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Arithmetically defined dense subgroups of

Morava stabilizer groups

Niko Naumann

Abstract

For every prime p and integer n � 3 we explicitly construct an abelian variety A/Fpn

of dimension n such that for a suitable prime l the group of quasi-isogenies of A/Fpn of
l-power degree is canonically a dense subgroup of the nth Morava stabilizer group at p. We
also give a variant of this result taking into account a polarization. This is motivated by
the recent construction by Behrens and Lawson of topological automorphic forms which
generalizes topological modular forms. For this, we prove some arithmetic results of inde-
pendent interest: a result about approximation of local units in maximal orders of global
skew fields which also gives a precise solution to the problem of extending automorphisms
of the p-divisible group of a simple abelian variety over a finite field to quasi-isogenies of
the abelian variety of degree divisible by as few primes as possible.

1. Introduction

One of the most fruitful ways of studying the stable homotopy category is the chromatic approach.
After localizing, in the sense of Bousfield, at a prime p, one is left with an infinite hierarchy of
primes corresponding to the Morava K-theories K(n), n � 0; see [Rav92]. The successive lay-
ers in the resulting filtration are the K(n)-local categories [HS99], the structure of which is gov-
erned to a large extent by (the continuous cohomology of) the nth Morava stabilizer group Sn, i.e.
the automorphism group of the one-dimensional commutative formal group of height n over Fp.
A fundamental problem in this context is to generalize the fibration

LK(1)S
0 −→ EhF

1 −→ EhF
1 ,

cf. the introduction of [GHMR05], to a resolution of the K(n)-local sphere for n � 2. Substantial
progress on this problem for n = 2 and in many other cases as well has been achieved by clever use of
homological algebra for Sn-modules [GHMR05, Hen07]. Recently, pursuing a question of Mahowald
and Rezk, Behrens [Beh06] was able to give a modular interpretation of one such resolution in the
case n = 2.

A basic observation is that S2 is the automorphism group of the p-divisible group of a super-
singular elliptic curve E over a finite field k. Hence it seemed plausible, and was established
in [Beh06], that the morphisms in a resolution of a spectrum closely related to LK(2)S

0 should
have a description in terms of suitable endomorphisms of E. A key result for seeing this was to
observe that, for suitable primes l, (

End k(E)
[
1
l

])∗
⊆ S2 (1)

is a dense subgroup [BL06, Theorem 0.1].
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One of our main results, Theorem 25, is the direct generalization of (1) to arbitrary chromatic
level n � 3 in which E is replaced by an abelian variety of dimension n which is known to be the
minimal dimension possible.

In Corollary 21 we give a variant of the arithmetic result underlying Theorem 25 in which on the
left-hand side of (1) we only allow endomorphisms which are unitary with respect to a given Rosati
involution. The motivation for this stems from recent work of Behrens and Lawson [BL07] bringing
the arithmetic of suitable (derived) Shimura varieties to bear on homotopy theoretic problems
of arbitrary chromatic level, generalizing the role of topological modular forms for problems of
chromatic level at most two; cf. [BL07, Theorem 15.2.1].

This paper is organized as follows. In § 2.1 we record a well-known result about generically trivial
torsors for later reference. In § 2.2 we determine the structure of certain naturally occurring integral
models for forms of SLd; see Theorems 2 and 7. As a first application, in § 3, we consider the problem
of approximating local units of maximal orders in finite-dimensional skew fields over Q (carrying a
positive involution of the second kind) by global (unitary) units with as few denominators as possible.
This is naturally an approximation problem for specific integral models of the general linear (certain
unitary) group(s) and will be reduced to a similar problem for Gm (a specific integral model T′ of
a one-dimensional anisotropic torus) in Theorems 9 and 14. In § 4 we can solve the approximation
problem for Gm using class field theory and settle a special case for T′; see Theorems 17 and 19.
In § 5.1 we explain the application of the results obtained so far to the following problem: given
a simple abelian variety A over a finite field one would like to extend an automorphism of the
p-divisible group A[p∞] of A to a quasi-isogeny of A the degree of which should be divisible by as
few primes as possible. Finally, § 5.2 contains the proof of Theorem 25 reviewed above.

2. Arithmetic

2.1 Triviality of torsors

The following result is well known but we wish to state it in the form most suitable for later
references.

Proposition 1. Let k be a number field with ring of integers Ok, ∅ �= U ⊆ Spec(Ok) an open
subscheme and G/U an affine smooth group scheme. Assume that G/U has connected fibers, that
the generic fiber Gk = G×U Spec(k) is k-simple, semi-simple and simply connected and that there
is a place v of k outside U such that G is isotropic at v. Then the canonical map of pointed sets

H1(U,G) → H1(Spec(k), G)

has trivial kernel.

Proof. We use a result of Nisnevich, see [Gil02, Théorème 5.1]. Since G/U has connected fibers we
have H1

fppf(Ôx, G) = 0 in the notation of [Gil02]. It is thus sufficient to see that for every finite set
Σ of closed points of U we have∣∣∣∣

(∏
p∈Σ

G(Ok,p) \G(kp)
)/

G(U − Σ)
∣∣∣∣ = 1. (2)

Here Ok,p is the completion of Ok at p and kp is the field of fractions of Ok,p. The proof of (2)
using strong approximation is very similar to the proof of Proposition 11 and is therefore left to the
reader.
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2.2 The geometry of some groups
In this section we consider forms of SLd. These can be described in terms of skew fields (with
involution). The choice of a maximal order in the skew field determines an integral model of the
algebraic group and we will study the geometry of these group schemes. The referee pointed out
that some of these results, notably Theorem 2 and Theorem 7, part (ii), are part of Bruhat and
Tits theory; cf. [BT84b, § 5] and [BT84a, Théorème 4.6.32].

2.2.1 Type Ad−1. Let D be a finite-dimensional skew field over Q and O ⊆ D a maximal
order [Deu68, Kapitel VI]. The center of D, denoted k, is a number field and we denote by d the
reduced dimension of D, i.e. dimkD = d2. We denote by Ok ⊆ k the ring of integers and note that
k ∩ O = Ok as an immediate consequence of [Deu68, Kapitel VI, § 11, Satz 7].

Recall that D is determined by its local invariants as follows [PR94, § 1.5.1]. Writing Σk for
the set of places of k, for every v ∈ Σk there is a local invariant invv(D) ∈ (1/d)Z/Z ⊆ Q/Z and
invv(D) = 0 for almost all v. For a given place v, we denote by kv the completion of k with respect
to v. Then Dv := D ⊗k kv is a central simple kv-algebra which determines a class [Dv ] ∈ Br(kv) in
the Brauer group of kv. There are specific isomorphisms

τv : Br(kv)
∼−→




Q/Z, v finite,
1
2Z/Z, v real,
0, v complex,

such that invv(D) = τv([Dv ]). Note that, for every v ∈ Σk, Dv is a skew field if and only if the order
of invv(D) is d.

The group-valued functor G on Ok-algebras R

G(R) := (O ⊗Ok
R)∗

is representable by an affine group scheme of finite type G/Spec(Ok). The reduced norm induces a
morphism of group schemes N : G −→ Gm over Spec(Ok) and writing G′ := ker(N) gives an exact
sequence of representable fppf-sheaves on Spec(Ok):

1 −→ G′ −→ G
N−→ Gm −→ 1. (3)

To see that N is fppf-surjective, note that the inclusion R∗ ⊆ (O⊗Ok
R)∗ defines a closed immersion

i : Gm −→ G such that N ◦ i is multiplication by d as can be checked on the generic fiber.

Theorem 2. The groups G and G′ are smooth with connected fibers over Spec(Ok).

For the proof, we will need the following result which might be compared with
[DG70, Exposé VIB , Proposition 9.2(xi)].

Proposition 3. Let S be a scheme, G,H/S group schemes of finite presentation with affine fibers
and G/S flat, and let φ : G −→ H be a morphism of S-group schemes. Then the following are
equivalent and imply that H/S is flat:

(i) φ is faithfully flat

(ii) φ is an epimorphism of fppf-sheaves

(iii) for every geometric point Spec(Ω) −→ S, φΩ is an epimorphism of fppf-sheaves.

Proof. Since φ is of finite presentation, the implications (i) ⇒ (ii) ⇒ (iii) are trivial, so assume
that part (iii) holds true. Then, for every geometric point Spec(Ω) −→ S, the morphism of Ω-Hopf
algebras corresponding to φΩ is injective, which follows from the existence of an fppf-local section of
φΩ, and thus faithfully flat [Wat79, Theorem 4.1]. This shows that φ is surjective and the fiber-wise
criterion for flatness [Gro66, Corollaire 11.3.11, (a) ⇒ (b)] implies that φ and H/S are flat.
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Proof of Theorem 2. To see that G/Spec(Ok) is smooth we use the lifting criterion [Gro67, Remar-
ques 17.1.2,i) and 17.5.4]: if A −→ A/I is the quotient of an Artinian Ok-algebra A by an ideal
I ⊆ A of square zero, the surjectivity of G(A) −→ G(A/I) is clear from the definition of G, hence
G/Spec(Ok) is smooth. By Proposition 3, (ii) ⇒ (i), N : G −→ Gm is (faithfully) flat, hence so is
its base change G′/Spec(Ok).

