows. We can express this in a more
conceptual way by introducing the transpose TC of a double complex C, defined as
(TC)p,q = Cq,p, with differentials (Td)vp,q = dh

q,p and (Td)h
p,q = dv

q,p. The statement then
amounts to the equation

TC ⊗ TD = T(C ⊗ D). (1.4)

Note that the symmetry isomorphism ˆ̂τ : C ⊗ D → D ⊗ C is given by

ˆ̂τ (c ⊗ d) = (−1)kp+lqτ (c ⊗ d ),

for c ⊗ d ∈ Ck,l ⊗ Dp,q.

DEFINITION 1.5. A multiplicative double complex is a monoid in the monoidal
category 〈DC(A),⊗, e〉, i.e. a double complex C with a multiplication µ: C ⊗ C → C
and a unit η: e → C such that the associativity and the two unit diagrams commute.

Unravelling the definitions, the product µ of a multiplicative double complex is
defined by a collection of maps Cp,q ⊗ Ck,l → Cp+k,q+l such that both the components
of the horizontal and the vertical differential are derivations, in the sense that we have,
for c ∈ Cp,q, d ∈ Ck,l,

dh(µ(c ⊗ d)) = µ(dh(c) ⊗ d) + (−1)p µ(c ⊗ dh(d)), (1.6)

dv(µ(c ⊗ d)) = µ(dv(c) ⊗ d) + (−1)q µ(c ⊗ dv(d)). (1.7)

Note that the condensation C• of a multiplicative double complex is canonically a
monoid in Ch(A), as a consequence of the natural isomorphism (C ⊗ D)• ∼= C• ⊗ D•,
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which holds for any two double complexes C and D, and the fact that condensation is
a functorial process.

Suppose that (C, µ, η) and (D, µ′, η′) are two multiplicative double complexes.
As in any symmetric monoidal category, we can endow C ⊗ D with a multiplicative
structure in a canonical way, by defining the product as the composition

(C ⊗ D) ⊗ (C ⊗ D)
C⊗ ˆ̂τ⊗D−−−−→ C ⊗ C ⊗ D ⊗ D

µ⊗µ′
−−→ C ⊗ D. (1.8)

Explicitly, the product is given by the collection of maps

(Cp,q ⊗ Dk,l) ⊗ (Cp′,q′ ⊗ Dk′,l′) −→ Cp+p′,q+q′ ⊗ Dk+k′,l+l′

(c ⊗ d) ⊗ (c′ ⊗ d ′) �−→ (−1)kp′+lq′
µ(c ⊗ c′) ⊗ µ′(d ⊗ d ′).

We have morphisms of monoids

C ∼= C ⊗ e
C⊗η′
−−→ C ⊗ D, D ∼= e ⊗ D

η⊗D−−→ C ⊗ D.

We shall also need the category ∂∂A of (�–)bigraded objects in A; by the
construction of (1.2), ∂∂A is monoidal. The forgetful functor U : DC(A) → ∂∂A is
a strict morphism of monoidal categories and therefore restricts to a functor

U : MonDC(A) −→ Mon∂∂A

between the categories of monoids. Whereas in DC(A) we were forced to introduce a
sign when defining the symmetry isomorphisms in (1.3), we wouldn’t need to do so
in ∂∂A. However, we want the restriction of U to MonDC(A) to be monoidal as well;
therefore, we define symmetry isomorphisms in ∂∂A as in (1.3). To stress that we use
these symmetries for the definition of the tensor product of monoids in ∂∂A, as in
(1.8), we denote it by ⊗̃ and call it the twisted tensor product.

In the next section, we apply these constructions to the symmetric monoidal
category 〈R-Mod,⊗R, R〉 of R-modules. The symmetry isomorphisms are given by
the switch maps τ : M ⊗ N → N ⊗ M, τ (m ⊗ n) = n ⊗ m. Monoids in R-Mod and
Ch(R-Mod) are R-algebras and differential graded R-algebras respectively. We shall
refer to monoids in ∂∂(R-Mod) as bigraded R-algebras.

