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ABSTRACT

For every prime p and integer n > 3 we explicitly construct an abelian variety A/F,»
of dimension n such that for a suitable prime [ the group of quasi-isogenies of A/F,» of
[-power degree is canonically a dense subgroup of the nth Morava stabilizer group at p. We
also give a variant of this result taking into account a polarization. This is motivated by
the recent construction by Behrens and Lawson of topological automorphic forms which
generalizes topological modular forms. For this, we prove some arithmetic results of inde-
pendent interest: a result about approximation of local units in maximal orders of global
skew fields which also gives a precise solution to the problem of extending automorphisms
of the p-divisible group of a simple abelian variety over a finite field to quasi-isogenies of
the abelian variety of degree divisible by as few primes as possible.

1. Introduction

One of the most fruitful ways of studying the stable homotopy category is the chromatic approach.
After localizing, in the sense of Bousfield, at a prime p, one is left with an infinite hierarchy of
primes corresponding to the Morava K-theories K(n), n > 0; see [Rav92]. The successive lay-
ers in the resulting filtration are the K (n)-local categories [HS99], the structure of which is gov-
erned to a large extent by (the continuous cohomology of) the nth Morava stabilizer group S, i.e.
the automorphism group of the one-dimensional commutative formal group of height n over Fp.
A fundamental problem in this context is to generalize the fibration

LS’ — EYf — EPF,

cf. the introduction of [GHMRO05], to a resolution of the K (n)-local sphere for n > 2. Substantial
progress on this problem for n = 2 and in many other cases as well has been achieved by clever use of
homological algebra for S,,-modules [GHMRO05, Hen07]. Recently, pursuing a question of Mahowald
and Rezk, Behrens [Beh06] was able to give a modular interpretation of one such resolution in the
case n = 2.

A basic observation is that S, is the automorphism group of the p-divisible group of a super-
singular elliptic curve E over a finite field k. Hence it seemed plausible, and was established
in [Beh06], that the morphisms in a resolution of a spectrum closely related to L K(2)50 should
have a description in terms of suitable endomorphisms of E. A key result for seeing this was to
observe that, for suitable primes [,

(Enaute)]| 7 ) cs, )

is a dense subgroup [BL06, Theorem 0.1].
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One of our main results, Theorem 25, is the direct generalization of (1) to arbitrary chromatic
level n > 3 in which F is replaced by an abelian variety of dimension n which is known to be the
minimal dimension possible.

In Corollary 21 we give a variant of the arithmetic result underlying Theorem 25 in which on the
left-hand side of (1) we only allow endomorphisms which are unitary with respect to a given Rosati
involution. The motivation for this stems from recent work of Behrens and Lawson [BL07] bringing
the arithmetic of suitable (derived) Shimura varieties to bear on homotopy theoretic problems
of arbitrary chromatic level, generalizing the role of topological modular forms for problems of
chromatic level at most two; cf. [BLO7, Theorem 15.2.1].

This paper is organized as follows. In § 2.1 we record a well-known result about generically trivial
torsors for later reference. In § 2.2 we determine the structure of certain naturally occurring integral
models for forms of SLy; see Theorems 2 and 7. As a first application, in § 3, we consider the problem
of approximating local units of maximal orders in finite-dimensional skew fields over Q (carrying a
positive involution of the second kind) by global (unitary) units with as few denominators as possible.
This is naturally an approximation problem for specific integral models of the general linear (certain
unitary) group(s) and will be reduced to a similar problem for G, (a specific integral model T’ of
a one-dimensional anisotropic torus) in Theorems 9 and 14. In §4 we can solve the approximation
problem for G,,, using class field theory and settle a special case for T’; see Theorems 17 and 19.
In §5.1 we explain the application of the results obtained so far to the following problem: given
a simple abelian variety A over a finite field one would like to extend an automorphism of the
p-divisible group A[p™] of A to a quasi-isogeny of A the degree of which should be divisible by as
few primes as possible. Finally, §5.2 contains the proof of Theorem 25 reviewed above.

2. Arithmetic

2.1 Triviality of torsors

The following result is well known but we wish to state it in the form most suitable for later
references.

PROPOSITION 1. Let k be a number field with ring of integers Ok, ) # U C Spec(Og) an open
subscheme and G/U an affine smooth group scheme. Assume that G/U has connected fibers, that
the generic fiber G = G Xy Spec(k) is k-simple, semi-simple and simply connected and that there
is a place v of k outside U such that G is isotropic at v. Then the canonical map of pointed sets

H'(U,G) — H'(Spec(k), G)
has trivial kernel.
Proof. We use a result of Nisnevich, see [Gil02, Théoreme 5.1]. Since G/U has connected fibers we

have Hflppf((’jg,;7 G) = 0 in the notation of [Gil02]. It is thus sufficient to see that for every finite set
Y of closed points of U we have

‘ <r£ G(Okp) \ G(k:,,)) /G(U - z)‘ = 1. 2)
pe

Here Oy is the completion of Oy at p and kj is the field of fractions of Oy . The proof of (2)
using strong approximation is very similar to the proof of Proposition 11 and is therefore left to the
reader. O
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2.2 The geometry of some groups

In this section we consider forms of SL;. These can be described in terms of skew fields (with
involution). The choice of a maximal order in the skew field determines an integral model of the
algebraic group and we will study the geometry of these group schemes. The referee pointed out
that some of these results, notably Theorem 2 and Theorem 7, part (ii), are part of Bruhat and
Tits theory; cf. [BT84b, §5] and [BT84a, Théoreme 4.6.32].

2.2.1 Type Aq_1. Let D be a finite-dimensional skew field over Q and O C D a maximal
order [Deu68, Kapitel VI]. The center of D, denoted k, is a number field and we denote by d the
reduced dimension of D, i.e. dimD = d?>. We denote by O}, C k the ring of integers and note that
ENO = O as an immediate consequence of [Deu68, Kapitel VI, §11, Satz 7).

Recall that D is determined by its local invariants as follows [PR94, §1.5.1]. Writing X} for
the set of places of k, for every v € X there is a local invariant inv, (D) € (1/d)Z/Z C Q/Z and
inv, (D) = 0 for almost all v. For a given place v, we denote by k, the completion of k with respect
to v. Then D, := D ®y, k, is a central simple k,-algebra which determines a class [D,] € Br(k,) in
the Brauer group of k,. There are specific isomorphisms

Q/zZ, v finite,
7 : Br(k,) = %Z/Z, v real,
0, v complex,

such that inv, (D) = 7,([D,]). Note that, for every v € ¥, D, is a skew field if and only if the order
of inv, (D) is d.

The group-valued functor G on O-algebras R
G(R) == (0O ®o, R)*

is representable by an affine group scheme of finite type G/Spec(Oy). The reduced norm induces a
morphism of group schemes N : G — G, over Spec(Oy) and writing G’ := ker(N) gives an exact
sequence of representable fppf-sheaves on Spec(Oy):

1—¢ —c%G, —1. (3)

To see that N is fppf-surjective, note that the inclusion R* C (O®p, R)* defines a closed immersion
i : G, — G such that N o is multiplication by d as can be checked on the generic fiber.

THEOREM 2. The groups G and G’ are smooth with connected fibers over Spec(Oy).

For the proof, we will need the following result which might be compared with
[DG70, Exposé VIp, Proposition 9.2(xi)].