We shall now show that all geometric fibers of G (respectively G′) are smooth and connected of
dimension d2 (respectively d2−1). This will also imply that G′/Spec(Ok) is smooth by the fiber-wise
criterion [Gro67, Théorème 17.5.1] and thus conclude the proof.

Geometric fibers of G (respectively G′) in characteristic zero are isomorphic to GLd (respectively
SLd). Let 0 �= p ⊆ Ok be a prime, κ := Ok/p and κ be an algebraic closure of κ. We haveDp 
 Mn(D)
for a central skew field D over kp. Denoting by r the reduced dimension of D, we have d = nr . Since
O ⊗Ok

Ok,p ⊆ Dp is a maximal order [Rei03, Corollary 11.2], we have O ⊗Ok
Ok,p 
 Mn(OD)

as Ok,p-algebras by [Rei03, Theorem 17.3] where OD ⊆ D is the unique maximal order [Rei03,
Theorem 12.8].

Let Π ∈ OD and π ∈ Ok,p be uniformizers. Then A := (OD/πOD) ⊗κ κ is a κ-algebra with
radical R = (ΠOD/πOD) ⊗κ κ and maximal semi-simple quotient A/R 
 κr. Since Gκ = GLn(A),
we have an extension

1 �� U �� Gκ
�� (GLn,κ)r �� 1,

where U is a unipotent group of dimension n2(r − 1)r (recall that πOD = ΠrOD and
(ΠiOD/Πi+1OD) ⊗κ κ 
 κr). So Gκ is connected and smooth of dimension n2r + n2(r − 1)r = d2.

Since the reduced norm Nκ : Gκ −→ Gm,κ is trivial on U it factors over some α : (GLn,κ)r −→
Gm,κ. We have α(g1, . . . , gr) =

∏r
i=1 det(gi) as an immediate consequence of [Kle00, Lemma 3.8].

This exhibits G′
κ as an extension of V := ker(α) by U . We can factor α = β◦γ with γ : (GLn,κ)r −→

Gr
m,κ, γ(g1, . . . , gr) := (det(gi))i and β : Gr

m,κ −→ Gm,κ, β(x1, . . . , xr) := x1 . . . xr and thus obtain
the following diagram, with T := ker(β).

1

��
1 �� SLr

n,κ
��

id
��

V ��

��

T ��

��

1

1 �� SLr
n,κ

�� GLr
n,κ

γ ��

α

�����
��

��
��

Gr
m,κ

��

β

��

1

Gm,κ

��
1

Looking at character groups, for example, one sees that T 
 Gr−1
m,κ and hence V is connected and

smooth of dimension dim(T ) + dim(SLr
n) = n2r − 1 and G′

κ is connected and smooth of dimension
dim(V ) + dim(U) = d2 − 1.

Remark 4. The maximal locus inside Spec(Ok) over which G (respectively G′) is reductive (respec-
tively semi-simple) is obtained by inverting the discriminant of D, i.e. by removing all p ∈ Spec(Ok)
such that invp(D) �= 0.
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2.2.2 Type 2Ad−1. Let D be a finite-dimensional skew field of reduced dimension d over Q

carrying a positive involution of the second kind ∗, i.e. for all x ∈ D∗ we have trD
Q (∗xx) > 0

(positivity) and ∗ restricted to the center L of D is non-trivial. Then L is a CM-field with k := {x ∈
L | x =∗ x} ⊆ L as its maximal real subfield [Mum70, p. 194]. Note that ∗ is k-linear. We assume
that O ⊆ D is a maximal order which is invariant under ∗. The existence of such an order is claimed
without proof in [Hid04, 7.1.1]. Then O ∩ L = OL and O ∩ k = Ok are the rings of integers of L
and k. We consider the affine group schemes of finite type U and T over Spec(Ok) whose groups of
points are given for every Ok-algebra R by

U(R) = {g ∈ (O ⊗Ok
R)∗ | ∗gg = 1},

T(R) = {g ∈ (OL ⊗Ok
R)∗ | NL

k (g) = 1}.
There is a homomorphism N : U −→ T over Spec(Ok) given on points by the reduced norm of D
and we put SU := ker(N). Over Spec(k) we have an exact sequence

1 → SU1(D, 1) = SU ×Spec(Ok) Spec(k) −→
U1(D, 1) = U ×Spec(Ok) Spec(k) Nk−→ ResL

k (Gm,L)(1) −→ 1,

where ‘1’ denotes the standard rank one Hermitian form on D and

ResL
k (Gm,L)(1) := ker(ResL

k (Gm,L)
NL

k−→ Gm,k)

is a one-dimensional anisotropic torus over k; cf. [PR94, § 2.3] for notation and general background
on unitary groups.

We first study the integral model T/Spec(Ok) of ResL
k (Gm,L)(1). We define the open subscheme

U ⊆ Spec(Ok) by

U := Spec(Ok) − {0 �= p ⊆ Ok is a prime of residue characteristic 2 and ramified in L/k}.
The following result makes [CTS87, Proposition 5.2] slightly more precise in the present special
case.

Proposition 5. We have that T/Spec(Ok) is an affine flat group scheme such that

Tk 
 ResL
k (Gm,L)(1).

For a prime 0 �= p ⊆ Ok we have

Tκ(p) 





Gm,κ(p), if p splits in L/k,

Resκ(p)(2)

κ(p) (Gm,κ(p)(2))
(1), if p is inert in L/k,

Ga,κ(p) × µ2,κ(p), if p is ramified in L/k.

In particular, the maximal locus inside Spec(Ok) over which T is smooth equals U . Here, κ(p) :=
Ok/p and κ(p)(2) is the unique quadratic extension of κ(p).

Proof. We know that ResOL
Ok

(Gm,OL
)/Spec(Ok) is an affine and smooth group scheme from [BLR90,

7.6, proof of Theorem 4 and Proposition 5,h)]. There is an obvious subgroup i : Gm,Ok
↪→ ResOL

Ok

(Gm,OL
) such that NL

k ◦ i is multiplication by 2, hence NL
k : ResOL

Ok
(Gm,OL

) −→ Gm,Ok
is an fppf-

epimorphism and the first assertion follows from Proposition 3 since by definition T = ker(NL
k ).

Since restriction commutes with base change, for every Ok-algebra R we have

TR = ker(Res
OL⊗Ok

R

R (Gm,R) −→ Gm,R),

which makes the assertions concerning the generic fiber and the fibers over split and inert primes
obvious.
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For ramified p we have OL ⊗Ok
κ(p) 
 OL,q/q

2OL,q for q the unique prime of OL lying
above p. There exists α ∈ OL,q with OL,q = Ok,p[α] and α satisfies an Eisenstein polynomial
x2 − ax+ b ∈ Ok,p[x]. Since a ∈ pOk,p ⊆ q2OL,q, the non-trivial automorphism σ of OL,q over Ok,p

satisfies

σ(α) = a− α ≡ −α in OL,q/q
2OL,q.

As OL,q/q
2OL,q 
 κ(p)[α]/(α2) we conclude that for every κ(p)-algebra R

Tκ(p)(R) 
 {x+ yα ∈ (R[α]/(α2))∗ | 1 = (x+ yα)σ(x+ yα) = (x+ yα)(x− yα) = x2}
and we have an exact sequence

1 −→ Ga,κ(p)(R) −→ Tκ(p)(R) −→ µ2,κ(p)(R) −→ 1,

x+ yα 
−→ x,

which is split by x 
→ x+ 0α.

We will need the following proposition.

Proposition 6. Let k be a commutative ring, B1 and B2 k-algebras and τ an involution on
B := B1 ×B2 such that τ(x, y) = (y, x) for all x, y ∈ k. Then there is an isomorphism of k-algebras
with involution

(B, τ) 
 (B1 ×Bopp
1 , (x, y) 
→ (y, x)).

Proof. The proof of [KMRT98, Proposition 2.14] carries over without any change.

Now let C be the set of non-zero primes p ∈ U such that U
κ(p)

is an extension of a symplectic
group. We will see during the proof of Theorem 7 that this set only contains primes which are
ramified in L/k. Let T′ ⊆ T be the open subscheme obtained by removing from T the non-identity
component of Tκ(p) for all p ∈ C, cf. Proposition 5. Clearly, T′ ⊆ T is a subgroup scheme.

Theorem 7. (i) The morphism NU : UU −→ TU factors through T′
U ⊆ TU and the resulting

sequence of fppf-sheaves on U
1 −→ SUU −→ UU

NU−→ T′
U −→ 1

is exact.

(ii) The group U/U (respectively SU/U) is smooth (respectively smooth with connected fibers).