2. The extended Koszul complex and the resolutions. Without further notice, the
ground ring is from now on understood to be R and so we omit the letter R in
⊗R, HomR, �R, TorR or ExtR.

We briefly recall the definition of the Koszul complex K , in order to fix notations
and to point out the formal similarity to the double complex K that we construct
afterwards.

For a non-zero divisor r ∈ R, K(r) is defined to be the differential graded algebra
(�(e), d) with |e| = 1 and d(e) = r. The projection R → R/(r) defines an augmentation
εr: K(r) → R/(r), which exhibits K(r) as an R-free resolution of R/(r). For a regular
sequence r1, . . . , rn generating an ideal I , the Koszul complex K is the differential
graded algebra given by

K = K(r1) ⊗ · · · ⊗ K(rn), (2.1)
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according to a prescription similar to (1.8), but for chain complexes. As a graded
algebra, K is the exterior algebra �(e1, . . . , en). Together with the augmentation
ε = ⊗n

i=1 εri , K is an R-free resolution of R/I of length n [10, Theorem 16.5].
Changing to two dimensions, we start by realizing K(r) and R[x], for a non-zero

divisor r ∈ R and a free variable x, as multiplicative double complexes, by assigning e
and x bidegrees (0, 1) and (−1, 1) respectively. Hence K(r) is concentrated on the y-axis
and R[x] on the secondary diagonal. Of course, all the differentials of R[x] are trivial.

The multiplicative double complex K(r) corresponding to K(r) is now given
as follows. We take K(r) ⊗ R[x] and define horizontal differentials dh by setting
dh

−k,k+1(e ⊗ xk) = −1 ⊗ xk+1. The reason for the sign will become clear later on. The
other components of dh are necessarily trivial. To see that dh is compatible with the
multiplicative structure canonically defined on K(r) ⊗ R[x], we have to check equation
(1.6). We do the calculation for c = e ⊗ xk and d = e ⊗ xl. The left-hand side of the
equation is trivial, and the right-hand side is given by

µ(− (1 ⊗ xk+1) ⊗ (e ⊗ xl)) + (−1)−k µ((e ⊗ xk) ⊗ − (1 ⊗ xl+1))

= (−1)k+2 e ⊗ xk+l+1 + (−1)−k+1 e ⊗ xk+l+1 = 0.

The vertical differentials in the kth column are induced by the ones of the shifted
complex �kK(r). Here � denotes the suspension functor, defined on a chain complex C
as (�C)k = Ck−1, with differentials (�d)k = −dk. Explicitly, the non-trivial components
are dv

−k,k+1(e ⊗ xk) = (−1)k r ⊗ xk.

DEFINITION 2.2. The extended Koszul complex K associated to the regular sequence
r1, . . . , rn is the multiplicative double complex

K = K(r1) ⊗ · · · ⊗ K(rn).

Let us describe the bigraded algebra U(K) underlying K. Underlying a building
block K(ri) is the bigraded algebra

U(K(ri; xi)) = �(ei) ⊗̃ R[xi].

Note that the elements ei and xi anticommute (we have used this in the verification
above). Moreover, we have the identifications (of bigraded algebras)

�(e1) ⊗̃ �(e2) = �(e1, e2),

R[x1] ⊗̃ R[x2] = R[x1, x2].

Consequently, U(K) is isomorphic to a twisted tensor product of an exterior and
a polynomial algebra, concentrated on the y-axis and the secondary diagonal
respectively, by means of a composition of symmetry isomorphisms. For n = 2, we
have for instance

U(K) = U(K(r1)) ⊗̃ U(K(r2)) = �(e1) ⊗̃ R[x1] ⊗̃ �(e2) ⊗̃ R[x2]
∼= �(e1) ⊗̃ �(e2) ⊗̃ R[x1] ⊗̃ R[x2] = �(e1, e2) ⊗̃ R[x1, x2],

given on elements by

ej1
1 ⊗ xi1

1 ⊗ ej2
2 ⊗ xi2

2 �−→ (−1)j2i1 ej1
1 ∧ ej2

2 ⊗ xi1
1 xi2

2 ,
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for j1, j2 ∈ {0, 1} and i1, i2 � 0. For arbitrary n, an isomorphism

U(K) ∼= �(e1, . . . , en) ⊗̃ R[x1, . . . , xn] (2.3)

is given by

ej1
1 ⊗ xi1

1 ⊗ · · · ⊗ ejn
n ⊗ xin

n �−→ (−1)(i,j)ej1
1 ∧ · · · ∧ ejn

n ⊗ xi1
1 · · · xin

n (2.4)

for j1, . . . , jn ∈ {0, 1}, i1, . . . , in � 0, where (i, j) is defined as

(i, j) = j2i1 + (j3i2 + j3i1) + · · · + (jnin−1 + · · · + jni1).