PROPOSITION 3. Let S be a scheme, G, H/S group schemes of finite presentation with affine fibers
and G/S flat, and let ¢ : G — H be a morphism of S-group schemes. Then the following are
equivalent and imply that H/S is flat:

(i) ¢ is faithfully flat

(ii) ¢ is an epimorphism of fppf-sheaves
(iii) for every geometric point Spec(2) — S, ¢q is an epimorphism of fppf-sheaves.
Proof. Since ¢ is of finite presentation, the implications (i) = (ii) = (iii) are trivial, so assume
that part (iii) holds true. Then, for every geometric point Spec(2) — S, the morphism of Q-Hopf
algebras corresponding to ¢q is injective, which follows from the existence of an fppf-local section of

¢q, and thus faithfully flat [Wat79, Theorem 4.1]. This shows that ¢ is surjective and the fiber-wise
criterion for flatness [Gro66, Corollaire 11.3.11, (a) = (b)] implies that ¢ and H/S are flat. O
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Proof of Theorem 2. To see that G/Spec(Oy) is smooth we use the lifting criterion [Gro67, Remar-
ques 17.1.2;i) and 17.5.4]: if A — A/I is the quotient of an Artinian Oj-algebra A by an ideal
I C A of square zero, the surjectivity of G(A) — G(A/I) is clear from the definition of G, hence
G/Spec(Oy,) is smooth. By Proposition 3, (ii) = (i), N : G — G,, is (faithfully) flat, hence so is
its base change G’/Spec(Oy,).

We shall now show that all geometric fibers of G (respectively G’) are smooth and connected of
dimension d? (respectively d? —1). This will also imply that G’/Spec(O},) is smooth by the fiber-wise
criterion [Gro67, Théoréme 17.5.1] and thus conclude the proof.

Geometric fibers of G (respectively G’) in characteristic zero are isomorphic to GLg (respectively
SLg). Let 0 # p C Oy, be a prime, k := O /p and % be an algebraic closure of k. We have D, ~ M, (D)
for a central skew field D over ky. Denoting by r the reduced dimension of D, we have d = nr. Since
O ®o, Orp € Dy is a maximal order [Rei03, Corollary 11.2], we have O ®o, Ok, ~ M,(Op)
as Oy p-algebras by [Rei03, Theorem 17.3] where Op C D is the unique maximal order [Rei03,
Theorem 12.8].

Let E € Op and 7 € Oy be uniformizers. Then A= (OD/iT(D_D) Rk F 1s a R-algebra Wiﬁh
radical R = (IIOp /7O0p) ®, F and maximal semi-simple quotient A/R ~ &". Since Gz = GL,(A),
we have an extension

1 U G (GLp)" —— 1,

where U is a unipotent group of dimension n?(r — 1)r (recall that 7Op = I"Op and
(II'Op /T 0p) @, T ~ F"). So G is connected and smooth of dimension n?r 4+ n?(r — 1)r = d2.

Since the reduced norm Ng : Gg — Gy, 5 is trivial on U it factors over some « : (GL, z)" —
Gz We have a(g1,...,9-) = []i_; det(g;) as an immediate consequence of [Kle00, Lemma 3.8].
This exhibits GL as an extension of V' := ker(«) by U. We can factor & = Jovy with v : (GL,, )" —
G s Y(g1s---,9r) = (det(g;)); and [ : Ghz — Gnz, B(x1,...,zy) = x1...x, and thus obtain
the following diagram, with 7" := ker(3).

1—SLyx 1% T 1

b

1—=SL,z —=GLj, z — Gl x 1
\ 5
Gm,n
1

Looking at character groups, for example, one sees that T' ~ G;;% and hence V is connected and

smooth of dimension dim(7") + dim(SL!) = n?r — 1 and G~ is connected and smooth of dimension
dim(V) + dim(U) = d* — 1. O

Remark 4. The maximal locus inside Spec(Oy,) over which G (respectively G') is reductive (respec-

tively semi-simple) is obtained by inverting the discriminant of D, i.e. by removing all p € Spec(Oy)
such that inv, (D) # 0.
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2.2.2 Type 2A4_1. Let D be a finite-dimensional skew field of reduced dimension d over Q
carrying a positive involution of the second kind #, i.e. for all z € D* we have trg (fzx) > 0
(positivity) and x restricted to the center L of D is non-trivial. Then L is a CM-field with k := {z €
L |z ="z} C L as its maximal real subfield [Mum?70, p. 194]. Note that x is k-linear. We assume
that O C D is a maximal order which is invariant under *. The existence of such an order is claimed
without proof in [Hid04, 7.1.1]. Then O N L = O, and O Nk = Oy, are the rings of integers of L
and k. We consider the affine group schemes of finite type U and T over Spec(Oy) whose groups of
points are given for every Og-algebra R by

U(R) = {g € (O®0, R)" | "gg9 = 1},
T(R) = {g € (0L ®0, R)* | N(g) = 1}.

There is a homomorphism N : U — T over Spec(Og) given on points by the reduced norm of D
and we put SU := ker(N). Over Spec(k) we have an exact sequence

l— SUl(D7 1) =SU X Spec(O) Spec(k) —
Ui(D, 1) = U Xspee(0y) Spec(k) 5 Resf (G, )V — 1,

where ‘1’ denotes the standard rank one Hermitian form on D and

L
ResE (G 1)) = ker(ResE (G ) —5 Gon )

is a one-dimensional anisotropic torus over k; cf. [PR94, §2.3] for notation and general background
on unitary groups.

We first study the integral model T/Spec(Oy) of ResE (G,,.1)1). We define the open subscheme
U C Spec(Oy) by

U := Spec(Of) — {0 # p C Oy is a prime of residue characteristic 2 and ramified in L/k}.

The following result makes [CTS87, Proposition 5.2] slightly more precise in the present special
case.

PROPOSITION 5. We have that T /Spec(Oy) is an affine flat group scheme such that
Ty ~ Resﬁ(@mL)(l).
For a prime 0 # p C Oy we have
G r(p)s if p splits in L/k,
Trp) = Reszgggm(Gmﬁ(p)(z))(l), if p is inert in L/k,
Ga,k(p) X H2,k(p)s if p is ramified in L/k.

In particular, the maximal locus inside Spec(Oy) over which T is smooth equals U. Here, k(p) :=
Oy/p and r(p)? is the unique quadratic extension of k(p).

Proof. We know that Resgi (Gm,0,)/Spec(Oy) is an affine and smooth group scheme from [BLR90,
7.6, proof of Theorem 4 and Proposition 5,h)]. There is an obvious subgroup i : G, 0, — Resgi
(Gm,0,) such that NE o is multiplication by 2, hence N¥ : Resgi (Gm,0,) — G0, is an fppf-

epimorphism and the first assertion follows from Proposition 3 since by definition T = ker(N%).
Since restriction commutes with base change, for every O-algebra R we have

Tgr = ker(ReSgL®OkR(Gm,R) — Gu,R),

which makes the assertions concerning the generic fiber and the fibers over split and inert primes
obvious.
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For ramified p we have Op ®0, k(p) ~ OL4/9?°OL4 for q the unique prime of Oy lying

above p. There exists o € Orq with Opq = Opyla] and «a satisfies an Eisenstein polynomial
22 —ar+be Ok plz]. Since a € pOy, C q2OL,q, the non-trivial automorphism o of Oy 4 over Oy,
satisfies

ola)=a—a=—a in0p4/q°0L,

As Op 4/9?0L 4 ~ k(p)[a]/(a?) we conclude that for every r(p)-algebra R
Tup(R) = {2 +ya € (R[]/(0®)" | 1 = (¢ + ya)o(z + ya) = (z + ya)(z — ya) = 2°}
and we have an exact sequence
1 — G () (R) — Ty (R) — pio ) (R) — 1,
r+yo——x,

which is split by = — z + Oa. U
We will need the following proposition.

