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1. Introduction

Let {Kn} be a sequence of complex numbers, let

K(z)= £ Knz"
n = 0

and let
k0 = Ko, kn = K n - K . . ! (it = 1 , 2 , . . . ) •

Let D be the open unit disc {z: | z | < 1}, let D be its closure and let 3D = D—D.
The primary object of this paper is to prove the two theorems stated below,

the first of which generalises a result of Copson (1).
Theorem 1. If

t Kn|<00, (1)
n = 0

K(z) # 0 on 3D, (2)
and if

{an} is a bounded sequence (3)

such that, for some positive integer N,

t ...), (4)
r = O

{an} fr convergent.
In essence, Copson's theorem is the above result with conditions (1) and (2)

replaced by the single condition

- 1 = # „ < * ! < . . . < * „ _ , < * „ = #„+, = <) ( r = l , 2 , ...)• (C)

If (C) holds, then (1) is trivially satisfied, and K(z) is a polynomial satisfying (2),
since K(\)<0 and, for z = eie, 0<9<2n,

Re (1 - z)K(z) = - £ fc,(l - cos r9) < 0.
r = 1

The next theorem shows that condition (2) is necessary for the validity of
Theorem 1 when K(z) is subject to certain additional conditions: in particular,
it shows that (2) is necessary when K(z) is analytic on D and K{\) ^ 0.
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Theorem 2. If K{z) = p(z)q(z) where p(z) is a polynomial and

q(z) = £ qnz\
n = 0

and if

£ k|<°o, (5)
n = 0

q{z) *0onD, (6)

K(Q = 0, C # 1, K I = 1, (7)
there is a bounded divergent sequence {an} and a positive integer N such

£ k,an_, = 0 (n = N,N+l, ...)• (8)
r = 0

that

2. Proof of Theorem 1
By (1), K(z) is analytic on D and continuous on D. Hence, by (2), K(z)

can have at most a finite number of zeros in D; and consequently

K(z) = p{z)q{z) (9)

where p(z) is a polynomial with no zeros in the complement of D, and q(z)
is analytic on D and continuous and non-zero on D.

Let

a(z)= £ anz
n,

n = 0
and let

«(z) = <,(zMz), (10)
t<z) = p(z)u(z). (11)

Since, by (3), a(z) is analytic on D, so also are «(z) and v(z).
Let {#„}, {«„}, {vn} be the sequences such that

q(z)= £ <znz", u(z)= £ «nz", o(z)= £ V
n = O n = 0 n = 0

for all z in X).
Since u(z) = ^(z)a(z), we have that

r = 0

and hence, by (1) and (3), that {vn} is bounded. Further, by (4), we have that

£ Q ..). (12)
It follows that

vn -+ v (13)
where v is finite.
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We prove next that {qn} satisfies (5), and that

un - u (14)

where u is finite.

Case (i). p(z) = cz"1 (m = 0, 1, ...).

It is evident that (5) and (14) hold in this case.

Case(ii). p{z) = a-z, 0 < | a | < 1 .

By (9), K(a) = 0 and q(z) = (<x-z)-lK(z). Hence

««. = Z «""*, = - £ «'-"Xf)
r = O r = n+1

and so, by (1), we have that

z u-u £ i^rt1 i-r-^T-r-, i \K-\<«>-
n= 0 r = l n = 0 1 — | a | r = 1

Also, by (11), »(a) = 0 and M(Z) = (a-r)"1i;(z). Hence, by (13), we have
that

« „ = - X a r " " ~ 1 f r = - X «r»«+i+r-»- : asn-»co.
r = n + l r = 0 1—(X

Thus, (5) and (14) hold in Case (ii).
Application of Case (i) followed by repeated applications of Case (ii)

establishes (5) and (14) in the remaining case:

p{z) = cz m (a 1 -z) (a 2 -z) . . . (a J -z ) , 0 < | « 1 | < l , 0 < | a 2 | < l 5 .... 0 < | a,- | < l .

Finally, since q{z) has no zeros on D and (5) holds, we have, by the Wiener-
Levy Theorem ((2), p. 246), that there is a sequence {cn} such that

1 = f cnz" (zeD) (15)
q(z) „ = o

and

Z K|<oo. (16)
n = 0

By (10), a(z) = u(z)/q(z), and hence, by (14) and (15), we have that

n oo

a«= Z crwn_r-»u Z cr as«->oo.
r = 0 r = 0

3. Proof of Theorem 2

Define a sequence {an} and a function a(z) by

https://doi.org/10.1017/S0013091500009779 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500009779


102 D. BORWEIN

and let

r = 0

oo

w ( z ) = X! wBz".
n = 0

Then

and, by (6) and (7), £—z is a factor of the polynomial p(z). Consequently w(z)
is a polynomial, of degree N— 1 say, and (8) follows.

Further, by the Wiener-Levy Theorem, hypotheses (5) and (6) imply
conditions (15) and (16). Hence, by (17), we have that

as

Since q(£) # 0, it follows that {an} is bounded but not convergent.

4. Remarks
1. The proof of Theorem 1 shows that conditions (1) and (2) imply that

K(z) must satisfy all the hypotheses of Theorem 2 preceding hypothesis (7).

2. The following theorem is a corollary of Theorems 1 and 2.

Theorem 3. If K(z) is analytic on D and K(X) ^ 0, then condition (2) is
necessary and sufficient for every bounded sequence {an} satisfying (4), for some
positive integer N, to be convergent.

A direct proof of Theorem 3 that avoids the Wiener-Levy theorem and
other complications can readily be constructed from parts of the proofs of
Theorems 1 and 2.

3. Theorem 1 remains valid when condition (4) is replaced by

T = 0

where Q is any closed quadrant of the plane.

To establish this we need only modify the proof of Theorem 1 to the extent
of changing " ^ 0 " in (12) to " e Q ". Condition (18) is slightly more general
than (4) and somewhat more appropriate in the context of complex sequences.
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