CONVERGENCE CRITERIA FOR BOUNDED SEQUENCES

by D. BORWEIN

(Received 26th July 1971)

1. Introduction

Let $\left\{K_{n}\right\}$ be a sequence of complex numbers, let

$$
K(z)=\sum_{n=0}^{\infty} K_{n} z^{n}
$$

and let

$$
k_{0}=K_{0}, k_{n}=K_{n}-K_{n-1} \quad(n=1,2, \ldots)
$$

Let D be the open unit disc $\{z:|z|<1\}$, let \bar{D} be its closure and let $\partial D=\bar{D}-D$.
The primary object of this paper is to prove the two theorems stated below, the first of which generalises a result of Copson (1).

Theorem 1. If

$$
\begin{align*}
& \sum_{n=0}^{\infty}\left|K_{n}\right|<\infty, \tag{1}\\
& K(z) \neq 0 \text { on } \partial D, \tag{2}
\end{align*}
$$

and if

$$
\begin{equation*}
\left\{a_{n}\right\} \text { is a bounded sequence } \tag{3}
\end{equation*}
$$

such that, for some positive integer N,

$$
\begin{equation*}
\sum_{r=0}^{n} k_{r} a_{n-r} \geqq 0 \quad(n=N, N+1, \ldots) \tag{4}
\end{equation*}
$$

then $\left\{a_{n}\right\}$ is convergent.
In essence, Copson's theorem is the above result with conditions (1) and (2) replaced by the single condition

$$
\begin{equation*}
-1=K_{0}<K_{1}<\ldots<K_{N-1}<K_{N}=K_{N+r}=0 \quad(r=1,2, \ldots) . \tag{C}
\end{equation*}
$$

If (C) holds, then (1) is trivially satisfied, and $K(z)$ is a polynomial satisfying (2), since $K(1)<0$ and, for $z=e^{i \theta}, 0<\theta<2 \pi$,

$$
\operatorname{Re}(1-z) K(z)=-\sum_{r=1}^{N} k_{r}(1-\cos r \theta)<0
$$

The next theorem shows that condition (2) is necessary for the validity of Theorem 1 when $K(z)$ is subject to certain additional conditions: in particular, it shows that (2) is necessary when $K(z)$ is analytic on \bar{D} and $K(1) \neq 0$.

Theorem 2. If $K(z)=p(z) q(z)$ where $p(z)$ is a polynomial and

$$
q(z)=\sum_{n=0}^{\infty} q_{n} z^{n}
$$

and if

$$
\begin{gather*}
\sum_{n=0}^{\infty}\left|q_{n}\right|<\infty, \tag{5}\\
q(z) \neq 0 \text { on } \bar{D}, \tag{6}\\
K(\zeta)=0, \zeta \neq 1,|\zeta|=1, \tag{7}
\end{gather*}
$$

then there is a bounded divergent sequence $\left\{a_{n}\right\}$ and a positive integer N such that

$$
\begin{equation*}
\sum_{r=0}^{n} k_{r} a_{n-r}=0 \quad(n=N, N+1, \ldots) . \tag{8}
\end{equation*}
$$

2. Proof of Theorem 1

By (1), $K(z)$ is analytic on D and continuous on \bar{D}. Hence, by (2), $K(z)$ can have at most a finite number of zeros in D; and consequently

$$
\begin{equation*}
K(z)=p(z) q(z) \tag{9}
\end{equation*}
$$

where $p(z)$ is a polynomial with no zeros in the complement of D, and $q(z)$ is analytic on D and continuous and non-zero on \bar{D}.

Let
and let

$$
a(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

$$
\begin{align*}
u(z) & =q(z) a(z) \tag{10}\\
v(z) & =p(z) u(z) \tag{11}
\end{align*}
$$

Since, by (3), $a(z)$ is analytic on D, so also are $u(z)$ and $v(z)$.
Let $\left\{q_{n}\right\},\left\{u_{n}\right\},\left\{v_{n}\right\}$ be the sequences such that

$$
q(z)=\sum_{n=0}^{\infty} q_{n} z^{n}, \quad u(z)=\sum_{n=0}^{\infty} u_{n} z^{n}, \quad v(z)=\sum_{n=0}^{\infty} v_{n} z^{n}
$$

for all z in D.
Since $v(z)=K(z) a(z)$, we have that

$$
v_{n}=\sum_{r=0}^{n} K_{r} a_{n-r}
$$

and hence, by (1) and (3), that $\left\{v_{n}\right\}$ is bounded. Further, by (4), we have that

$$
\begin{equation*}
v_{n}-v_{n-1}=\sum_{r=0}^{n} k_{r} a_{n-r} \geqq 0 \quad(n=N, N+1, \ldots) \tag{12}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
v_{n} \rightarrow v \tag{13}
\end{equation*}
$$

where v is finite.