PROPOSITION 6. Let k be a commutative ring, By and By k-algebras and T an involution on
B := Bj x By such that 7(z,y) = (y,x) for all x,y € k. Then there is an isomorphism of k-algebras
with involution

(B7T) = (Bl X prpa (:1:7y) = (yax))
Proof. The proof of [KMRT98, Proposition 2.14] carries over without any change. O

Now let C' be the set of non-zero primes p € U such that UW is an extension of a symplectic

group. We will see during the proof of Theorem 7 that this set only contains primes which are
ramified in L/k. Let T/ C T be the open subscheme obtained by removing from T the non-identity
component of Ty, for all p € C, cf. Proposition 5. Clearly, T’ C T is a subgroup scheme.

THEOREM 7. (i) The morphism Ny : Uy — Ty factors through T;, C Ty and the resulting
sequence of fppf-sheaves on U

1—SUy — Uy %1y, — 1

is exact.

(ii) The group U/U (respectively SU/U) is smooth (respectively smooth with connected fibers).

Remark 8. It is easy to give examples of the situation in Theorem 7 in which C' # (), i.e. T/ # T.
From case (3'.2) in the proof of Theorem 7 it will however be clear that C' = {) if d is odd.

Proof of Theorem 7. Fix p € U. We will study the group schemes

Up =U X Spec(Oy) Spec(@k,p),
SUy := SU Xgpec(0,) Spec(O.p)

over Spec(Oy ). For this, we need to understand the Oy, y-algebra with involution
We distinguish three cases.

(1) The prime p is inert in L/k. For the unique prime q C Of, lying above p we have invq(D) =0
(see [Mum70, (B) on page 199]) and

Op C Oy ®0,,, kp = D@1 Lg ~Mqy(Lyg)
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is a maximal order, hence O, ~ My(Op 4) as O p-algebras. Denote by o the non-trivial automor-
phism of Op, 4 over Oy ,. We obtain for every Oy, 4-algebra R:

(Up X Spec(Oy.p) Spec(OLq))(R) = Up(R) = {g € Ma(OLq Q0y R)|"gg9 =1}

Since p is unramified we have Oy 4 Q04 , Or,q ~ Or4 x Or 4 and under this isomorphism (o ® 1)
switches the factors. Since by Proposition 6 we have an isomorphism of Op, 4-algebras with involution

(My(OL q) ®0y,, OLg,*) = (Ma(OL,q) X Ma(OL q)°, (2,9) = (‘y, 'z)),
where ' denotes the transpose of a matrix, we find that
Up(R) =~ {(,y) € Mg(R x R) =~ Mqg(R) x Mg(R) | (‘y, ‘2)(z,y) = 1} =~ GL4(R).

We have thus shown that Uy Xgpec(o;,,) Spec(OLq) ~ GLgo, - By descent, we conclude that
Uy /Spec(Okp) is smooth. Furthermore, the special fiber Uy ) = Uy Xgpec(o, ) SPec(k(p)) is a

k(p)/k(p)-form of GLg () and since H!(Spec(k(p)), PGLy) = 1 we have Ug(p) = GLgk(p)-
(2) The prime p splits in L/k. In this case we have
Op >~ Oq X Oq/,

where q and ¢ are the primes of O, lying above p and Oy := O ®0, O 4 and similarly for q'. By
Proposition 6 we have an isomorphism of Oy, ,-algebras with involution

(Op ) 2= (Og x O, (z,y) = (y, 7))
and thus U, ~ GL{(0O,) and this group is trivially smooth over Spec(Oy ).
(3) The prime p is ramified in L/k. As in case (1) we have
Op = My(OL,q)

as O p-algebras with ¢ € Op the unique prime lying above p. We check the smoothness of
U, /Spec(Oy ) using the lifting criterion. Let A be an Artinian Oy, y-algebra and I € A an ideal
with I? = 0. Given

z € Up(A/I) ={g € (Op ®o,, A/I)" | "99 = 1},
there is some y € Oy ®o, , A lifting x and we have

“yy=1+2 for some 2z € Oy ®p, , I € Oy ®0, , A
with *2 = z because *(*yy) = *yy. As p € U we have 2 € A* and can define
Y i=y(l—32) € Oy @0, , A,
which still lifts x and satisfies
Yy = (1= 5% yy(1 - 532) = (1= 57"2)(1+ 2)(1 - §2)
Hence we have found y' € Up(A) lifting .

(12 :Oi*zzz) 1

At this point we have established that U/U/ is smooth and we now proceed to study SU/U. We
first consider the geometric fibers, showing in particular that they are all connected and smooth.

Let Spec(§2) — U be a geometric point. If the characteristic of §2 is zero, we have SUq ~ SL, o,

and hence we can assume that 0 = k(p) for some p € U. We again have to distinguish three cases
as above.

(1') The prime p is inert in L/k. From (1) above we have Ug ~ GLgq and from Proposition 5 we
know that T ~ Gy, 0. Under these isomorphisms, Nq is identified with the determinant, hence
SUQ ~ SL(LQ.
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(2) The prime p splits in L/k. From (2) above and Proposition 5 we know that Ug ~ GL1(4) and
Tq =~ G for the Q-algebra A := Oy ®0, , ? where ¢ C O, is a prime lying above p. This is the
situation studied in Theorem 2 from which we read off that SUq /Spec(£2) is connected and smooth

(and, in fact, also the dimensions of the semi-simple, toric and unipotent parts of SUq in terms of
the order of invq(D)).

(3') The prime p is ramified in L/k. Recall from (3) above that Oy ~ Mg(Opr q). We have to study
the involution induced by * on

Oy B0y, 2 ~ Ma(Qe)).
Recall that Q(e) := Q[e]/(e?) and that the involution * on My(€2(¢)) satisfies *e = —¢ as established

during the proof of Proposition 5. Denoting by o € Aut g ,s(2(€)) the element determined by
o(e) = —e and by + the involution on M;(€2(¢)) defined by

T@ig) = (0(z)0)),
the theorem of Skolem and Noether [Mil80, ch. IV, Proposition 1.4] shows that there exists a
g € GL4(92(€)) such that
*r=gTxg™' for all x € Mg(Q(e)). (4)
From **x = x one sees that
g=a’yg (5)
for some « € Q(e)*. This gives Tg = o(a)g and by multiplying we obtain g*g = ao(«a)*gg, which
using (5) implies that ao(a) = 1.
Writing o = x + ye with x,y € Q) we get
1 =ao(a) = 2% — 9% = 2?
and hence
a=+1+ye for some y € . (6)
Replacing g by B¢ for 8 :=17F Jye € Q(e)* (the sign opposite to the one occurring in (6)) does not
affect (4) and replaces a by

aBo(8) Y (£1 4y (1 T lye) (1 + dye) ™t = (£1 + ye) (1 F Lye)?

= (£1+4 ye)(1 Fye) = £1.
Hence we can assume that
a ==+l (7)
To further simplify the involution, note that, for every h € GL4(2(¢€)), (Mg(£2(¢€)), *) is isomorphic,
via conjugation with h, to (Mg(€2(¢)), 7) with

v =h*(htzh)h = hgt (W tzh)g ' h T = hgthTz(hgTh) !,
i.e. we have the following.
For every h € GL4(€2(¢)) we can replace g in (4) by hg "h. (8)
We now distinguish two cases according to (7).
(3/.1) Assume that o = 1. Writing g = A + Be with A € GLy4(Q2), B € My(Q) we have

At Bemg®a v _ g ip,

hence A = YA, B = —'B and there exists some S € GL4(Q) with A = S'S. Using (8) with h = S~!
we can replace g by

hg™h =S YA+ Be)'S ' =1+ 8BS le.
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Put T := S~!B'S~! and note that B = — B implies that 7" = —T. Using (8) again with
h=1- %Te replaces g by

hgth=(1—3Te)(1+Te)(1+ §'Te) =1,
i.e. we can assume that *r = *x for all x € My(92(¢)). For every Q-algebra R we thus obtain
Ug(R) = {z=X+YecMy(R(e)) |1 = Taz = (*X — "Ye)(X + Ye)

="XX +(-"VX + "XY)e}

and hence an exact sequence
1 — F(R):={1+Yeec My(Qe)) | Y =Y} — Ug(R) — Og(R) — 1,
X+Y+— X,
La(d+1)

Og4 denoting the orthogonal group, which is split by X +— X + 0 - e. Evidently, F' ~ G?, . We
have the following diagram with exact rows and columns.