Remark 8. It is easy to give examples of the situation in Theorem 7 in which C �= ∅, i.e. T′ �= T.
From case (3′.2) in the proof of Theorem 7 it will however be clear that C = ∅ if d is odd.

Proof of Theorem 7. Fix p ∈ U . We will study the group schemes

Up := U ×Spec(Ok) Spec(Ok,p),

SUp := SU ×Spec(Ok) Spec(Ok,p)

over Spec(Ok,p). For this, we need to understand the Ok,p-algebra with involution

Op := O ⊗Ok
Ok,p.

We distinguish three cases.

(1) The prime p is inert in L/k. For the unique prime q ⊆ OL lying above p we have invq(D) = 0
(see [Mum70, (B) on page 199]) and

Op ⊆ Op ⊗Ok,p
kp 
 D ⊗L Lq 
 Md(Lq)
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is a maximal order, hence Op 
 Md(OL,q) as Ok,p-algebras. Denote by σ the non-trivial automor-
phism of OL,q over Ok,p. We obtain for every OL,q-algebra R:

(Up ×Spec(Ok,p) Spec(OL,q))(R) = Up(R) 
 {g ∈ Md(OL,q ⊗Ok,p
R) | ∗gg = 1}.

Since p is unramified we have OL,q ⊗Ok,p
OL,q 
 OL,q × OL,q and under this isomorphism (σ ⊗ 1)

switches the factors. Since by Proposition 6 we have an isomorphism of OL,q-algebras with involution

(Md(OL,q) ⊗Ok,p
OL,q, ∗) 
 (Md(OL,q) × Md(OL,q)opp, (x, y) 
→ (ty, tx)),

where t denotes the transpose of a matrix, we find that

Up(R) 
 {(x, y) ∈ Md(R×R) 
 Md(R) × Md(R) | (ty, tx)(x, y) = 1} 
 GLd(R).

We have thus shown that Up ×Spec(Ok,p) Spec(OL,q) 
 GLd,OL,q
. By descent, we conclude that

Up/Spec(Ok,p) is smooth. Furthermore, the special fiber Uκ(p) := Up ×Spec(Ok,p) Spec(κ(p)) is a
κ(p)/κ(p)-form of GLd,κ(p) and since H1(Spec(κ(p)),PGLd) = 1 we have Uκ(p) 
 GLd,κ(p).

(2) The prime p splits in L/k. In this case we have

Op 
 Oq ×Oq′ ,
where q and q′ are the primes of OL lying above p and Oq := O ⊗OL

OL,q and similarly for q′. By
Proposition 6 we have an isomorphism of Ok,p-algebras with involution

(Op, ∗) 
 (Oq ×Oopp
q , (x, y) 
→ (y, x))

and thus Up 
 GL1(Oq) and this group is trivially smooth over Spec(Ok,p).

(3) The prime p is ramified in L/k. As in case (1) we have

Op 
 Md(OL,q)

as Ok,p-algebras with q ⊆ OL the unique prime lying above p. We check the smoothness of
Up/Spec(Ok,p) using the lifting criterion. Let A be an Artinian Ok,p-algebra and I ⊆ A an ideal
with I2 = 0. Given

x ∈ Up(A/I) = {g ∈ (Op ⊗Ok,p
A/I)∗ | ∗gg = 1},

there is some y ∈ Op ⊗Ok,p
A lifting x and we have

∗yy = 1 + z for some z ∈ Op ⊗Ok,p
I ⊆ Op ⊗Ok,p

A

with ∗z = z because ∗( ∗yy) = ∗yy. As p ∈ U we have 2 ∈ A∗ and can define

y′ := y(1 − 1
2z) ∈ Op ⊗Ok,p

A,

which still lifts x and satisfies

∗y′y′ = (1 − 1
2
∗z)∗yy(1 − 1

2z) = (1 − 1
2
∗z)(1 + z)(1 − 1

2z)
(I2=0, ∗z=z)

= 1.

Hence we have found y′ ∈ Up(A) lifting x.

At this point we have established that U/U is smooth and we now proceed to study SU/U . We
first consider the geometric fibers, showing in particular that they are all connected and smooth.

Let Spec(Ω) −→ U be a geometric point. If the characteristic of Ω is zero, we have SUΩ 
 SLd,Ω,
and hence we can assume that Ω = κ(p) for some p ∈ U . We again have to distinguish three cases
as above.

(1′) The prime p is inert in L/k. From (1) above we have UΩ 
 GLd,Ω and from Proposition 5 we
know that TΩ 
 Gm,Ω. Under these isomorphisms, NΩ is identified with the determinant, hence
SUΩ 
 SLd,Ω.
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(2′) The prime p splits in L/k. From (2) above and Proposition 5 we know that UΩ 
 GL1(A) and
TΩ 
 Gm,Ω for the Ω-algebra A := Oq ⊗Ok,p

Ω where q ⊆ OL is a prime lying above p. This is the
situation studied in Theorem 2 from which we read off that SUΩ/Spec(Ω) is connected and smooth
(and, in fact, also the dimensions of the semi-simple, toric and unipotent parts of SUΩ in terms of
the order of invq(D)).

(3′) The prime p is ramified in L/k. Recall from (3) above that Op 
 Md(OL,q). We have to study
the involution induced by ∗ on

Op ⊗Ok,p
Ω 
 Md(Ω(ε)).

Recall that Ω(ε) := Ω[ε]/(ε2) and that the involution ∗ on Md(Ω(ε)) satisfies ∗ε = −ε as established
during the proof of Proposition 5. Denoting by σ ∈ Aut Ω-alg(Ω(ε)) the element determined by
σ(ε) = −ε and by + the involution on Md(Ω(ε)) defined by

+(xi,j) := (σ(xj,i)),

the theorem of Skolem and Noether [Mil80, ch. IV, Proposition 1.4] shows that there exists a
g ∈ GLd(Ω(ε)) such that

∗x = g +xg−1 for all x ∈ Md(Ω(ε)). (4)
From ∗∗x = x one sees that

g = α+g (5)
for some α ∈ Ω(ε)∗. This gives +g = σ(α)g and by multiplying we obtain g+g = ασ(α)+gg, which
using (5) implies that ασ(α) = 1.

Writing α = x+ yε with x, y ∈ Ω we get

1 = ασ(α) = x2 − y2ε2 = x2

and hence
α = ±1 + yε for some y ∈ Ω. (6)

Replacing g by βg for β := 1∓ 1
2yε ∈ Ω(ε)∗ (the sign opposite to the one occurring in (6)) does not

affect (4) and replaces α by

αβσ(β)−1 (6)
= (±1 + yε)(1 ∓ 1

2yε)(1 ± 1
2yε)

−1 = (±1 + yε)(1 ∓ 1
2yε)

2

= (±1 + yε)(1 ∓ yε) = ±1.

Hence we can assume that
α = ±1. (7)

To further simplify the involution, note that, for every h ∈ GLd(Ω(ε)), (Md(Ω(ε)), ∗) is isomorphic,
via conjugation with h, to (Md(Ω(ε)), τ) with

τx = h∗(h−1xh)h−1 = hg+(h−1xh)g−1h−1 = hg+h+x(hg+h)−1,

i.e. we have the following.

For every h ∈ GLd(Ω(ε)) we can replace g in (4) by hg +h. (8)

We now distinguish two cases according to (7).
(3′.1) Assume that α = 1. Writing g = A+Bε with A ∈ GLd(Ω), B ∈ Md(Ω) we have

A+Bε = g
((5),α=1)

= +g = tA− tBε,

hence A = tA,B = −tB and there exists some S ∈ GLd(Ω) with A = S tS. Using (8) with h = S−1

we can replace g by
hg+h = S−1(A+Bε) tS−1 = 1 + S−1B tS−1ε.
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Put T := S−1B tS−1 and note that B = − tB implies that tT = −T . Using (8) again with
h = 1 − 1

2Tε replaces g by

hg+h = (1 − 1
2Tε)(1 + Tε)(1 + 1

2
tTε) = 1,

i.e. we can assume that ∗x = +x for all x ∈ Md(Ω(ε)). For every Ω-algebra R we thus obtain

UΩ(R) 
 {x = X + Y ε ∈ Md(R(ε)) | 1 = +xx = ( tX − tY ε)(X + Y ε)
= tXX + (− tY X + tXY )ε}

and hence an exact sequence

1 −→ F (R) := {1 + Y ε ∈ Md(Ω(ε)) | Y = tY } −→UΩ(R) −→ Od(R) −→ 1,
X + Y 
−→ X,

Od denoting the orthogonal group, which is split by X 
→ X + 0 · ε. Evidently, F 
 G
1
2
d(d+1)

a,Ω . We
have the following diagram with exact rows and columns.