We prove next that $\left\{q_{n}\right\}$ satisfies (5), and that

$$
\begin{equation*}
u_{n} \rightarrow u \tag{14}
\end{equation*}
$$

where u is finite.
Case (i). $p(z)=c z^{m} \quad(m=0,1, \ldots)$.
It is evident that (5) and (14) hold in this case.
Case (ii). $p(z)=\alpha-z, 0<|\alpha|<1$.
By (9), $K(\alpha)=0$ and $q(z)=(\alpha-z)^{-1} K(z)$. Hence

$$
\alpha q_{n}=\sum_{r=0}^{n} \alpha^{r-n} K_{r}=-\sum_{r=n+1}^{\infty} \alpha^{r-n} K_{r}
$$

and so, by (1), we have that

$$
\sum_{n=0}^{\infty}\left|q_{n}\right| \leqq \sum_{r=1}^{\infty}\left|K_{r}\right| \sum_{n=0}^{r-1}|\alpha|^{r-1-n} \leqq \frac{1}{1-|\alpha|} \sum_{r=1}^{\infty}\left|K_{r}\right|<\infty
$$

Also, by (11), $v(\alpha)=0$ and $u(z)=(\alpha-z)^{-1} v(z)$. Hence, by (13), we have that

$$
u_{n}=-\sum_{r=n+1}^{\infty} \alpha^{r-n-1} v_{r}=-\sum_{r=0}^{\infty} \alpha^{r} v_{n+1+r} \rightarrow-\frac{v}{1-\alpha} \text { as } n \rightarrow \infty
$$

Thus, (5) and (14) hold in Case (ii).
Application of Case (i) followed by repeated applications of Case (ii) establishes (5) and (14) in the remaining case:
$p(z)=c z^{m}\left(\alpha_{1}-z\right)\left(\alpha_{2}-z\right) \ldots\left(\alpha_{j}-z\right), \quad 0<\left|\alpha_{1}\right|<1, \quad 0<\left|\alpha_{2}\right|<1, \ldots, 0<\left|\alpha_{j}\right|<1$.
Finally, since $q(z)$ has no zeros on \bar{D} and (5) holds, we have, by the WienerLévy Theorem ((2), p. 246), that there is a sequence $\left\{c_{n}\right\}$ such that

$$
\begin{equation*}
\frac{1}{q(z)}=\sum_{n=0}^{\infty} c_{n} z^{n} \quad(z \in \bar{D}) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|c_{n}\right|<\infty \tag{16}
\end{equation*}
$$

By (10), $a(z)=u(z) / q(z)$, and hence, by (14) and (15), we have that

$$
a_{n}=\sum_{r=0}^{n} c_{r} u_{n-r} \rightarrow u \sum_{r=0}^{\infty} c_{r} \quad \text { as } n \rightarrow \infty
$$

3. Proof of Theorem 2

Define a sequence $\left\{a_{n}\right\}$ and a function $a(z)$ by

$$
\begin{equation*}
a(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=\frac{1}{q(z)(\zeta-z)} \quad(z \in D) \tag{17}
\end{equation*}
$$

and let

$$
\begin{aligned}
w_{n} & =\sum_{r=0}^{n} k_{r} a_{n-r} \\
w(z) & =\sum_{n=0}^{\infty} w_{n} z^{n} .
\end{aligned}
$$

Then

$$
w(z)=(1-z) K(z) a(z)=\frac{(1-z) p(z)}{\zeta-z}
$$

and, by (6) and (7), $\zeta-z$ is a factor of the polynomial $p(z)$. Consequently $w(z)$ is a polynomial, of degree $N-1$ say, and (8) follows.

Further, by the Wiener-Lévy Theorem, hypotheses (5) and (6) imply conditions (15) and (16). Hence, by (17), we have that

$$
\zeta^{n+1} a_{n}=\zeta^{n} \sum_{r=0}^{n} c_{r} \zeta^{r-n} \rightarrow \frac{1}{q(\zeta)} \text { as } n \rightarrow \infty .
$$

Since $q(\zeta) \neq 0$, it follows that $\left\{a_{n}\right\}$ is bounded but not convergent.

4. Remarks

1. The proof of Theorem 1 shows that conditions (1) and (2) imply that $K(z)$ must satisfy all the hypotheses of Theorem 2 preceding hypothesis (7).
2. The following theorem is a corollary of Theorems 1 and 2.

Theorem 3. If $K(z)$ is analytic on \bar{D} and $K(1) \neq 0$, then condition (2) is necessary and sufficient for every bounded sequence $\left\{a_{n}\right\}$ satisfying (4), for some positive integer N, to be convergent.

A direct proof of Theorem 3 that avoids the Wiener-Lévy theorem and other complications can readily be constructed from parts of the proofs of Theorems 1 and 2.
3. Theorem 1 remains valid when condition (4) is replaced by

$$
\begin{equation*}
\sum_{r=0}^{n} k_{r} a_{n-r} \in Q \quad(n=N, N+1, \ldots) \tag{18}
\end{equation*}
$$

where Q is any closed quadrant of the plane.
To establish this we need only modify the proof of Theorem 1 to the extent of changing " $\geqq 0$ " in (12) to " $\in Q$ ". Condition (18) is slightly more general than (4) and somewhat more appropriate in the context of complex sequences.

REFERENCES

(1) E. T. COPSON, On a generalisation of monotonic sequences, Proc. Edinburgh Math. Soc. 17 (1970), 159-164.
(2) A. ZyGmund, Trigonometric Series, Vol. 1 (Cambridge, 1959).

University of Western Ontario
London, Canada