1 1 1
1 )l SUq @ SOd@ —1
1 F——=1Ugq Og,0 1 (9)
tr Nq det
1—=Gu0 Tq —— 12,0 1
1 1 1

This is obtained as follows. The lower row is taken from Proposition 5. The reduced norm induces the
determinant on My(€2(¢€)). This shows that mNqe is trivial and Nq¢ factors through some F — G,.
As det(1 +Ye) = 1 + tr(Y)e, the map ' — G, is in fact the trace and F' := ker(tr). This
also shows that the map Oy — p2 induced by Nq is the determinant which is visibly fppf-

surjective; in fact, it is surjective as a morphism of pre-sheaves as is the trace tr. It is also clear that
La(d+1)-1 .. .
F'~ G¢ (@+1) . Now the fppf-surjectivity of a and Nq follows from a 5-lemma argument (which

does not use commutativity). In particular, SUgq is connected and smooth.

(3".2) Assume that @ = —1. Writing g = A + Be with A € GL4(Q), B € My(Q) we have

((B).a=-1)

A+ Be=yg —Tg=—-"A+ "Be,

iie. A= —"'4 and B = 'B. The conditions on A force d to be even, say d = 2m. Let

0 1
J = <_1m 0 > S GLd(Q)

be the standard alternating matrix. Then there exists an S € GL4(Q2) such that SA*S = J. Using
(8) with h = S we can replace g by

hgTh=S(A+ Be)'S = J + SB"Se.
Put T := SB'S and note that B = "B implies that T = 'T". Using (8) again with h = 1 + TJe
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replaces g by
hgth= (14 3TJe)(J +Te)(1 — L' J'Te) = J+ (3TJ* +T — 37 T "T)e
—J+ G-+ 1 - 3y TED
i.e. we can assume that g = J.
For every Q-algebra R we thus obtain, using *.J = J 1,

Ug(R) = {z =X +YecMyg(Qe) | 1= 22 =J" (X +Ye)"'J(X +Ye)
=J('X - YO X +Ye) =T X TX + (=Y IX+ T X "TY)el}.
Note that 1 = J*X *JX if and only if *XJX = .J, and hence we get an exact sequence

1 — F(R):={1+YeecMyg(Qe) | Y = JYV "I} —Uq(R) — Spyn(R) — 1,
X+Yer— X,
where Sp,,,, denotes the symplectic group, which is split by X — X + Oe. Writing

a b
()
with a,b,c,d € M,,(€2) one obtains
~ a b t o gty ot
F(R) ~ e d € Mo (R)|'a=d, 'b=—b, 'c=—cy,

hence F' ~ Gng—m. The analog of diagram (9) in this case reads as follows.

1 1 1
1 F' SUq —*= Spon, 1
1 F Ug SPom 1 (10)
tr Ng det(=1)
£
1—=Ggu0 Tq H2,0 1
1

Note that, since the determinant of every symplectic matrix equals 1, N factors as indicated
in diagram (10). In particular, Ng : Ug — Tgq is not an fppf-epimorphism but has image the
connected component G, o ~ T% C Tgq. Since F' ~ Gng—m—l we conclude that SUg is connected
and smooth.

We now establish the exactness of the sequence
1— SUy — Uy ~4, 1), — 1

over Y. Since T" C T is an open subscheme, the fact that Ny factors through T}, can be checked on
fibers where it follows from what has been shown above: since the determinant is trivial on Sp,,,, in
diagram (10), N factors through G, o = T’Q C Tgq. We now need to see that the resulting morphism
Ny : Uy — T}, is an fppf-epimorphism and we will show that it is in fact faithfully flat. By
Proposition 3, it is enough to see that Uy — T¢, is an fppf-epimorphism for every geometric point
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Spec(2) — U which follows again from what has been proved above. The flatness of Uy — T},
implies that SU/U is flat, hence smooth by the fiber-wise criterion.

The proof of Theorem 7 is now complete. O

3. Approximation of local units

In this section we study the problem of p-adically approximating local units of a maximal order
(with involution) by global (unitary) units of bounded denominators. Using the results of §§2.1
and 2.2.1 (2.2.2) this problem will be reduced in §3.1 (3.2) to an approximation problem for tori
which will be solved in §4.1 (solved in a special case in §4.2).

3.1 Type Agq_1

In this section we consider the problem of p-adically approximating local units of a maximal order
O C D where D is a finite-dimensional skew field over (. We denote by k the center of D and by
d its reduced dimension. We fix a prime 0 # p C Oy at which we wish to approximate. There is a
unique prime B C O lying above p (see [Deu68, VI, §12, Satz 1]) and we denote by Og the P-adic
completion of O; cf. [Deu68, Kapitel VI, §11].

To describe the denominators that we allow the approximating global units to have, we fix a
finite set of places S of k such that

p & S and there exists a place vy € S such that D,, is not a skew field.
We write S for the set of finite places contained in S and consider the ring O gfin Of Sfin_integers
O C O gin := {x € k| v(x) > 0 for all finite v ¢ S} C k.

Since p ¢ S we have O, gin C Ok, We define

X ={z € Op g | v(2) > 0 for all archimedean v with inv, (D) = 31 C Of.p- (11)
Note that we have

(O ®0, O gin)" C O
Recall that N denotes the reduced norm of D.
THEOREM 9. The closure of (O ®o, Oy gin)* inside Oy equals
{z € Oy [ Ny(z) € O, lies in the closure of X}.

Ezample 10. (1) For k = Q and D a definite quaternion algebra, i.e. d = 2 and inv,(D) = 3 for
the unique infinite place v of Q, we can choose S = {l} for any prime [ # p at which D splits, i.e.

inv;(D) = 0. Then OI:,Sﬁn ={£1} x1% and X =1 C Oy p = Zy- For p # 2 we can choose | as above

such that in addition X C Zj is dense and conclude that in this case O[1/l]* € Oy is dense. For
p = 2 we can choose [ such that the closure of X in Z3 equals 1+ 4Zs and conclude that the closure
of O[1/1]* inside Oy equals

ker(Of — Z — Z5/(1 + 4Zs) ~ {£1}),

cf. Remark 24. In the special case in which D is the endomorphism algebra of a super-singular
elliptic curve in characteristic p, i.e. inv,(D) = 0 for all v # p, 0o, this result has been established
by different means in [BL06, Theorem 0.1].

(2) See Theorem 17 in §4.1 for a further discussion of the closure of X C O} .

The rest of this section is devoted to the proof of Theorem 9.
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Remember the groups G and G’/Spec(Of) defined by G(R) = (O ®p, R)* and G'(R) = {g €
G(R)|N(g) =1}.

PROPOSITION 11. The subgroup G'(Oj, gin) € G'(Oyp) is dense.