Under this isomorphism, the diagonal line p + q = k of K corresponds to the
(right) R[x1, . . . , xn]-submodule of �(e1, . . . , en) ⊗̃ R[x1, . . . , xn] generated by the
homogeneous elements of degree k of �(e1, . . . , en), for instance. We shall refer to
elements of K by means of (2.3). The element (e1 ⊗ 1) ⊗ (1 ⊗ x4

2) ⊗ (e3 ⊗ 1) for example
is written as −e1 ∧ e3 ⊗ x4

2.
The column-wise filtration of K arises naturally as a filtration by ideals. Namely,

define Fs(K) for s � 0 to be the (left) ideal generated by Js, where J is the maximal ideal
J = (x1, . . . , xn) � R[x1, . . . , xn], so that

Fs(K) = K · Js.

We denote the quotients of K by these ideals by K/s and the components of the
associated graded by Qs. We have

K/s = K/Fs(K), Qs = Fs(K)/Fs+1(K).

Put more directly, K/s consists of the first s columns (with the differentials from K)
and Qs of the sth column of K; however, Qs is still a double complex. Its condensation
agrees with the sth column of K up to a shift, namely (Qs)• = �−sKs.

Let us determine the homology of the columns and the rows of K. The columns
can be identified as direct sums of the Koszul complex K(r1, . . . , rn), indexed by the
homogeneous monomials in x1, . . . , xn of degree s. Namely, we have

Ks ∼= �sK ⊗ Js/Js+1, (2.5)

essentially by definition:

Ks =
⊕

i1+···+in=s

K(r1)i1 ⊗ · · · ⊗ K(rn)in

=
⊕

i1+···+in=s

�i1 K(r1) ⊗ Rxi1
1 ⊗ · · · ⊗ �in K(rn) ⊗ Rxin

n

∼=
⊕

i1+···+in=s

�sK ⊗ Rxi1
1 ⊗ · · · ⊗ Rxin

n

∼= �sK ⊗ Js/Js+1.

This implies that

Hp(Ks) ∼=
{

Js/Js+1 if p = s,

0 otherwise.
(2.6)
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The rows of K(ri) are all chain complexes of free R-modules; other than the zeroth
one, which consists of R (concentrated in degree zero), they are exact. Therefore, using
property (1.4), the Künneth theorem implies that

Hp(Kt) =
{

R if p = t = 0,

0 otherwise.
(2.7)

Next, we define an augmentation on K•. Note that d1: K•
1 → K•

0 is given by

d1(ej ⊗ f ) = rj f − xj f,

for a monomial f ∈ R[x1, . . . , xn]. Hence the evaluation map

ε: R[x1, . . . , xn] −→ R, ε(xi) = ri

defines an augmentation. As ε is compatible with the filtrations given by powers of the
ideals J � R[x1, . . . , xn] and I � R respectively, it induces augmentations

εs: (Fs(K))•0 −→ Is, εs: (K/s)•0 −→ R/Is, εs
s+1: (Qs)•0 −→ Is/Is+1

for the complexes (Fs(K))•, (Qs)•, (K/s)• respectively.

PROPOSITION 2.8 (Compare [1, Theorem 1.3].) For s � 1, the differential graded
algebras (Fs(K))•, (Qs)• = K ⊗ Js/Js+1 and (K/s)• provide R-free resolutions

(Fs(K))•
εs−−→ Is −→ 0,

(K/s)•
εs−−→ R/Is −→ 0,

(Qs)•
εs

s+1−−→ Is/Is+1 −→ 0

of Is, R/Is and Is/Is+1, respectively.

