CONVERGENCE CRITERIA FOR BOUNDED SEQUENCES

by D. BORWEIN

(Received 26th July 1971)

1. Introduction

Let $\{K_n\}$ be a sequence of complex numbers, let

$$K(z) = \sum_{n=0}^{\infty} K_n z^n$$

and let

$$k_0 = K_0, k_n = K_n - K_{n-1}$$
 (n = 1, 2, ...).

Let D be the open unit disc $\{z: |z| < 1\}$, let \overline{D} be its closure and let $\partial D = \overline{D} - D$.

The primary object of this paper is to prove the two theorems stated below, the first of which generalises a result of Copson (1).

Theorem 1. If

$$\sum_{n=0}^{\infty} \left| K_n \right| < \infty, \tag{1}$$

$$K(z) \neq 0 \text{ on } \partial D, \tag{2}$$

and if

 $\{a_n\}$ is a bounded sequence (3)

such that, for some positive integer N,

$$\sum_{r=0}^{n} k_{r} a_{n-r} \ge 0 \quad (n = N, N+1, ...),$$
(4)

then $\{a_n\}$ is convergent.

In essence, Copson's theorem is the above result with conditions (1) and (2) replaced by the single condition

$$-1 = K_0 < K_1 < \dots < K_{N-1} < K_N = K_{N+r} = 0 \quad (r = 1, 2, \dots).$$
 (C)

If (C) holds, then (1) is trivially satisfied, and K(z) is a polynomial satisfying (2), since K(1) < 0 and, for $z = e^{i\theta}$, $0 < \theta < 2\pi$,

Re
$$(1-z)K(z) = -\sum_{r=1}^{N} k_r(1-\cos r\theta) < 0.$$

The next theorem shows that condition (2) is necessary for the validity of Theorem 1 when K(z) is subject to certain additional conditions: in particular, it shows that (2) is necessary when K(z) is analytic on \overline{D} and $K(1) \neq 0$.

Theorem 2. If K(z) = p(z)q(z) where p(z) is a polynomial and

$$q(z)=\sum_{n=0}^{\infty}q_{n}z^{n},$$

and if

$$\sum_{n=0}^{\infty} |q_n| < \infty, \tag{5}$$

$$q(z) \neq 0 \text{ on } \overline{D},\tag{6}$$

$$K(\zeta) = 0, \, \zeta \neq 1, \, | \, \zeta \, | = 1, \tag{7}$$

then there is a bounded divergent sequence $\{a_n\}$ and a positive integer N such that

$$\sum_{r=0}^{n} k_{r} a_{n-r} = 0 \quad (n = N, N+1, ...).$$
(8)

2. Proof of Theorem 1

By (1), K(z) is analytic on D and continuous on \overline{D} . Hence, by (2), K(z) can have at most a finite number of zeros in D; and consequently

$$K(z) = p(z)q(z) \tag{9}$$

where p(z) is a polynomial with no zeros in the complement of D, and q(z) is analytic on D and continuous and non-zero on \overline{D} .

Let

$$a(z) = \sum_{n=0}^{\infty} a_n z^n,$$

and let

$$u(z) = q(z)a(z), \tag{10}$$

$$v(z) = p(z)u(z). \tag{11}$$

Since, by (3), a(z) is analytic on D, so also are u(z) and v(z).

Let $\{q_n\}, \{u_n\}, \{v_n\}$ be the sequences such that

$$q(z) = \sum_{n=0}^{\infty} q_n z^n, \quad u(z) = \sum_{n=0}^{\infty} u_n z^n, \quad v(z) = \sum_{n=0}^{\infty} v_n z^n$$

for all z in D.

Since v(z) = K(z)a(z), we have that

$$v_n = \sum_{r=0}^n K_r a_{n-r}$$

and hence, by (1) and (3), that $\{v_n\}$ is bounded. Further, by (4), we have that

$$v_n - v_{n-1} = \sum_{r=0}^{n} k_r a_{n-r} \ge 0 \quad (n = N, N+1, ...).$$
(12)

It follows that

$$v_n \to v$$
 (13)

where v is finite.

100

CONVERGENCE CRITERIA FOR BOUNDED SEQUENCES 101

We prove next that $\{q_n\}$ satisfies (5), and that

$$u_n \to u$$
 (14)

where u is finite.