1

��

1

��

1

��
1 �� F ′ ��

��

SUΩ
α ��

��

SOd,Ω ��

��

1

1 �� F
ι ��

tr
��

UΩ
��

NΩ

��

Od,Ω ��

det

��

1

1 �� Ga,Ω

��

�� TΩ

��

π �� µ2,Ω ��

��

1

1 1 1

(9)

This is obtained as follows. The lower row is taken from Proposition 5. The reduced norm induces the
determinant on Md(Ω(ε)). This shows that πNΩι is trivial and NΩι factors through some F −→ Ga.
As det(1 + Y ε) = 1 + tr(Y )ε, the map F −→ Ga is in fact the trace and F ′ := ker(tr). This
also shows that the map Od,Ω −→ µ2 induced by NΩ is the determinant which is visibly fppf-
surjective; in fact, it is surjective as a morphism of pre-sheaves as is the trace tr. It is also clear that

F ′ 
 G
1
2
d(d+1)−1

a . Now the fppf-surjectivity of α and NΩ follows from a 5-lemma argument (which
does not use commutativity). In particular, SUΩ is connected and smooth.

(3′.2) Assume that α = −1. Writing g = A+Bε with A ∈ GLd(Ω), B ∈ Md(Ω) we have

A+Bε = g
((5),α=−1)

= −+g = −tA+ tBε,

i.e. A = − tA and B = tB. The conditions on A force d to be even, say d = 2m. Let

J :=
(

0 1m

−1m 0

)
∈ GLd(Ω)

be the standard alternating matrix. Then there exists an S ∈ GLd(Ω) such that SA tS = J . Using
(8) with h = S we can replace g by

hg +h = S(A+Bε) tS = J + SB tSε.

Put T := SB tS and note that B = tB implies that T = tT . Using (8) again with h = 1 + 1
2TJε
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replaces g by

hg+h = (1 + 1
2TJε)(J + Tε)(1 − 1

2
tJ tTε) = J + (1

2TJ
2 + T − 1

2J
tJ tT )ε

= J + (1
2T (−1) + T − 1

2
tT )

(tT=T )
= J,

i.e. we can assume that g = J .
For every Ω-algebra R we thus obtain, using tJ = J−1,

UΩ(R) 
 {x = X + Y ε ∈ Md(Ω(ε)) | 1 = ∗xx = J+(X + Y ε) tJ(X + Y ε)
= J( tX − tY ε) tJ(X + Y ε) = J tX tJX + (−J tY tJX + J tX tJY )ε}.

Note that 1 = J tX tJX if and only if tXJX = J , and hence we get an exact sequence

1 −→ F (R) := {1 + Y ε ∈ Md(Ω(ε)) | Y = J tY tJ} −→UΩ(R) −→ Sp2m(R) −→ 1,
X + Y ε 
−→ X,

where Sp2m denotes the symplectic group, which is split by X 
→ X + 0ε. Writing

Y =
(
a b
c d

)

with a, b, c, d ∈ Mm(Ω) one obtains

F (R) 

{(

a b
c d

)
∈ M2m(R) | ta = d, tb = −b, tc = −c

}
,

hence F 
 G2m2−m
a . The analog of diagram (9) in this case reads as follows.

1

��

1

��

1

��
1 �� F ′ ��

��

SUΩ

��

α �� Sp2m
��

��

1

1 �� F ��

tr
��

UΩ
��

NΩ

����

Sp2m
��

det(≡1)

��

1

1 �� Ga,Ω

��

�� TΩ
�� µ2,Ω �� 1

1

(10)

Note that, since the determinant of every symplectic matrix equals 1, NΩ factors as indicated
in diagram (10). In particular, NΩ : UΩ −→ TΩ is not an fppf-epimorphism but has image the
connected component Ga,Ω 
 T0

Ω ⊆ TΩ. Since F ′ 
 G2m2−m−1
a we conclude that SUΩ is connected

and smooth.

We now establish the exactness of the sequence

1 −→ SUU −→ UU
NU−−→ T′

U −→ 1

over U . Since T′ ⊆ T is an open subscheme, the fact that NU factors through T′
U can be checked on

fibers where it follows from what has been shown above: since the determinant is trivial on Sp2m in
diagram (10), NΩ factors through Ga,Ω = T′

Ω ⊆ TΩ. We now need to see that the resulting morphism
NU : UU −→ T′

U is an fppf-epimorphism and we will show that it is in fact faithfully flat. By
Proposition 3, it is enough to see that UΩ −→ T′

Ω is an fppf-epimorphism for every geometric point
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Spec(Ω) −→ U which follows again from what has been proved above. The flatness of UU −→ T′
U

implies that SU/U is flat, hence smooth by the fiber-wise criterion.
The proof of Theorem 7 is now complete.

3. Approximation of local units

In this section we study the problem of p-adically approximating local units of a maximal order
(with involution) by global (unitary) units of bounded denominators. Using the results of §§ 2.1
and 2.2.1 (2.2.2) this problem will be reduced in § 3.1 (3.2) to an approximation problem for tori
which will be solved in § 4.1 (solved in a special case in § 4.2).

3.1 Type Ad−1

In this section we consider the problem of p-adically approximating local units of a maximal order
O ⊆ D where D is a finite-dimensional skew field over Q. We denote by k the center of D and by
d its reduced dimension. We fix a prime 0 �= p ⊆ Ok at which we wish to approximate. There is a
unique prime P ⊆ O lying above p (see [Deu68, VI, § 12, Satz 1]) and we denote by OP the P-adic
completion of O; cf. [Deu68, Kapitel VI, § 11].

To describe the denominators that we allow the approximating global units to have, we fix a
finite set of places S of k such that

p �∈ S and there exists a place v0 ∈ S such that Dv0 is not a skew field.

We write Sfin for the set of finite places contained in S and consider the ring Ok,Sfin of Sfin-integers

Ok ⊆ Ok,Sfin := {x ∈ k | v(x) � 0 for all finite v �∈ S} ⊆ k.

Since p �∈ S we have Ok,Sfin ⊆ Ok,p. We define

X = {x ∈ O∗
k,Sfin | v(x) > 0 for all archimedean v with invv(D) = 1

2} ⊆ O∗
k,p. (11)

Note that we have

(O ⊗Ok
Ok,Sfin)∗ ⊆ O∗

P.

Recall that N denotes the reduced norm of D.

Theorem 9. The closure of (O ⊗Ok
Ok,Sfin)∗ inside O∗

P equals

{x ∈ O∗
P | Np(x) ∈ O∗

k,p lies in the closure of X}.
Example 10. (1) For k = Q and D a definite quaternion algebra, i.e. d = 2 and invv(D) = 1

2 for
the unique infinite place v of Q, we can choose S = {l} for any prime l �= p at which D splits, i.e.
invl(D) = 0. Then O∗

k,Sfin = {±1}× lZ and X = lZ ⊆ O∗
k,p = Z∗

p. For p �= 2 we can choose l as above
such that in addition X ⊆ Z∗

p is dense and conclude that in this case O[1/l]∗ ⊆ O∗
P is dense. For

p = 2 we can choose l such that the closure of X in Z∗
2 equals 1+4Z2 and conclude that the closure

of O[1/l]∗ inside O∗
P equals

ker(O∗
P

N−→ Z∗
2 −→ Z∗

2/(1 + 4Z2) 
 {±1}),
cf. Remark 24. In the special case in which D is the endomorphism algebra of a super-singular
elliptic curve in characteristic p, i.e. invv(D) = 0 for all v �= p,∞, this result has been established
by different means in [BL06, Theorem 0.1].

(2) See Theorem 17 in § 4.1 for a further discussion of the closure of X ⊆ O∗
k,p.

The rest of this section is devoted to the proof of Theorem 9.
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Remember the groups G and G′/Spec(Ok) defined by G(R) = (O ⊗Ok
R)∗ and G′(R) = {g ∈

G(R) |N(g) = 1}.
Proposition 11. The subgroup G′(Ok,Sfin) ⊆ G′(Ok,p) is dense.

Proof. First note that G′/Spec(Ok) is representable by an affine group scheme; hence the injectiv-
ity of the homomorphism G′(Ok,Sfin) −→ G′(Ok,p) follows from the injectivity of Ok,Sfin ↪→ Ok,p.
Secondly, G′(Ok,p) is canonically a topological group [Wei82, ch. I] and we claim density with
respect to this topology. We know that G′

k := G′ ×Spec(Ok) Spec(k) = SL1(D) [PR94, § 2.3] is
an inner form of SLd,k and thus is k-simple, semi-simple and simply connected. Furthermore,
G′

k ×Spec(k) Spec(kv0) = SLn(D̃) for some central skew field D̃ over kv0 and some n � 1. Since
Dv0 is not a skew field by assumption, we have n � 2 and rkkv0

(G′
k ×Spec(k) Spec(kv0)) = n− 1 � 1

(see [PR94, Proposition 2.12]), i.e. G′
k is isotropic at v0. From strong approximation [Spr94, Theo-

rem 5.1.8] we conclude that

G′(k) ·G′(kv0) ⊆ G′(Ak) is dense, (12)

where Ak denotes the adèle ring of k. Fix x ∈ G′(Ok,p) and an open subgroup Up ⊆ G′(Ok,p). Denote
by x̃ ∈ G′(Ak) the adèle having p-component x and all other components equal to 1. Then

U := Up ×
∏

v �=p finite

G′(Ok,v) ×
∏

v infinite

G′(kv) ⊆ G′(Ak)

is an open subgroup and by (12) there exist γ ∈ G′(k) and δ ∈ G′(kv0) such that γδ ∈ x̃U . Since
p �= v0 this implies that γp ∈ x̃pUp = xUp, where γp is the p-component of the principal adèle γ,
equivalently, the image of γ under the inclusion G′(k) ⊆ G′(kp). Since x and Up are arbitrary, we will
be done if we can show that γ ∈ G′(Ok,Sfin) ⊆ G′(k), i.e. that for every finite place v �∈ S we have
γv ∈ G′(Ok,v). For v = p this is clear since xUp ⊆ G′(Ok,p) whereas for v �= p we have, using that
δv = 1 since v �= v0 ∈ S,

(γδ)v = γv ∈ (x̃U)v = x̃v ·G′(Ok,v) = G′(Ok,v).