Proof. First note that G’ /Spec(Oy) is representable by an affine group scheme; hence the injectiv-
ity of the homomorphism G'(Oj gin) — G'(Oyp) follows from the injectivity of O gin — O p.
Secondly, G'(O) is canonically a topological group [Wei82, ch. I] and we claim density with
respect to this topology. We know that G} := G’ Xgpec(0,) Spec(k) = SLi(D) [PR94, §2.3] is
an inner form of SLg; and thus is k-simple, semi-simple and simply connected. Furthermore,
G Xspec(k) Spec(ky,) = SL, (D) for some central skew field D over k,, and some n > 1. Since
Dy, is not a skew field by assumption, we have n > 2 and rkg, (G, Xspec(r) Spec(ky)) =n—1>1
(see [PR94, Proposition 2.12]), i.e. G, is isotropic at vy. From strong approximation [Spr94, Theo-
rem 5.1.8] we conclude that

G'(k) - G'(ky,) C G'(Ay) is dense, (12)

where Ay, denotes the adele ring of k. Fix € G'(Oy ) and an open subgroup U, C G'(O} ). Denote
by & € G'(Ay) the adeéle having p-component = and all other components equal to 1. Then

U=Ux [[] GOr)x [] &) <G (Ar)
V#P finite U infinite

is an open subgroup and by (12) there exist v € G'(k) and 6 € G'(k,,) such that v§ € zU. Since
p # vp this implies that v, € 2,U, = 2U,, where 7, is the p-component of the principal adele -,
equivalently, the image of 7 under the inclusion G'(k) € G’(ky). Since x and Uy, are arbitrary, we will
be done if we can show that v € G'(Oy gan) € G'(k), i.e. that for every finite place v € S we have
Yo € G'(Ok,p). For v = p this is clear since U, C G'(Of,) whereas for v # p we have, using that
0, = 1 since v # vy € S,

(75)0 =Y € (ZZ'U)v =Ty - G/(Ok,v) = G/(Ok,v)- O
To proceed, we apply (3) to the inclusion O gan — Ok to obtain the following commutative
diagram.

1 — G'(Of giin) — G(O, gtin) S Oy st

N

1——=G'(Oyp) G(Opp) —— Op

By definition, G(O gin) = (O ®0, O gin)* and G(Okp) = (O ®o, Okp)* = Oy (see [Deuts,
Kapitel VI, §11, Satz 6]), so Theorem 9 is concerned with the closure of the image of ¢. Recall the

subgroup X C O} g, from (11).

PROPOSITION 12. In diagram (13) we have im(N) = X C O} gtin-
Proof. Eichler’s norm theorem [PR94, Theorem 1.13] states that
im(Ng : G(k) — k*) = {a € k" | v(z) > 0 for all archimedean v with inv,(D) = 3}, (14)
and the inclusion im(N) C X is trivial by the definition of X.
From the cohomology sequence associated with (3) we have the following diagram.

G (O gin) ~—> O gon — H'(Spec(O), gan), G)

L |

G(k) e+ H' (Spec(k), G")
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Now, G'/Spec(O,) is smooth with connected fibers by Theorem 2, and the generic fiber G}, is an
inner form of SLy and is thus k-simple, semi-simple and simply connected. Finally, the place vg
is outside U := Spec(Oj gin) and, since D, is not a skew field, G, is isotropic at vy (see [PR94,
Proposition 2.12]). We can thus apply Proposition 1 to G'/U to conclude that ¢ has trivial kernel.
This, jointly with (14), implies that X C im(N). O

We know that H'(Spec(Oyp), G') = 0 from the fact that G' Xgpec(0,) SPc(Okp)/Spec(Oy p) is
smooth with connected fibers and Lang’s theorem. Hence, in (13), N, is surjective and we can, using
Proposition 12, rewrite (13) as follows.

1 —— G (O gin) — (O ®0,, O gfin)" Nox 1
PR
N
11— G'(Ok,p) O;;; ’ Ol:,p 1

Since the image of « is dense by Proposition 11 and Oy, is compact, all that remains to be done to
conclude the proof of Theorem 9 is to apply Proposition 13 below to (15).

For a subset Y of a topological space X we denote by v the closure of Y in X.

PROPOSITION 13. Let

g —H——>H"

1 G’ G—"—=¢q" 1

be a commutative diagram of first countable topological groups with exact rows, G compact, and
such that H' C G’ is dense. Then

" = 1@,
Proof. Assume that g € T, Then g = lim,, h,, for suitable h,, € H and 7(g) = lim,, 7(h,) € 7
Conversely, given g € G with 7(g) = lim,, h!} for suitable k! € H”, choose h,, € H with p(hy) = h,.
The sequence (h,g 1), in G has a convergent subsequence, § := lim; h,,,g~' € G. Then 7(3) = 1,
ie. g € G’ and we have § = lim; h for zuitable hi € H'. The sequence ((h})1hy,,); in H satisfies
lim;(h})~th,, = G 1gg = g, hence g € H . O

3.2 Type 244_1

Let D be a finite-dimensional skew field of reduced dimension d > 1 over QQ carrying a positive
involution of the second kind * and assume that @ C D is a maximal order which is stable under .
In §2.2.2 we associated with these data group schemes SU C U and T" C T over Spec(Oy) and an
open subscheme U C Spec(Oy).

To formulate our approximation problem, we fix a prime 0 # p C O at which we wish to
approximate and a finite set of finite places S of k such that

p € S,S contains all primes of residue characteristic two ramified in L/k and

S contains a place vy split in L/k such that for wg|vg Dy, is not a skew field.

This implies in particular that Spec(Oys) C U. Note that we do not really restrict generality by
insisting that S consists of finite place because, unlike the case treated in §3.1, the group SU is
anisotropic at every infinite place of k.
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THEOREM 14. The closure of U(Oyg) C U(Oyp) equals
{9 € U(Okyp) | Np(g) Iies in the closure of T'(Ofs) € T'(Okp)}-

See Corollary 20 for the computation of the closure of T'(Oy g) € T'(O} ) in a special case.

Note that
U(Oks) = {9 € (O®0, Oks)"|"99 =1}
by definition but the structure of U(O ) depends on the splitting behavior of p in L; cf. the proof
of Theorem 7. In particular, if p splits in L/k then

G(Okyp) ~ Op, =~ (’)’bq,

where q and q" are the primes of L lying above k.
In the rest of this section we give the proof of Theorem 14.

PROPOSITION 15. We have that SU(Oyg) C SU(Oy ) is a dense subgroup.

Proof. Since SUy, 1= SU Xgpec(0y) Spec(k) is an outer form of SLgy, it is k-simple, semi-simple
and simply connected. In the proof of Theorem 7 we saw that SUkuO ~ SLi(Dy,) and, since Dy,
is not a skew field by assumption, SU, is isotropic at vy. Now one proceeds as in the proof of
Proposition 11. ]

Recall from Theorem 7 that we have an exact sequence
1— SUy — Uy 4 1), — 1 (16)
over U O Spec(Ofg).

PROPOSITION 16. The diagram obtained by applying (16) to Oy s — Oy,

1 —SU(Ops) — U(Ops) ——=T'(Opg) —= 1
(17)
N
1——=SU(Op) —= U(Opp) —=T'(Of ) — 1
fulfills the assumptions of Proposition 13.

This finishes the proof of Theorem 14 by applying Proposition 13 to (17).

Proof of Proposition 16. Clearly, diagram (17) is made up of first-countable groups and is commu-
tative, SU(Ok,g) C SU(Oyp) is dense by Proposition 15 and U(O ) is compact. It remains to prove
the exactness of the rows, i.e. the surjectivity of N and Ny. Since SU,/Spec(Oy ) is smooth with
connected fibers by Theorem 7, Lang’s theorem implies that H'(Spec(Oy.y),SUy) = 0 and thus N,
is surjective. We now show that Ny, : U(k) — T/(k) is surjective: we have a commutative diagram
with exact rows as follows.

Uk) — ) H' (Spec(k), SU)

| | -

1] Uk IINe JT T'(k) ][ H'(Spec(k,),SU)

veLye vexy vexny

Here, X2° denotes the set of infinite places of k and the right-most vertical arrow is an isomorphism
by the Hasse principle for SU Xgpec(0,) Spec(k) (see [PR94, Theorem 6.6]). Hence the surjectivity
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of Ny will follow from the surjectivity of N, for all v € X7°, which is easy to see: for v € X7° we
have, using [Mum?70, Step IV on page 199],

Ny

12

U(ky) T (ky) = T(ky)
Tii aa =1

}

where a bar denotes complex conjugation, and the lower horizontal arrow is surjective since it is
split by a — diag(a, 1,...,1). Next we look at the commutative diagram with exact rows.