Proof. Filtering the respective double complexes by rows gives rise to Cartan–
Eilenberg spectral sequences [5, XV, §6]. They converge because the filtrations are
bounded below and exhaustive, as the components of the condensation are defined
as direct sums. See [12, 5.6]. The E1-term, given by the homology of the columns, is
concentrated on the diagonal p + q = 0, as a consequence of (2.6).

Therefore, it only remains to check exactness of the complexes in degree zero. This
is clear; the augmentations induce isomorphisms

H0((FsK)•) = Js/(x1 − r1, . . . , xn − rn)
∼=−−→ Is,

H0((K/s)•) = R[x1, . . . , xn]/(Js, x1 − r1, . . . , xn − rn)
∼=−−→ R/Is,

H0((Qs)•) = Js/(Js+1, x1 − r1, . . . , xn − rn)
∼=−−→ Is/Is+1. �

REMARK 2.9. A similar argument shows that there are R-free resolutions of any
subquotient of R of the form Is/It, for t > s � 0, given by

(Fs(K)/Ft(K))•
εs

t−−→ Is/It −→ 0,

where εs
t is induced by ε.
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REMARK 2.10. Note that the canonical inclusion (Qs)• → (K/s)• covers (via
the augmentations) the inclusion Is/Is+1 → R/Is; similarly, the canonical projection
(Fs(K))• → (Qs)• covers the projection Is → Is/Is+1.

REMARK 2.11. We sketch how the complex (K/s)• can be constructed in a way that
is explained in [1]. By definition, the underlying graded module of the condensation
(K/s)• is the direct sum of the appropriately shifted columns of K/s

K0 ⊕ �−1K1 ⊕ · · · ⊕ �−(s−1)Ks−1 = (Q0)• ⊕ · · · ⊕ (Qs−1)•.

To express the differentials, we interpret the components dh
−k,∗ of the horizontal

differentials as chain maps

∂ (k) : (Qk)• → (Qk+1)•

of degree −1. The differentials of (K/s)• are then given by

d(x0, . . . , xs−1) = (
d0(x0), d1(x1) + ∂ (0)(x0), . . . , ds−1(xs−1) + ∂ (s−2)(xs−2)

)
,

where the dk are the differentials of the complexes (Qk)•. The problem with this
approach is that the expressions for the maps ∂ (k) are rather unwieldy, which for instance
makes the verfication that we actually do get a resolution already quite tedious.

REMARK 2.12. As remarked in the introduction, Tate describes a construction
which yields some (non-explicit) multiplicative resolution X∗ → R/Is for Noetherian
R [11, Theorem 1]. It will certainly be different from (K/s)•, because it ends with X0 = R,
whereas (K/s)•0 = R[x1, . . . , xn]/(x1, . . . , xn)s. In contrast to (K/s)•, the complex X∗ will
in most cases be unbounded, due to algebra generators in even degrees.

3. Computation of Tor-groups. Tensoring the Koszul resolution K with R/I kills
all the differentials. Therefore Proposition 2.8 implies that

Tor∗(R/I, Is/Is+1) = R/I ⊗ K ⊗ Js/Js+1 (3.1)

(recall that J = (x1, . . . , xn) � R[x1, . . . , xn]), and we find the following well-known
result.

PROPOSITION 3.2. For s � 0, we have

Tor∗(R/I, Is/Is+1) = �R/I (e1, . . . , en) ⊗ Js/Js+1.

For s = 0, this is an identity of algebras.

REMARK 3.3. The statement for s > 0 follows in fact directly from the case s = 0,
as a consequence of the splitting (of R-modules)

Is/Is+1 ∼= R/I ⊗ Js/Js+1 ∼=
⊕
x∈Vs

R/I x,

where Vs is the set of monomials of degree s in x1, . . . , xn [10, Theorem 16.2].
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It is convenient to introduce a reduced version of Tor for R/Is. For this, let us first
note that the projection R → R/Is induces a split monomorphism

R/I ∼= Tor∗(R/I, R) −→ Tor∗(R/I, R/Is).