To proceed, we apply (3) to the inclusion Ok,Sfin ↪→ Ok,p to obtain the following commutative
diagram.

1 �� G′(Ok,Sfin) ��
� �

��

G(Ok,Sfin)
� �

ι

��

N �� O∗
k,Sfin

� �

��
1 �� G′(Ok,p) �� G(Ok,p)

Np �� O∗
k,p

(13)

By definition, G(Ok,Sfin) = (O ⊗Ok
Ok,Sfin)∗ and G(Ok,p) = (O ⊗Ok

Ok,p)∗ = O∗
P (see [Deu68,

Kapitel VI, § 11, Satz 6]), so Theorem 9 is concerned with the closure of the image of ι. Recall the
subgroup X ⊆ O∗

k,Sfin from (11).

Proposition 12. In diagram (13) we have im(N) = X ⊆ O∗
k,Sfin .

Proof. Eichler’s norm theorem [PR94, Theorem 1.13] states that

im(Nk : G(k) −→ k∗) = {α ∈ k∗ | v(x) > 0 for all archimedean v with invv(D) = 1
2}, (14)

and the inclusion im(N) ⊆ X is trivial by the definition of X.
From the cohomology sequence associated with (3) we have the following diagram.

G(Ok,Sfin) N ��
� �

��

O∗
k,Sfin

� �

��

�� H1(Spec(Ok,Sfin), G′)

ι

��
G(k) �� k∗ �� H1(Spec(k), G′)
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Now, G′/Spec(Ok) is smooth with connected fibers by Theorem 2, and the generic fiber G′
k is an

inner form of SLd and is thus k-simple, semi-simple and simply connected. Finally, the place v0
is outside U := Spec(Ok,Sfin) and, since Dv0 is not a skew field, G′

k is isotropic at v0 (see [PR94,
Proposition 2.12]). We can thus apply Proposition 1 to G′/U to conclude that ι has trivial kernel.
This, jointly with (14), implies that X ⊆ im(N).

We know that H1(Spec(Ok,p), G′) = 0 from the fact that G′ ×Spec(Ok) Spec(Ok,p)/Spec(Ok,p) is
smooth with connected fibers and Lang’s theorem. Hence, in (13), Np is surjective and we can, using
Proposition 12, rewrite (13) as follows.

1 �� G′(Ok,Sfin) ��
� �

α

��

(O ⊗Ok
Ok,Sfin)∗
� �

ι

��

N �� X� �

��

�� 1

1 �� G′(Ok,p) �� O∗
P

Np �� O∗
k,p

�� 1

(15)

Since the image of α is dense by Proposition 11 and O∗
P is compact, all that remains to be done to

conclude the proof of Theorem 9 is to apply Proposition 13 below to (15).

For a subset Y of a topological space X we denote by Y X the closure of Y in X.

Proposition 13. Let

1 �� H ′ ��
� �

��

H� �

��

ρ �� H ′′
� �

��

�� 1

1 �� G′ �� G
π �� G′′ �� 1

be a commutative diagram of first countable topological groups with exact rows, G compact, and
such that H ′ ⊆ G′ is dense. Then

H
G = π−1(H ′′G′′

).

Proof. Assume that g ∈ H
G. Then g = limn hn for suitable hn ∈ H and π(g) = limn π(hn) ∈ H ′′G′′

.
Conversely, given g ∈ G with π(g) = limn h

′′
n for suitable h′′n ∈ H ′′, choose hn ∈ H with ρ(hn) = h′′n.

The sequence (hng
−1)n in G has a convergent subsequence, g̃ := limi hnig

−1 ∈ G. Then π(g̃) = 1,
i.e. g̃ ∈ G′ and we have g̃ = limi h

′
i for suitable h′i ∈ H ′. The sequence ((h′i)

−1hni)i in H satisfies
limi(h′i)

−1hni = g̃−1g̃g = g, hence g ∈ H
G.

3.2 Type 2Ad−1

Let D be a finite-dimensional skew field of reduced dimension d > 1 over Q carrying a positive
involution of the second kind ∗ and assume that O ⊆ D is a maximal order which is stable under ∗.
In § 2.2.2 we associated with these data group schemes SU ⊆ U and T′ ⊆ T over Spec(Ok) and an
open subscheme U ⊆ Spec(Ok).

To formulate our approximation problem, we fix a prime 0 �= p ⊆ Ok at which we wish to
approximate and a finite set of finite places S of k such that

p �∈ S,S contains all primes of residue characteristic two ramified in L/k and
S contains a place v0 split in L/k such that for w0|v0 Dw0 is not a skew field.

This implies in particular that Spec(Ok,S) ⊆ U . Note that we do not really restrict generality by
insisting that S consists of finite place because, unlike the case treated in § 3.1, the group SU is
anisotropic at every infinite place of k.
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Theorem 14. The closure of U(Ok,S) ⊆ U(Ok,p) equals

{g ∈ U(Ok,p) | Np(g) lies in the closure of T′(Ok,S) ⊆ T′(Ok,p)}.
See Corollary 20 for the computation of the closure of T′(Ok,S) ⊆ T′(Ok,p) in a special case.

Note that
U(Ok,S) = {g ∈ (O ⊗Ok

Ok,S)∗ | ∗gg = 1}
by definition but the structure of U(Ok,p) depends on the splitting behavior of p in L; cf. the proof
of Theorem 7. In particular, if p splits in L/k then

G(Ok,p) 
 O∗
Dq 
 O∗

Dq′

where q and q′ are the primes of L lying above k.
In the rest of this section we give the proof of Theorem 14.

Proposition 15. We have that SU(Ok,S) ⊆ SU(Ok,p) is a dense subgroup.

Proof. Since SUk := SU ×Spec(Ok) Spec(k) is an outer form of SLd,k, it is k-simple, semi-simple
and simply connected. In the proof of Theorem 7 we saw that SUkv0


 SL1(Dw0) and, since Dw0

is not a skew field by assumption, SUk is isotropic at v0. Now one proceeds as in the proof of
Proposition 11.

Recall from Theorem 7 that we have an exact sequence

1 −→ SUU −→ UU
NU−−→ T ′

U −→ 1 (16)

over U ⊇ Spec(Ok,S).

Proposition 16. The diagram obtained by applying (16) to Ok,S ↪→ Ok,p,

1 �� SU(Ok,S) ��
� �

��

U(Ok,S)
N ��

� �

��

T′(Ok,S) ��
� �

��

1

1 �� SU(Ok,p) �� U(Ok,p)
Np �� T′(Ok,p) �� 1

(17)

fulfills the assumptions of Proposition 13.

This finishes the proof of Theorem 14 by applying Proposition 13 to (17).

Proof of Proposition 16. Clearly, diagram (17) is made up of first-countable groups and is commu-
tative, SU(Ok,S) ⊆ SU(Ok,p) is dense by Proposition 15 and U(Ok,p) is compact. It remains to prove
the exactness of the rows, i.e. the surjectivity of N and Np. Since SUp/Spec(Ok,p) is smooth with
connected fibers by Theorem 7, Lang’s theorem implies that H1(Spec(Ok,p),SUp) = 0 and thus Np
is surjective. We now show that Nk : U(k) −→ T′(k) is surjective: we have a commutative diagram
with exact rows as follows.

U(k)
Nk ��

��

T′(k) ��

��

H1(Spec(k),SU)

	
��∏

v∈Σ∞
k

U(kv)
∏

Nv ��
∏

v∈Σ∞
k

T′(kv) ��
∏

v∈Σ∞
k

H1(Spec(kv),SU)

Here, Σ∞
k denotes the set of infinite places of k and the right-most vertical arrow is an isomorphism

by the Hasse principle for SU ×Spec(Ok) Spec(k) (see [PR94, Theorem 6.6]). Hence the surjectivity
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of Nk will follow from the surjectivity of Nv for all v ∈ Σ∞
k , which is easy to see: for v ∈ Σ∞

k we
have, using [Mum70, Step IV on page 199],

U(kv)
Nv ��

	
��

T′(kv) = T(kv)

	
��

{(xi,j) ∈ GLd(C) | (xi,j)(xj,i) = 1} det �� {α ∈ C∗ | αα = 1}
where a bar denotes complex conjugation, and the lower horizontal arrow is surjective since it is
split by α 
→ diag(α, 1, . . . , 1). Next we look at the commutative diagram with exact rows.