{(2i;) € GLa(C) | (Tij)(wjq) = 1} 2 {a € C* |

U(Ok5) —= T'(O,5) —= H*(Spec(Oy 5), SU)

| | j

U(k) —5 T/ (k) H' (Spec(k), SU)

We need to see that ¢ has trivial kernel for then the desired surjectivity of N will follow from the
already proved surjectivity of Nj. Since Spec(Oys) € U we know that SU/Spec(Oyg) is smooth
with connected fibers from Theorem 7, SUy is k-simple, semi-simple and simply connected and the
place v lies outside Spec(Oy, s) and SUy, is isotropic at vy as explained in the proof of Proposition 15.
Hence the kernel of ¢ is indeed trivial by Proposition 1. O

4. The commutative case

4.1 Type Ag_1

In §3.1 the problem of approximating a local unit in a maximal order of a finite-dimensional skew
field over Q was reduced to the following problem involving solely number fields. Let k£ be a number
field, 0 # p C Oy a prime dividing the rational prime p and ¥ a possibly empty set of real places
of k. For a finite set of finite places S of k£ not containing p we consider

Xs:={r € Opg|v(x) >0forallveX} COg

and wish to understand when Xg C Oz,p =: Uy is a dense subgroup. The principal units

are canonically a finitely generated Z,-module and U,/ Up(l)p is a finite abelian group.

It follows from Nakayama’s lemma that a subgroup Y C Uy, is dense if and only if the composition
Y = U, — Up/Up(l)p is surjective: since Uy is pro-finite, Y C U, is dense if and only if it surjects
onto every finite quotient of U,. Assume that Y does surject onto U,/ Up(l)p and V' C Uy, is arbitrary
of finite index. In order to see that Y surjects onto U,/V we can assume that V C Up(l)p. Then

the image of Y in Uy /V = pg—1 X Up(l)/V surjects onto fg—1 and Up(l)/V is a finitely generated
Zy-module which modulo p is generated by the image of Y. By Nakayama’s lemma, Y surjects
onto U, /V.

For an infinite place v of k we write ki" for the connected component of 1 inside kY, ie.
kbt ~RT (respectively kit ~ C*) if v is real (respectively complex).

We denote by

E* = ker <o;; Dk — P /k;’+>

vEX vED
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the group of global units of k£ which are positive at all places in 3. We write

for the inclusion. Then U,/ z/;(EJF)Up(l)p is a finite abelian group the minimal number of generators
of which we denote by g(p, X).

THEOREM 17. In the above situation the following hold.

(i) If Xs C U, is dense then |S| = g(p, X).

(ii) Given a set T of places of k of density 1, there exists S as above such that Xg C U, is dense,
S| =g(p,%) and S C T.

(iii) We have

o(6.5) < {[k:p (Q) e (k) = {1},
T ke s Qi e (k) # {1,

Remark 18. (1) In general, the inequalities in (iii) are strict: for k& = Q(v/2), p dividing 7 and ¥ = 0)
one can check that g(p,X) =0, i.e. O; C Uy is dense.

(2) The proof of Theorem 17(ii) is rather constructive: one has to find principal prime ideals
(A) of Oy with X positive at all places in ¥ (this corresponds to being trivial in Gal(M/k) in the

notation of the proof) and determine the image of A in Uy / zp(EJr)Up(l)p.

Proof of Theorem 17. We consider the following subgroups of Ij, the ideles of k:

Uk := ][] vaUp(l)prk:’er II %

vfoo,v#£p veEX v|oco,v¢gy
Un:=[Ux [T I

vfoo vEX v]co,vgY
Up:=Jvex [] R

vfoo v]oo

Then Ux C Uy and k*Ug C I is of finite index. Class field theory, e.g. [Neu99, ch. VI], yields finite
abelian extensions k C M C K and the upper part of diagram (18) below. The field corresponding
to k*U, is the big Hilbert class field of & which we denote by H'. Since k*Uy - k*Uy = k*Upr we
have H* N K = M and we put L := H" K. We have the following diagram of fields.

H+/L\K
N
/

k
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Some of the occurring Galois groups are identified as follows.

1 Gal(K/M) —— Gal(K/k) —= Gal(M/k) — 1
5T2 T: T:
1| — k*Up /K Ug I, /KU —— I /k* Uy —— 1 (18)
Up(ENUS

The isomorphism « is induced by the inclusion Uy < k*Ujps: one has k*Upy = k*U, Uk, hence
E*Un /K Uk = k*UpyUk /k* Uk -~ Uy /(Uy NE*Uk)

and U, Nk*Ux = k*U, N Ux = p(EDU.

To prove part (i), assume that Xg C Uy is dense. Then Xg C U, — Up/Up(l)p is surjective,
hence so is Xg/ET — Up/ﬂ)(E*)Up(l)p. The group Xg/E™ is easily seen to be torsion-free and
Dirichlet’s unit theorem determines its rank, hence Xg/ET ~ ZISI and [S| > g(p, %).

To prove part (ii), fix generators x; € Up/w(EJr)Up(l)p (1<i<gp,X)). Let 0; € Gal(L/M) C
Gal(L/E) be the unique element such that o;| + = id and ;| = (¢Sa)(x;). Note that (10a)(x;) | =
(mefa)(z;) = id by (18). By Chebotarev’s density theorem [Neu99, ch. VII, Theorem 13.4], there is
a finite place v; € T, unramified in L/k such that o; = Frob;_l, where Frob,, denotes the Frobenius
at the place v;, in Gal(L/k). Then (1fa)(x;) = Frob;_]L in Gal(K/k). Since Frob,, |+ = o; !|z+ = id,
the prime ideal p; C Oy corresponding to v; is principal, generated by a totally positive element
mi € Ok (see [Neu99, ch. VI, Theorem 7.3]). We claim that the image of 7; in Up/zp(EJr)Up(l)p
equals z;. To see this, we apply the Artin map (—,K/k) : I, — Gal(K/k) to the identity
T = Ty - (m;/Tip) in I, where m;, denotes the idele having 7; as its p-component and all other
components equal to 1. By Artin reciprocity we obtain 1 = (m;y, K/k)(m;/m;p, K/k). Denoting
y = m;/m;p we have (y, K/k) = [[, (Yo, Kuv/ky) (see [Neu99, ch. VI, Theorem 5.6]) and evaluate the
local terms (yy, K, /ky) as follows.

For v = p we obtain 1 since y, = 1; for v # p,v; finite, we obtain 1 since y, € Of | and v is
unramified in K/k; for v = v; we obtain Frob,, since K/k is unramified at v; and y,, € Oy, is a
local uniformizer; finally, for v|oo we obtain 1 since y, > 0 because 7; is totally positive.

Hence (m;p, K/k) = Frob;il = (1fa)(x;) in Gal(K/k). Denoting by 7 : Uy, — Up/qj)(EJr)Up(l)p
the projection we have (m;p, K/k) = (18at)(m;p) by construction, hence x; = 7(m;p) by the injec-
tivity of ¢Ba. This establishes the above claim saying that the global elements m; € O) have the
prescribed image x; in Up/w(EJr)Up(l)p. To conclude the proof of (ii), put S :={v; | 1 <i < g(p, %)}
and note that m; € Xg with this choice of S, hence Xg — Up/z/)(EJr)Up(l)p is surjective and since
ET C Xg, sois Xg — Up/Up(l)p, i.e. Xg C Uy is dense and by construction we have S C T and
S| = g(p,%).