This can be seen as follows. Replace R/I and R/Is by projective resolutions P
and Q which are differential graded algebras, e.g. P = (K/1)• and Q = (K/s)•. Then
the map Tor∗(R/I, R) → Tor∗(R/I, R/Is) is induced by P → P ⊗ Q and split by
P ⊗ Q → P ⊗ P → P, where the first map is the identity on P tensored with a lift
of the projection R/Is → R/I . Defining

T̃or∗(R/I, R/Is) = coker(R/I −→ Tor∗(R/I, R/Is)),

we therefore have

Tor∗(R/I, R/Is) ∼= R/I ⊕ T̃or∗(R/I, R/Is).

We need some notation. For s � 0, let ∂s be the connecting homomorphism

∂s : Tor∗+1(R/I, Is/Is+1) −→ Tor∗(R/I, Is+1/Is+2)

associated to the short exact sequence

0 −→ Is+1/Is+2 −→ Is/Is+2 −→ Is/Is+1 −→ 0, (3.4)

is the inclusion Is/Is+1 → R/Is+1 and ps the projection Is → Is/Is+1. We shall omit the
index s if it is clear from the context. The projection Tor∗(R/I, R/Is) → T̃or∗(R/I, R/Is)
is denoted by π .

THEOREM 3.5 ([1], Lemma 2.1, Proposition 2.2). For s > 1, the sequence of graded
R/I-modules

Tor∗+1(R/I, Is−2/Is−1)
∂−−→ Tor∗(R/I, Is−1/Is)

π i∗−−→ T̃or∗(R/I, R/Is) −→ 0

is exact; moreover, T̃or∗(R/I, R/Is) is free over R/I. The product structure on
T̃or∗(R/I, R/Is), induced by the R-algebra structure on R/Is, is trivial.

To simplify notation, we abbreviate Tor∗(R/I,−) to H∗(−) in the following and
refer to it as homology; similarly, H̃∗(−) stands for T̃or∗(R/I,−).

Proof. Making use of the free resolution (K/s)• of R/Is constructed in the previous
section, we can compute H∗(R/Is) as H∗(R/I ⊗ (K/s)•). The filtration defined for K
induces one on K/s, of the form

0 = Fs ⊆ Fs−1 ⊆ · · · ⊆ F0 = K/s. (3.6)

Setting Gs = R/I ⊗ (Fs)•, this in turn gives rise to the filtration

0 = Gs ⊆ Gs−1 ⊆ · · · ⊆ G0 = R/I ⊗ (K/s)•, (3.7)

which is a filtration of the differential graded algebra R/I ⊗ (K/s)• by ideals. It
determines a Cartan–Eilenberg spectral sequence converging to H∗(R/Is), by the same
argument as in the proof of Proposition 2.8. The E1-term is given by the homology
of the columns, which we have identified – up to a shift – as free resolutions of the
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quotients Ip/Ip+1 and so (E1)p
∗+p = H∗(Ip/Ip+1). The first differential is given by the

horizontal differential and therefore (2.7) implies

(E2)p
∗ =


coker((dh)s−2: (E1)s−2

∗ −→ (E1)s−1
∗ ) if p = s − 1,

R/I if p = 0,

0 otherwise.

For dimensional reasons, the spectral sequence collapses at E2. Consequently, the
composition

(E2)s−1
∗+s−1 = (E∞)s−1

∗+s−1 = H∗(Gs−1) ↪→ H∗(R/Is)
π−−→ H̃∗(R/Is)

of the edge homomorphism with the projection π is an isomorphism, so that we have
an exact sequence

(E1)s−2
∗+s−1 −→ (E1)s−1

∗+s−1 −→ H̃∗(R/Is) −→ 0.

Remark 2.10 shows that the map (E1)s−1
∗+s−1 → H̃∗(R/Is) can be identified with

π i∗: H∗(Is−1/Is) → H̃∗(R/Is).
It remains to identify R/I ⊗ dh: (E1)s−2

∗ → (E1)s−1
∗ as a connecting homomorphism.