U(Ok,S)

��

N �� T′(Ok,S) ��

��

H1(Spec(Ok,S),SU)

ι

��
U(k)

Nk �� T′(k) �� H1(Spec(k),SU)

We need to see that ι has trivial kernel for then the desired surjectivity of N will follow from the
already proved surjectivity of Nk. Since Spec(Ok,S) ⊆ U we know that SU/Spec(Ok,S) is smooth
with connected fibers from Theorem 7, SUk is k-simple, semi-simple and simply connected and the
place v0 lies outside Spec(Ok,S) and SUk is isotropic at v0 as explained in the proof of Proposition 15.
Hence the kernel of ι is indeed trivial by Proposition 1.

4. The commutative case

4.1 Type Ad−1

In § 3.1 the problem of approximating a local unit in a maximal order of a finite-dimensional skew
field over Q was reduced to the following problem involving solely number fields. Let k be a number
field, 0 �= p ⊆ Ok a prime dividing the rational prime p and Σ a possibly empty set of real places
of k. For a finite set of finite places S of k not containing p we consider

XS := {x ∈ O∗
k,S | v(x) > 0 for all v ∈ Σ} ⊆ O∗

k,S

and wish to understand when XS ⊆ O∗
k,p =: Up is a dense subgroup. The principal units

U
(1)
p := 1 + pOk,p ⊆ Up

are canonically a finitely generated Zp-module and Up/U
(1)p

p is a finite abelian group.

It follows from Nakayama’s lemma that a subgroup Y ⊆ Up is dense if and only if the composition
Y ↪→ Up −→ Up/U

(1)p

p is surjective: since Up is pro-finite, Y ⊆ Up is dense if and only if it surjects
onto every finite quotient of Up. Assume that Y does surject onto Up/U

(1)p

p and V ⊆ Up is arbitrary
of finite index. In order to see that Y surjects onto Up/V we can assume that V ⊆ U

(1)p

p . Then
the image of Y in Up/V = µq−1 × U

(1)
p /V surjects onto µq−1 and U

(1)
p /V is a finitely generated

Zp-module which modulo p is generated by the image of Y . By Nakayama’s lemma, Y surjects
onto Up/V .

For an infinite place v of k we write k∗,+v for the connected component of 1 inside k∗v , i.e.
k∗,+v 
 R+ (respectively k∗,+v 
 C∗) if v is real (respectively complex).

We denote by

E+ := ker
(
O∗

k

diag
↪→

⊕
v∈Σ

k∗v −→
⊕
v∈Σ

k∗v/k
∗,+
v

)
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the group of global units of k which are positive at all places in Σ. We write

ψ : E+ ⊆ O∗
k ↪→ Up

for the inclusion. Then Up/ψ(E+)U (1)p

p is a finite abelian group the minimal number of generators
of which we denote by g(p,Σ).

Theorem 17. In the above situation the following hold.

(i) If XS ⊆ Up is dense then |S| � g(p,Σ).

(ii) Given a set T of places of k of density 1, there exists S as above such that XS ⊆ Up is dense,
|S| = g(p,Σ) and S ⊆ T.

(iii) We have

g(p,Σ) �
{

[kp : Qp], if µp∞(kp) = {1},
1 + [kp : Qp], if µp∞(kp) �= {1}.

Remark 18. (1) In general, the inequalities in (iii) are strict: for k = Q(
√

2), p dividing 7 and Σ = ∅
one can check that g(p,Σ) = 0, i.e. O∗

k ⊆ Up is dense.

(2) The proof of Theorem 17(ii) is rather constructive: one has to find principal prime ideals
(λ) of Ok with λ positive at all places in Σ (this corresponds to being trivial in Gal(M/k) in the
notation of the proof) and determine the image of λ in Up/ψ(E+)U (1)p

p .

Proof of Theorem 17. We consider the following subgroups of Ik, the idèles of k:

UK : =
∏

v�∞,v �=p
Uv × U

(1)p

p ×
∏
v∈Σ

k∗,+v ×
∏

v|∞,v �∈Σ

k∗v ,

UM : =
∏
v�∞

Uv ×
∏
v∈Σ

k∗,+v ×
∏

v|∞,v �∈Σ

k∗v ,

U+ : =
∏
v�∞

Uv ×
∏
v|∞

k∗,+v .

Then UK ⊆ UM and k∗UK ⊆ Ik is of finite index. Class field theory, e.g. [Neu99, ch. VI], yields finite
abelian extensions k ⊆M ⊆ K and the upper part of diagram (18) below. The field corresponding
to k∗U+ is the big Hilbert class field of k which we denote by H+. Since k∗UK · k∗U+ = k∗UM we
have H+ ∩K = M and we put L := H+K. We have the following diagram of fields.

L

H+

��������
K

��������

M

��������

��������

k

��������
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Some of the occurring Galois groups are identified as follows.

1 �� Gal(K/M) ι �� Gal(K/k) π �� Gal(M/k) �� 1

1 �� k∗UM/k
∗UK

β 	
��

�� Ik/k
∗UK

	
��

�� Ik/k
∗UM

��

	
��

1

Up/ψ(E+)U (1)p

p

α 	
�� (18)

The isomorphism α is induced by the inclusion Up ↪→ k∗UM : one has k∗UM = k∗UpUK , hence

k∗UM/k
∗UK = k∗UpUK/k

∗UK Up/(Up ∩ k∗UK)	��

and Up ∩ k∗UK = k∗Up ∩ UK = ψ(E+)U (1)p

p .

To prove part (i), assume that XS ⊆ Up is dense. Then XS ⊆ Up −→ Up/U
(1)p

p is surjective,
hence so is XS/E

+ −→ Up/ψ(E+)U (1)p

p . The group XS/E
+ is easily seen to be torsion-free and

Dirichlet’s unit theorem determines its rank, hence XS/E
+ 
 Z|S| and |S| � g(p,Σ).

To prove part (ii), fix generators xi ∈ Up/ψ(E+)U (1)p

p (1 � i � g(p,Σ)). Let σi ∈ Gal(L/M) ⊆
Gal(L/k) be the unique element such that σi|H+ = id and σi|K = (ιβα)(xi). Note that (ιβα)(xi)|M =
(πιβα)(xi) = id by (18). By Chebotarev’s density theorem [Neu99, ch. VII, Theorem 13.4], there is
a finite place vi ∈ T, unramified in L/k such that σi = Frob−1

vi
, where Frobvi denotes the Frobenius

at the place vi, in Gal(L/k). Then (ιβα)(xi) = Frob−1
vi

in Gal(K/k). Since Frobvi |H+ = σ−1
i |H+ = id,

the prime ideal pi ⊆ Ok corresponding to vi is principal, generated by a totally positive element
πi ∈ Ok (see [Neu99, ch. VI, Theorem 7.3]). We claim that the image of πi in Up/ψ(E+)U (1)p

p

equals xi. To see this, we apply the Artin map (−,K/k) : Ik −→ Gal(K/k) to the identity
πi = πi,p · (πi/πi,p) in Ik, where πi,p denotes the idèle having πi as its p-component and all other
components equal to 1. By Artin reciprocity we obtain 1 = (πi,p,K/k)(πi/πi,p,K/k). Denoting
y := πi/πi,p we have (y,K/k) =

∏
v(yv,Kv/kv) (see [Neu99, ch. VI, Theorem 5.6]) and evaluate the

local terms (yv,Kv/kv) as follows.

For v = p we obtain 1 since yp = 1; for v �= p, vi finite, we obtain 1 since yv ∈ O∗
k,v and v is

unramified in K/k; for v = vi we obtain Frobvi since K/k is unramified at vi and yvi ∈ Ok,vi
is a

local uniformizer; finally, for v|∞ we obtain 1 since yv > 0 because πi is totally positive.

Hence (πi,p,K/k) = Frob−1
vi

= (ιβα)(xi) in Gal(K/k). Denoting by τ : Up −→ Up/ψ(E+)U (1)p

p

the projection we have (πi,p,K/k) = (ιβατ)(πi,p) by construction, hence xi = τ(πi,p) by the injec-
tivity of ιβα. This establishes the above claim saying that the global elements πi ∈ Ok have the
prescribed image xi in Up/ψ(E+)U (1)p

p . To conclude the proof of (ii), put S := {vi | 1 � i � g(p,Σ)}
and note that πi ∈ XS with this choice of S, hence XS −→ Up/ψ(E+)U (1)p

p is surjective and since
E+ ⊆ XS, so is XS −→ Up/U

(1)p

p , i.e. XS ⊆ Up is dense and by construction we have S ⊆ T and
|S| = g(p,Σ).