To see part (iii) we use

(1)

Up = Mg—1 X Upl X Z}[?kp:(@p]’

~ pg—1 % ppee (Kp)
where ¢ =[Oy /POy | (see [Neu99, ch. II, Theorem 5.7(i)]), which implies that the upper bound
claimed in (iii) is in fact the minimal number of generators of U,/ Up(l)p, which obviously is greater
than or equal to the minimal number of generators of Up/zp(EJr)Up(l)p, ie. g(p,X). O

263

https://doi.org/10.1112/5S0010437X07003181 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X07003181

N. NAUMANN

4.2 Type 2A4_4
In Theorem 14 we reduced the problem of approximating a local unit of a maximal order carrying
a positive involution of the second kind by global unitary units to an approximation problem for
a specific integral model T’ of a one-dimensional anisotropic torus over a totally real number field.
Here, we will only consider the following special case of this.
Let k be an imaginary quadratic field in which the rational prime p splits, pOy = pp, and put
k

o Oy NQ
T :=ker(Res; " (Gp,0,) — Gmz)-

THEOREM 19. In the above situation, there exist infinitely many rational primes [ # p which split
in k/Q and are such that T(Z[1/l]) C T(Z,) is a dense subgroup.

Proof. Note that, for every rational prime [ # p,
T(Z[1/1]) = {a € O[1/I]" | aa = 1} C T(Zy) = Uy ~ Ly, (19)
the local units of k at p, the final equalities following from the fact that p splits in k. Here, ~ denotes

complex conjugation. The following proof is similar to the argument of Theorem 17(ii) but extra
care is needed to deal with the norm condition aa = 1.

Consider the following subgroups of the ideles of k:

Ug:= [] Uox0 <0 <[]k
VFEP,P finite v]oo
Un:= [ Uox ] %
v finite ’U|OO

We have a corresponding tower of abelian extensions k¥ C H C K and, since Uy is stable under
Gal(k/Q), the extension K/Q is Galois, though rarely abelian. We have an isomorphism

1P 1P

Up/ U x Ug ULV
O

induced by the Artin map, where Oy is embedded diagonally. Since p splits in k we have U, ~ Z;,

¢+ UpUs /Uy U OF ~ =, Gal(K/H)

Up/ Up(l)p Oy is cyclic and we fix a generator x of this group. By Chebotarev’s theorem applied to
K/Q there exist infinitely many rational primes [ # p, unramified in K/Q and such that for a
suitable prime A of K lying above [ we have

Frob/_\‘ll = ¢([(x,1)]) in Gal(K/H) C Gal(K/Q).
We claim that every such [ satisfies the conclusion of Theorem 19.

Put A := Aly. Since (Frobyy)|g = id, [ is split in k/Q and A is a principal ideal of O, a generator

of which we denote by 7. Then

8= % € {a € OW1/1]" | am = 1} = T(Z[1/1)),

and we claim that § goes to = under the map induced by (19). As in the proof of Theorem 17(ii)
one sees that

(Wp, WE) = [(:Ev 1)]
and similarly

hence indeed
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and a fortiori B, = x in Up/Up(l)p Oj. Since we have Of C T(Z[1/1]) because O} consists of roots of
unity which have norm 1, we are done. O

To use Theorem 14 we must study approximation for the open subgroup scheme T/ C T obtained
from T by removing the non-identity components of finitely many special fibers of T cf. §2.2.2. Let
p € O denote the group of roots of unity. While we have p C T(Z), and this was used at the end
of the proof of Theorem 19, in general we also have —1 ¢ T'(Z[1/1]).

COROLLARY 20. In the above situation there exist infinitely many rational primes [ # p which split
in k/Q and are such that the closure of T'(Z[1/1]) C T'(Z,) = T(Z,) has index at most |pu)|.

Proof. We have T’ Xgpecz Spec(Zy) =T Xgpecz, Spec(Zy) by the construction of T/ and the fact
that p is unramified (in fact, split) in k£/Q. Now observe that the element 8 € T(Z[1/]) constructed
in the proof of Theorem 19 satisfies 5 € T'(Z[1/1]). O

COROLLARY 21. Let D be a finite-dimensional skew field over Q of reduced dimension d > 1 with a
positive involution of the second kind * and O C D a maximal order, stable under x. Assume that
the center of D is an imaginary quadratic field k and let p # 2 be a rational prime which splits in k
and B C O a prime lying above p. Then there exists a rational prime [ # p such that the closure of

1 * . *
{960[5] gg—l}g%

Proof. From the data (D,x) and O C D we construct group schemes SU C U and T/ C T over
Spec(Z) as in §2.2.2. Using Corollary 20 we choose a prime [ # 2, p which splits in k/Q such that
the closure of T'(Z[1/1]) C T'(Z,) has index at most |u| and such that for every place A of k lying
above | we have invy(D) = 0. We apply Theorem 14 with S := {2,/} to conclude that the index
of the closure of U(Z[1/2l]) C U(Z,) equals the index of the closure of T'(Z[1/2l]) C T'(Z,) and is
thus bounded above by |u|. It remains to recall that

99 = 1}

o(2[a]) - {o=0lal

U(Zyp) ~ O. O

has index at most |p|.

and, since p splits in k/Q,

Remark 22. The conclusion of Corollary 21 can be sharpened in special cases. For example, if the
reduced dimension of D is odd and 2 is unramified in k/Q, then (p = 2 being allowed) there is a
rational prime [ 7 p such that {a € O[1/l] | *aa =1} C Oy is dense. This is because d being odd
implies that T/ = T and 2 being unramified implies that & = Spec(Z).

5. Applications

5.1 Extending automorphisms of p-divisible groups
Here we explain the application of some of the above results to the following problem.
Let k be a finite field of characteristic p and A/k a simple abelian variety such that End(A) is
a maximal order in the skew field D := End;(A) ®z Q. The center K of D is a number field and
K NEnd(A) = Ok is its ring of integers.
The p-divisible group of A/k [Tat66] splits as
Ap™] = [T A, (20)
plp
265
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the product extending over all primes p of Ok dividing p. According to Tate, cf. [MW69, Theorem 6],
the canonical homomorphism
End (A) ®z Z, — End x(A[p™]) (21)

is an isomorphism. We have

End ;(A) ®z Zp ~ [ [ Endx(4) ®0, Okp ~ [ [Endk(A)gp
plp plp
with P the unique prime of End ;(A) lying above p. Similarly, (20) implies that

End 3 (A[p™]) = | | End x(A[p>)).
plp
These decompositions are compatible with (21), i.e. the canonical homomorphism
End x(A) ®0, Ok, — End(A[p™])

is an isomorphism for every p|p. We fix some p|p and ask for a finite set S of finite primes of K such
that p ¢ S and

(End(4) ®0, Ok,5)" — Aut 1 (A[p™]) (22)
is a dense subgroup. Note that this density is equivalent to the following assertion.

For every a € Auty(A[p>]) and integer n > 1 there is an isogeny ¢ € Endj(A) of degree
divisible by primes in S only and some z € O} ¢ such that

O] ) = @ afpr);
i.e. the quasi-isogeny ¢z of A extends the truncation at arbitrary finite level n of a.

By Theorem 9, the inclusion (22) is dense if and only if X C U, is dense where X C Oj; is the
subgroup of global units which are positive at all real places of K at which D does not split and
Uy = O}kw are the local units of K at p. The density of X C U, in turn is firmly controlled by
Theorem 17. We would like to illustrate all of this with some examples.

According to the Albert classification [Mum?70, Theorem 2, p. 201] (note that types I and II do
not occur over finite fields) there are two possibilities.