Case (i). $p(z) = cz^{m}$ (m = 0, 1, ...). It is evident that (5) and (14) hold in this case. **Case (ii).** $p(z) = \alpha - z$, $0 < |\alpha| < 1$. By (9), $K(\alpha) = 0$ and $q(z) = (\alpha - z)^{-1}K(z)$. Hence

$$\alpha q_n = \sum_{r=0}^n \alpha^{r-n} K_r = -\sum_{r=n+1}^\infty \alpha^{r-n} K_r$$

and so, by (1), we have that

$$\sum_{n=0}^{\infty} |q_n| \leq \sum_{r=1}^{\infty} |K_r| \sum_{n=0}^{r-1} |\alpha|^{r-1-n} \leq \frac{1}{1-|\alpha|} \sum_{r=1}^{\infty} |K_r| < \infty.$$

Also, by (11), $v(\alpha) = 0$ and $u(z) = (\alpha - z)^{-1}v(z)$. Hence, by (13), we have that

$$u_n = -\sum_{r=n+1}^{\infty} \alpha^{r-n-1} v_r = -\sum_{r=0}^{\infty} \alpha^r v_{n+1+r} \to -\frac{v}{1-\alpha} \text{ as } n \to \infty.$$

Thus, (5) and (14) hold in Case (ii).

Application of Case (i) followed by repeated applications of Case (ii) establishes (5) and (14) in the remaining case:

$$p(z) = cz^{m}(\alpha_{1}-z)(\alpha_{2}-z)...(\alpha_{j}-z), \quad 0 < |\alpha_{1}| < 1, \quad 0 < |\alpha_{2}| < 1, \dots, 0 < |\alpha_{j}| < 1.$$

Finally, since q(z) has no zeros on \overline{D} and (5) holds, we have, by the Wiener-Lévy Theorem ((2), p. 246), that there is a sequence $\{c_n\}$ such that

$$\frac{1}{q(z)} = \sum_{n=0}^{\infty} c_n z^n \quad (z \in \overline{D})$$
(15)

and

$$\sum_{n=0}^{\infty} |c_n| < \infty.$$
 (16)

By (10), a(z) = u(z)/q(z), and hence, by (14) and (15), we have that

$$a_n = \sum_{r=0}^n c_r u_{n-r} \to u \sum_{r=0}^\infty c_r \text{ as } n \to \infty.$$

3. Proof of Theorem 2

Define a sequence $\{a_n\}$ and a function a(z) by

$$a(z) = \sum_{n=0}^{\infty} a_n z^n = \frac{1}{q(z)(\zeta - z)} \quad (z \in D);$$
(17)

and let

$$w_n = \sum_{r=0}^n k_r a_{n-r},$$
$$w(z) = \sum_{n=0}^\infty w_n z^n.$$

Then

$$w(z) = (1-z)K(z)a(z) = \frac{(1-z)p(z)}{\zeta - z}$$

and, by (6) and (7), $\zeta - z$ is a factor of the polynomial p(z). Consequently w(z) is a polynomial, of degree N-1 say, and (8) follows.

Further, by the Wiener-Lévy Theorem, hypotheses (5) and (6) imply conditions (15) and (16). Hence, by (17), we have that

$$\zeta^{n+1}a_n = \zeta^n \sum_{r=0}^n c_r \zeta^{r-n} \to \frac{1}{q(\zeta)} \text{ as } n \to \infty.$$

Since $q(\zeta) \neq 0$, it follows that $\{a_n\}$ is bounded but not convergent.

4. Remarks

1. The proof of Theorem 1 shows that conditions (1) and (2) imply that K(z) must satisfy all the hypotheses of Theorem 2 preceding hypothesis (7).

2. The following theorem is a corollary of Theorems 1 and 2.

Theorem 3. If K(z) is analytic on \overline{D} and $K(1) \neq 0$, then condition (2) is necessary and sufficient for every bounded sequence $\{a_n\}$ satisfying (4), for some positive integer N, to be convergent.

A direct proof of Theorem 3 that avoids the Wiener-Lévy theorem and other complications can readily be constructed from parts of the proofs of Theorems 1 and 2.

3. Theorem 1 remains valid when condition (4) is replaced by

$$\sum_{r=0}^{n} k_{r} a_{n-r} \in Q \quad (n = N, N+1, ...)$$
(18)

where Q is any closed quadrant of the plane.

To establish this we need only modify the proof of Theorem 1 to the extent of changing " ≥ 0 " in (12) to " $\in Q$ ". Condition (18) is slightly more general than (4) and somewhat more appropriate in the context of complex sequences.

102

CONVERGENCE CRITERIA FOR BOUNDED SEQUENCES 103

REFERENCES

(1) E. T. COPSON, On a generalisation of monotonic sequences, Proc. Edinburgh Math. Soc. 17 (1970), 159-164.

(2) A. ZYGMUND, Trigonometric Series, Vol. 1 (Cambridge, 1959).

UNIVERSITY OF WESTERN ONTARIO LONDON, CANADA