The free resolutions of the terms in the short exact sequence

0 −→ Is−1/Is −→ Is−2/Is −→ Is−2/Is−1 −→ 0,

described in Proposition 2.8 and Remark 2.9, fit into a short exact sequence of chain
complexes

0 −→ (Qs−1)• −→ (Fs−2(K)/Fs(K))• −→ (Qs−2)• −→ 0.

Going through the definition of the connecting homomorphism, we find that ∂s−2 is
given by R/I ⊗ (dh)s−2.

For the second statement, it suffices to observe that the image of ∂ is a free
submodule of the free R/I-module H∗(Is−1/Is). This is true because ∂ = R/I ⊗ dh

maps basis elements of R/I ⊗ K to sums of basis elements.
For the determination of the multiplicative structure of H∗(R/Is), recall

from Section 1 that the product on K/s induces one on (K/s)• and hence on
H∗(R/Is) = H∗(R/I ⊗ (K/s)•). The latter one indeed is the canonical internal product
defined on H∗(R/Is). See [9, Corollary VIII.2.3]. As the product on K/s is compatible
with the filtration (3.6), so are the induced ones on R/I ⊗ (K/s)• and on H∗(R/Is). Now
we have seen above that H̃∗(R/Is) is concentrated in H∗(Gs−1), on which the product
is trivial. �

We can express H∗(Is) in a similar manner. The proof is completely analogous.

THEOREM 3.8. For s � 0, there is an exact sequence

0 −→ Tor∗(R/I, Is)
p∗−−→ Tor∗(R/I, Is/Is+1)

∂−−→ Tor∗−1(R/I, Is+1/Is+2);

moreover, Tor∗(R/I, Is) is free over R/I. The product structure on Tor∗(R/I, Is), induced
by the R-algebra structure on Is, is trivial.
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REMARK 3.9. In particular, we have R/I ⊗ Is ∼= Is/Is+1.

It is quite easy to make the connecting homomorphism

∂: H∗+1(Is/Is+1) → H∗(Is+1/Is+2)

explicit. In the following, we slightly abuse notation and denote basis elements of⊕
s�0

H∗(Is/Is+1) =
⊕
s�0

�−s(R/I ⊗ K)s

(see (3.1)) as expressions in the variables ei and xi, which are in fact generators of the
components of K. By means of illustration, consider first ∂: H∗+1(R/I) → H∗(I/I2).
The unit is mapped to zero and the elements ei to xi. For the elements of higher degree,
we have

∂(e1 ∧ e2) = −e2 ⊗ x1 + e1 ⊗ x2,

∂(e1 ∧ e2 ∧ e3) = e2 ∧ e3 ⊗ x1 − e1 ∧ e3 ⊗ x2 + e1 ∧ e2 ⊗ x3

and so on. Considering R/I ⊗ K under the isomorphism (2.3) as a right module over
R/I [x1, . . . , xn], ∂ is a linear map. We have for instance

∂(e1 ∧ e2 ⊗ x1) = −e2 ⊗ x2
1 + e1 ⊗ x1x2.

In the general case, we have the following formula.

PROPOSITION 3.10. The map ∂: H∗+1(Is/Is+1) → H∗(Is+1/Is+2) is given by

∂(ei1 ∧ · · · ∧ eil ⊗ f ) =
l∑

j=1

(−1) j+l ei1 ∧ · · · ∧ êij ∧ · · · ∧ eil ⊗ xij f,

where {i1, . . . , il} ⊆ {1, . . . , n}, f is a monomial in x1, . . . , xn of degree s and the hat
indicates that the entry underneath should be omitted. �

REMARK 3.11. Identifying H∗(Is) with its image under p∗ and recalling that
ker ∂s = im∂s−1 for s � 1, the proposition gives an explicit description of a basis of
H∗(Is).

REMARK 3.12. Because all the Tor-groups we have computed are free R/I-modules,
we have the Ext-groups for free, as a consequence of the following fact. If A is an
R-module such that TorR

∗ (R/I, A) is free over R/I , there is a duality isomorphism

Ext∗R(A, R/I) ∼= Hom∗
R/I (TorR

∗ (R/I, A), R/I).

It arises as an edge homomorphism of a Cartan–Eilenberg spectral sequence, which
collapses under this condition. See [5, XVI, §6, Case 3].