Type III. Here, K is a totally real number field and D/K is a totally definite quaternion algebra.
The simplest such case occurs if A/k is a super-singular elliptic curve with End ;(A) = End(A).
In this case, it follows from Example 10(2) that, in case the characteristic of k is different from 2,
for a suitable prime [

<Endk(A) H > — Aut (A[p™])
is dense.

To see another example of this type, let A/IF, correspond to a p-Weil number 7 with % = p.
Then dim(A) = 2 and A ®F, [F2 is isogeneous to the square of a super-singular elliptic curve. We
have K = Q(,/p) and p = (,/p)Ok, hence A[p>°] = A[p>]. Furthermore, O} = {£1} x €’ for a
fundamental unit € and X C Oj; is of index 4. To find a small set S such that (22) is dense one first

needs to compute the minimal number of generators of U, /X Up(l)p, denoted g(p,X) in Theorem 17,
where, in the present situation, Y consists of both the infinite places of K. For p = 2 one can choose

€ =1++/2, then X = %, Since Up/Up(l)2 ~ 3 and €2 ¢ Up(l)Q, one gets g(p,X) = 2.

For p = 3 we may take ¢ = 24++/3, then X = 2% again. Since now Up/Up(l)3 = s xF2 ~Z/6xZ/3
the fact that €2 ¢ Up(l)3 is not enough to conclude that g(p,>) = 1. However, one checks in addition
that €2 € Up(l), and concludes that UP/XU,D(D3 ~ 7,/6 and hence indeed g(p,X) = 1.
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For p > 5 one has Up/Up(l)p = pp—1 X IE‘% and since p,_1 € K the image of a generator of X in
Up/ Up(l)p will have non-trivial projection to Ff, and one concludes that g(p,>) = 1.

Type IV. In this case, K is a CM-field and X = O}. The easiest such example occurs for an ordinary
elliptic curve and we give two examples.

A solution of 72 +5 = 0 is a 5-Weil number to which there corresponds an elliptic curve E/F5
with K = D = Q(+/5). For p = (v/5)Ok one has Up/Up(l)p = py4 x FZ and since O} = {£1} one
gets Up/ XU ~ Z,/10 x Z./5, hence g(p,T) = 2.

Similarly, a solution of 72 — 4 + 5 = 0 gives an elliptic curve over F5 with D = K = Q(4) and
since 5 splits in K one has Up/XUp(l)p ~ 7,/10, hence g(p,X) = 1 in this case.

Finally, we leave it as an easy exercise to an interested reader to check that for every prime p
and integer N > 1 there exists a simple abelian variety A/F, such that every set S for which (22)
is dense necessarily satisfies |S| > N.

5.2 A dense subgroup of quasi-isogenies in the Morava stabilizer group

Let p be a prime and n > 1 an integer. The nth Morava stabilizer group S,, is the group of units of
the maximal order of the central skew field over Q, of Hasse invariant 1/n.

In this section we will construct an abelian variety A/k over a finite field k of characteristic p
such that for a suitable prime [ the group (End (A)[1/l])* is canonically a dense subgroup of S,,. We
will completely ignore the case n = 1 as it is very well understood. In the case n = 2 one can take
for A a super-singular elliptic curve [BL0O6] and the resulting dense subgroup of Sy has been used
to great advantage in the construction of a modular resolution of the K (2)-local sphere [Beh06].

For general n we remark that, since End ;(A) ®z Z, ~ End(A[p*>]), in order that End;(A)
have a relation with S,, one needs A[p*>] ® k to have an isogeny factor of type G1n—1 (see [Man63,
IV, §2,2]). By the symmetry of p-divisible groups of abelian varieties [Man63, IV, § 3, Theorem 4.1],
there must then also be a factor of type G,,_11 which shows that n = 2 is somewhat special since
(IL,n —1) = (n — 1,1) in this case. For n > 3 the above considerations imply that the sought
for abelian variety must be of dimension at least n, as already remarked by D. Ravenel [Rav07,
Corollary 2.4(ii)]. Following suggestions of M. Behrens and T. Lawson we will be able to construct
A having this minimal possible dimension. We start by constructing a suitable isogeny class as
follows.

PROPOSITION 23. Let p be a prime and n > 3 an integer. Then there is a simple abelian variety
A/F,n such that the center of End Fyn (A) ®z Q is an imaginary quadratic field in which p splits
into, say, p and p' such that invy(Endp ,(A) ®z Q) = 1/n, invy(Endy , (4) @z Q) = —1/n and
dim(A) = n. Furthermore, A is geometrically simple with End Fyn (A) ®z Q= Endy,, (4) ®z Q.

Proof. We use Honda-Tate theory; see [MWG69] for an exposition. Let 7 € Q be a root of f :=
22 — pr + p" € Z[x). Since the discriminant of f is negative, 7 is a p™-Weil number and we choose
A/Fpn simple associated with the conjugacy class of 7. Then Q() is an imaginary quadratic field
and is the center of Endp , (A) ®z Q. Since n > 3 the Newton polygon of f at p has different slopes
1 and n — 1 which shows that f is reducible over Q, (see [Neu99, ch. II, Theorem 6.4]), hence p
splits in Q(7) into p and p’ and, exchanging 7 and 7 if necessary, we can assume that v,(7) = 1
and vy (7) =n — 1. Then [MW69, Theorem 8, 4]

1

n

invy(Endy,, (A) ®z Q) = ;p((;;)) [Q(m)p : Q]
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and similarly

. n—1 -1
1nvp/(End Fpn (A) X7 @) = i = 7

Furthermore [MW69, Theorem 8, 3], 2 - dim(A) = [Endp,, (A) ®z Q : Q(m)]Y? - [Q(x) : Q] = 2n.

The final statement follows easily from the fact that 7% ¢ Q for all k > 1, cf. [HZ02, Proposition

3(2)], which in turn is evident since vy(m) # vy (7). O

Since the properties of A/F,» listed in Proposition 23 are invariant under Fn-isogenies, we can,
and do, choose A/ having these properties such that in addition Endp,, (4) C Endy,, (4) @z Q
is a maximal order [Wat69, proof of Theorem 3.13]. Denoting by B C Endp,,(A) the unique
prime lying above the prime p constructed in Proposition 23, we have (Endg,,(A))j = Sy since
invy (End %pn (A) ®z Q) = 1/n. We choose a prime [ as follows: if p # 2 we take [ to be a topological
generator of Zy; for p =2 we take [ = 5.

Remark 24. Note that for p # 2 a prime [ # p topologically generates Z;, if and only if (I mod p?)
generates (Z/p?)*. Hence, by Dirichlet’s theorem on primes in arithmetic progressions, the set of all
such [ has a density equal to ((p — 1)¢(p — 1))~! > 0 and is thus infinite. Such an I can be found
rather effectively: given [ # p, compute oy, := (IP°~1/k mod p?) for all primes k dividing p(p — 1).
If for all k, o, # 1 (p?), then [ is suitable.

THEOREM 25. In the above situation,
(Endp,, (A)[1/1])" — (Endp,.(A))p =S»
is a dense subgroup.

Proof. We apply Theorem 9 with O := Endp,,(A), k := Q(r), p the prime of Oy constructed
in Proposition 23 and S := {c0,l} the set consisting of the unique infinite place oo of k and all
places dividing [. Clearly, p ¢ S and D := O ®z Q is not a skew field at co since ko, ~ C and
n > 1. Using the notation of Theorem 9 we have O gan = Ox[1/]] and X = (Ok[1/1])* since k
has no real place. Theorem 9 shows that the claim of Theorem 25 is equivalent to the density of
(Ox[1/1))* € O, = Zy,. Since I € (Ok[1/1])*, this density is clear for p # 2 by our choice of I whereas
for p = 2 we have that {£1} x 52 C Z} is dense and —1,5 € (O[1/5])*. O
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