To see part (iii) we use

Up = µq−1 × U
(1)
p 
 µq−1 × µp∞(kp) × Z

[kp:Qp]
p ,

where q = |Ok,p/pOk,p| (see [Neu99, ch. II, Theorem 5.7(i)]), which implies that the upper bound
claimed in (iii) is in fact the minimal number of generators of Up/U

(1)p

p , which obviously is greater
than or equal to the minimal number of generators of Up/ψ(E+)U (1)p

p , i.e. g(p,Σ).
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4.2 Type 2Ad−1

In Theorem 14 we reduced the problem of approximating a local unit of a maximal order carrying
a positive involution of the second kind by global unitary units to an approximation problem for
a specific integral model T′ of a one-dimensional anisotropic torus over a totally real number field.
Here, we will only consider the following special case of this.

Let k be an imaginary quadratic field in which the rational prime p splits, pOk = pp, and put

T := ker(ResOk
Z (Gm,Ok

)
Nk
Q−→ Gm,Z).

Theorem 19. In the above situation, there exist infinitely many rational primes l �= p which split
in k/Q and are such that T(Z[1/l]) ⊆ T(Zp) is a dense subgroup.

Proof. Note that, for every rational prime l �= p,

T(Z[1/l]) = {α ∈ Ok[1/l]∗ | αα = 1} ⊆ T(Zp) = Up 
 Z∗
p, (19)

the local units of k at p, the final equalities following from the fact that p splits in k. Here, − denotes
complex conjugation. The following proof is similar to the argument of Theorem 17(ii) but extra
care is needed to deal with the norm condition αα = 1.

Consider the following subgroups of the idèles of k:

UK : =
∏

v �=p,p finite

Uv × U
(1)p

p × U
(1)p

p
×

∏
v|∞

k∗v

UH : =
∏

v finite

Uv ×
∏
v|∞

k∗v .

We have a corresponding tower of abelian extensions k ⊆ H ⊆ K and, since UK is stable under
Gal(k/Q), the extension K/Q is Galois, though rarely abelian. We have an isomorphism

φ : UpUp/U
(1)p

p U
(1)p

p
O∗

k 

Up/U

(1)p

p × Up/U
(1)p

p

O∗
k

	−→ Gal(K/H)

induced by the Artin map, where O∗
k is embedded diagonally. Since p splits in k we have Up 
 Z∗

p,

Up/U
(1)p

p O∗
k is cyclic and we fix a generator x of this group. By Chebotarev’s theorem applied to

K/Q there exist infinitely many rational primes l �= p, unramified in K/Q and such that for a
suitable prime Λ of K lying above l we have

Frob−1
Λ|l = φ([(x, 1)]) in Gal(K/H) ⊆ Gal(K/Q).

We claim that every such l satisfies the conclusion of Theorem 19.
Put λ := Λ|k. Since (FrobΛ|l)|H = id, l is split in k/Q and λ is a principal ideal of Ok a generator

of which we denote by π. Then

β :=
π

π
∈ {α ∈ Ok[1/l]∗ | αα = 1} = T (Z[1/l]),

and we claim that β goes to x under the map induced by (19). As in the proof of Theorem 17(ii)
one sees that

(πp, πp) = [(x, 1)]
and similarly

((π)p, (π)p) = [(1, x)] in
Up/U

(1)p

p × Up/U
(1)p

p

O∗
k

,

hence indeed
(βp, βp) = [(x, x−1)],
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and a fortiori βp = x in Up/U
(1)p

p O∗
k. Since we have O∗

k ⊆ T(Z[1/l]) because O∗
k consists of roots of

unity which have norm 1, we are done.

To use Theorem 14 we must study approximation for the open subgroup scheme T′ ⊆ T obtained
from T by removing the non-identity components of finitely many special fibers of T; cf. § 2.2.2. Let
µ ⊆ O∗

k denote the group of roots of unity. While we have µ ⊆ T(Z), and this was used at the end
of the proof of Theorem 19, in general we also have −1 �∈ T′(Z[1/l]).

Corollary 20. In the above situation there exist infinitely many rational primes l �= p which split
in k/Q and are such that the closure of T′(Z[1/l]) ⊆ T′(Zp) = T(Zp) has index at most |µ|.
Proof. We have T′ ×SpecZ Spec(Zp)

	−→ T ×SpecZ Spec(Zp) by the construction of T′ and the fact
that p is unramified (in fact, split) in k/Q. Now observe that the element β ∈ T(Z[1/l]) constructed
in the proof of Theorem 19 satisfies β ∈ T′(Z[1/l]).

Corollary 21. Let D be a finite-dimensional skew field over Q of reduced dimension d > 1 with a
positive involution of the second kind ∗ and O ⊆ D a maximal order, stable under ∗. Assume that
the center of D is an imaginary quadratic field k and let p �= 2 be a rational prime which splits in k
and P ⊆ O a prime lying above p. Then there exists a rational prime l �= p such that the closure of{

g ∈ O
[

1
2l

] ∣∣∣∣ ∗gg = 1
}

⊆ O∗
P

has index at most |µ|.
Proof. From the data (D, ∗) and O ⊆ D we construct group schemes SU ⊆ U and T′ ⊆ T over
Spec(Z) as in § 2.2.2. Using Corollary 20 we choose a prime l �= 2, p which splits in k/Q such that
the closure of T′(Z[1/l]) ⊆ T′(Zp) has index at most |µ| and such that for every place λ of k lying
above l we have invλ(D) = 0. We apply Theorem 14 with S := {2, l} to conclude that the index
of the closure of U(Z[1/2l]) ⊆ U(Zp) equals the index of the closure of T′(Z[1/2l]) ⊆ T′(Zp) and is
thus bounded above by |µ|. It remains to recall that

U
(

Z

[
1
2l

])
=

{
g ∈ O

[
1
2l

] ∣∣∣∣ ∗gg = 1
}

and, since p splits in k/Q,
U(Zp) 
 O∗

P.

Remark 22. The conclusion of Corollary 21 can be sharpened in special cases. For example, if the
reduced dimension of D is odd and 2 is unramified in k/Q, then (p = 2 being allowed) there is a
rational prime l �= p such that {α ∈ O[1/l] | ∗αα = 1} ⊆ O∗

P is dense. This is because d being odd
implies that T′ = T and 2 being unramified implies that U = Spec(Z).

5. Applications

5.1 Extending automorphisms of p-divisible groups
Here we explain the application of some of the above results to the following problem.

Let k be a finite field of characteristic p and A/k a simple abelian variety such that End k(A) is
a maximal order in the skew field D := End k(A) ⊗Z Q. The center K of D is a number field and
K ∩ End k(A) = OK is its ring of integers.

The p-divisible group of A/k [Tat66] splits as

A[p∞] =
∏
p|p
A[p∞], (20)
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the product extending over all primes p of OK dividing p. According to Tate, cf. [MW69, Theorem 6],
the canonical homomorphism

End k(A) ⊗Z Zp
	−→ End k(A[p∞]) (21)

is an isomorphism. We have

End k(A) ⊗Z Zp 

∏
p|p

End k(A) ⊗OK
OK,p 


∏
p|p

End k(A)P

with P the unique prime of End k(A) lying above p. Similarly, (20) implies that

End k(A[p∞]) 

∏
p|p

End k(A[p∞]).

These decompositions are compatible with (21), i.e. the canonical homomorphism

End k(A) ⊗OK
OK,p

	−→ End k(A[p∞])

is an isomorphism for every p|p. We fix some p|p and ask for a finite set S of finite primes of K such
that p /∈ S and

(End k(A) ⊗OK
OK,S)∗ ↪→ Aut k(A[p∞]) (22)

is a dense subgroup. Note that this density is equivalent to the following assertion.
For every α ∈ Aut k(A[p∞]) and integer n � 1 there is an isogeny φ ∈ End k(A) of degree

divisible by primes in S only and some x ∈ O∗
K,S such that

φx|A[pn] = α|A[pn],

i.e. the quasi-isogeny φx of A extends the truncation at arbitrary finite level n of α.
By Theorem 9, the inclusion (22) is dense if and only if X ⊆ Up is dense where X ⊆ O∗

K is the
subgroup of global units which are positive at all real places of K at which D does not split and
Up := O∗

K,p are the local units of K at p. The density of X ⊆ Up in turn is firmly controlled by
Theorem 17. We would like to illustrate all of this with some examples.

According to the Albert classification [Mum70, Theorem 2, p. 201] (note that types I and II do
not occur over finite fields) there are two possibilities.

Type III. Here, K is a totally real number field and D/K is a totally definite quaternion algebra.
The simplest such case occurs if A/k is a super-singular elliptic curve with End k(A) = End k(A).
In this case, it follows from Example 10(2) that, in case the characteristic of k is different from 2,
for a suitable prime l (

End k(A)
[
1
l

])∗
↪→ Aut k(A[p∞])

is dense.
To see another example of this type, let A/Fp correspond to a p-Weil number π with π2 = p.