4. An exterior multiplication. As mentioned in the introduction, we aim to study⊕
s�0 Tor∗(R/I, Is) as a bigraded R/I-algebra. We abbreviate Tor∗(R/I,−) by H∗(−),

as before.
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Ordinary ring multiplication induces pairings Is ⊗ It → Is+t. Taken all together,
these give rise to a graded R-algebra structure on

B∗
I (R) = R ⊕ I ⊕ I2 ⊕ · · ·

called the blowup algebra of I in R in [6, 5.2]. On the other hand, we have the graded
ring associated to the I-adic filtration

gr∗
I (R) = R/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · ·

These product structures induce exterior multiplications on homology, giving both
H∗(B∗

I (R)) and H∗(gr∗
I (R)) the structure of bigraded R/I-algebras. We may compute

these using the multiplicative double complexes deduced from K. Proposition 3.2
immediately implies the following result.

PROPOSITION 4.1. There is an isomorphism of bigraded algebras

Tor∗(R/I, gr∗
I (R)) ∼= �R/I (e1, . . . , en) ⊗̃ R/I [x1, . . . , xn].

The projections Is → Is/Is+1 induce a map of graded R-algebras

p: B∗
I (R) −→ gr∗

I (R).

On Tor this induces, by Theorem 3.8, a monomorphism of bigraded R/I-algebras

p∗: H∗(B∗
I (R)) −→ H∗(gr∗

I (R)). (4.2)

We identify H∗(B∗
I (R)) with its image under p∗ in the following. By Remark 3.9,

Tor0(R/I, B∗
I (R)) ∼= R/I [x1, . . . , xn].

Hence we can consider H∗(B∗
I (R)) as a (bigraded) algebra over R/I [x1, . . . , xn]. Note

that R/I [x1, . . . , xn] is not contained in the centre of H∗(B∗
I (R)).

PROPOSITION 4.3. Over R/I [x1, . . . , xn], the bigraded algebra Tor∗(R/I, B∗
I (R)) is

generated by the basis elements

a(i0,...,ik) = ∂(ei0 ∧ · · · ∧ eik )

of Tork(R/I, I) for 0 < k < n, where {i0, . . . , ik} runs through the subsets of {1, . . . , n} of
cardinality k + 1 and we assume that 1 � i0 < · · · < ik � n.

Proof. It is clear from the short exact sequence 0 → I → R → R/I → 0 and
Proposition 3.2 that the a(i0,...,ik) defined in the statement generate H∗(I) as an R/I-
module. Now we claim that a set of generators of the sth column H∗(Is) of H∗(B∗

I (R))
is given by multiplying all monomials of degree s in x1, . . . , xn with all the a(i0,...,ik).
Namely, we know that, for s > 0,

H∗(Is) ∼= ker(∂s: H∗(Is/Is+1) −→ H∗−1(Is+1/Is+2))

= im(∂s−1: H∗+1(Is−1/Is) −→ H∗(Is/Is+1)).

The first equality is Theorem 3.8 and the second is equation (2.7) together with
the recognition of R/I ⊗ dh as the connecting homomorphism ∂ in the proof of
Theorem 3.5. Also Proposition 3.10 implies that im ∂s−1 = Js−1/Js · im ∂0. �
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We finish by giving some examples for small n; we abbreviate H∗(B∗
I (R)) by A, R/I

by E and R/I [x1, . . . , xn] by P.
� n = 1: Clearly, we have A ∼= P = E[x].
� n = 2: The basis element a12 = − e2x1 + e1x2 of H1(I) generates a free copy of

P. More precisely, A ∼= �E(a12) ⊗̃ P, as bigraded algebras.
� n = 3: Among the basis elements a12, a13 and a23 we have the relation

x1 · a23 + x2 · a13 + x3 · a12 = 0

over P. As an example of a product, we have a12 · a23 = − x2 · a123.
� n = 4: In addition to four relations of the type above, there is also

x1 · a234 + x2 · a134 + x3 · a124 + x4 · a123 = 0.

As a product, we have a123 · a234 = x2x3 · a1234.
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