Then dim(A) = 2 and A ⊗Fp Fp2 is isogeneous to the square of a super-singular elliptic curve. We
have K = Q(

√
p) and p = (

√
p)OK , hence A[p∞] = A[p∞]. Furthermore, O∗

K = {±1} × εZ for a
fundamental unit ε and X ⊆ O∗

K is of index 4. To find a small set S such that (22) is dense one first
needs to compute the minimal number of generators of Up/XU

(1)p

p , denoted g(p,Σ) in Theorem 17,
where, in the present situation, Σ consists of both the infinite places of K. For p = 2 one can choose
ε = 1 +

√
2, then X = ε2Z. Since Up/U

(1)2

p 
 F3
2 and ε2 /∈ U

(1)2

p , one gets g(p,Σ) = 2.

For p = 3 we may take ε = 2+
√

3, thenX = ε2Z again. Since now Up/U
(1)3

p = µ2×F2
3 
 Z/6×Z/3

the fact that ε2 /∈ U
(1)3

p is not enough to conclude that g(p,Σ) = 1. However, one checks in addition

that ε2 ∈ U
(1)
p , and concludes that Up/XU

(1)3

p 
 Z/6 and hence indeed g(p,Σ) = 1.
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For p � 5 one has Up/U
(1)p

p = µp−1 × F2
p and since µp−1 �⊆ K the image of a generator of X in

Up/U
(1)p

p will have non-trivial projection to F2
p and one concludes that g(p,Σ) = 1.

Type IV. In this case, K is a CM-field and X = O∗
K . The easiest such example occurs for an ordinary

elliptic curve and we give two examples.

A solution of π2 + 5 = 0 is a 5-Weil number to which there corresponds an elliptic curve E/F5

with K = D = Q(
√

5). For p = (
√

5)OK one has Up/U
(1)p

p = µ4 × F2
5 and since O∗

K = {±1} one
gets Up/XU

(1)p

p 
 Z/10 × Z/5, hence g(p,Σ) = 2.

Similarly, a solution of π2 − 4π + 5 = 0 gives an elliptic curve over F5 with D = K = Q(i) and
since 5 splits in K one has Up/XU

(1)p

p 
 Z/10, hence g(p,Σ) = 1 in this case.

Finally, we leave it as an easy exercise to an interested reader to check that for every prime p
and integer N � 1 there exists a simple abelian variety A/Fp such that every set S for which (22)
is dense necessarily satisfies |S| � N .

5.2 A dense subgroup of quasi-isogenies in the Morava stabilizer group

Let p be a prime and n � 1 an integer. The nth Morava stabilizer group Sn is the group of units of
the maximal order of the central skew field over Qp of Hasse invariant 1/n.

In this section we will construct an abelian variety A/k over a finite field k of characteristic p
such that for a suitable prime l the group (End k(A)[1/l])∗ is canonically a dense subgroup of Sn. We
will completely ignore the case n = 1 as it is very well understood. In the case n = 2 one can take
for A a super-singular elliptic curve [BL06] and the resulting dense subgroup of S2 has been used
to great advantage in the construction of a modular resolution of the K(2)-local sphere [Beh06].

For general n we remark that, since End k(A) ⊗Z Zp 
 End k(A[p∞]), in order that End k(A)
have a relation with Sn one needs A[p∞]⊗k k to have an isogeny factor of type G1,n−1 (see [Man63,
IV, § 2,2]). By the symmetry of p-divisible groups of abelian varieties [Man63, IV, § 3, Theorem 4.1],
there must then also be a factor of type Gn−1,1 which shows that n = 2 is somewhat special since
(1, n − 1) = (n − 1, 1) in this case. For n � 3 the above considerations imply that the sought
for abelian variety must be of dimension at least n, as already remarked by D. Ravenel [Rav07,
Corollary 2.4(ii)]. Following suggestions of M. Behrens and T. Lawson we will be able to construct
A having this minimal possible dimension. We start by constructing a suitable isogeny class as
follows.

Proposition 23. Let p be a prime and n � 3 an integer. Then there is a simple abelian variety
A/Fpn such that the center of End Fpn (A) ⊗Z Q is an imaginary quadratic field in which p splits
into, say, p and p′ such that invp(End Fpn (A) ⊗Z Q) = 1/n, invp′(End Fpn (A) ⊗Z Q) = −1/n and
dim(A) = n. Furthermore, A is geometrically simple with End Fpn

(A) ⊗Z Q = End Fpn (A) ⊗Z Q.

Proof. We use Honda–Tate theory; see [MW69] for an exposition. Let π ∈ Q be a root of f :=
x2 − px+ pn ∈ Z[x]. Since the discriminant of f is negative, π is a pn-Weil number and we choose
A/Fpn simple associated with the conjugacy class of π. Then Q(π) is an imaginary quadratic field
and is the center of End Fpn (A)⊗ZQ. Since n � 3 the Newton polygon of f at p has different slopes
1 and n − 1 which shows that f is reducible over Qp (see [Neu99, ch. II, Theorem 6.4]), hence p
splits in Q(π) into p and p′ and, exchanging π and π if necessary, we can assume that vp(π) = 1
and vp(π) = n− 1. Then [MW69, Theorem 8, 4]

invp(End Fpn (A) ⊗Z Q) =
vp(π)
vp(pn)

[Q(π)p : Qp] =
1
n
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and similarly

invp′(End Fpn (A) ⊗Z Q) =
n− 1
n

=
−1
n
.

Furthermore [MW69, Theorem 8, 3], 2 · dim(A) = [End Fpn (A) ⊗Z Q : Q(π)]1/2 · [Q(π) : Q] = 2n.
The final statement follows easily from the fact that πk �∈ Q for all k � 1, cf. [HZ02, Proposition
3(2)], which in turn is evident since vp(π) �= vp(π).

Since the properties of A/Fpn listed in Proposition 23 are invariant under Fpn-isogenies, we can,
and do, choose A/Fpn having these properties such that in addition End Fpn (A) ⊆ End Fpn (A)⊗ZQ

is a maximal order [Wat69, proof of Theorem 3.13]. Denoting by P ⊆ End Fpn (A) the unique
prime lying above the prime p constructed in Proposition 23, we have (End Fpn (A))∗P = Sn since
invp(End 0

Fpn (A)⊗ZQ) = 1/n. We choose a prime l as follows: if p �= 2 we take l to be a topological
generator of Z∗

p; for p = 2 we take l = 5.

Remark 24. Note that for p �= 2 a prime l �= p topologically generates Z∗
p if and only if (l mod p2)

generates (Z/p2)∗. Hence, by Dirichlet’s theorem on primes in arithmetic progressions, the set of all
such l has a density equal to ((p − 1)φ(p − 1))−1 > 0 and is thus infinite. Such an l can be found
rather effectively: given l �= p, compute αk := (lp(p−1)/k mod p2) for all primes k dividing p(p− 1).
If for all k, αk �≡ 1 (p2), then l is suitable.

Theorem 25. In the above situation,

(End Fpn (A)[1/l])∗ ↪→ (End Fpn (A))∗P = Sn

is a dense subgroup.

Proof. We apply Theorem 9 with O := End Fpn (A), k := Q(π), p the prime of Ok constructed
in Proposition 23 and S := {∞, l} the set consisting of the unique infinite place ∞ of k and all
places dividing l. Clearly, p �∈ S and D := O ⊗Z Q is not a skew field at ∞ since k∞ 
 C and
n > 1. Using the notation of Theorem 9 we have Ok,Sfin = Ok[1/l] and X = (Ok[1/l])∗ since k
has no real place. Theorem 9 shows that the claim of Theorem 25 is equivalent to the density of
(Ok[1/l])∗ ⊆ O∗

k,p 
 Z∗
p. Since l ∈ (Ok[1/l])∗, this density is clear for p �= 2 by our choice of l whereas

for p = 2 we have that {±1} × 5Z ⊆ Z∗
2 is dense and −1, 5 ∈ (Ok[1/5])∗.
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Gro66 A. Grothendieck, Éléments de géométrie algébrique, IV, Étude locale des schémas et des
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1982).

Niko Naumann niko.naumann@mathematik.uni-regensburg.de
NWF I – Mathematik, Universität Regensburg, 93040 Regensburg, Germany

270

https://doi.org/10.1112/S0010437X07003181 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003181

	1 Introduction
	2 Arithmetic
	2.1 Triviality of torsors
	2.2 The geometry of some groups

	3 Approximation of local units
	3.1 Type ${A_{d-1}}$
	3.2 Type ${^2A_{d-1}}$

	4 The commutative case
	4.1 Type ${A_{d-1}}$
	4.2 Type ${^2A_{d-1}}$

	5 Applications
	5.1 Extending automorphisms of $p$-divisible groups
	5.2 A dense subgroup of quasi-isogenies in the Morava stabilizer group

	References

