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Abstract For a Banach space X, let B(X) denote the Banach algebra of all continuous linear operators
on X. First, we study the lattice of closed ideals in B(Jp), where 1 < p < ∞ and Jp is the pth James
space. Our main result is that the ideal of weakly compact operators is the unique maximal ideal in
B(Jp). Applications of this result include the following.

(i) The Brown–McCoy radical of B(X), which by definition is the intersection of all maximal ideals
in B(X), cannot be turned into an operator ideal. This implies that there is no ‘Brown–McCoy’
analogue of Pietsch’s construction of the operator ideal of inessential operators from the Jacobson
radical of B(X)/A(X).

(ii) For each natural number n and each n-tuple (m1, . . . , mn) in {k2 | k ∈ N} ∪ {∞}, there is a
Banach space X such that B(X) has exactly n maximal ideals, and these maximal ideals have
codimensions m1, . . . , mn in B(X), respectively; the Banach space X is a finite direct sum of
James spaces and �p-spaces.

Second, building on the work of Gowers and Maurey, we obtain further examples of Banach spaces X

such that all the maximal ideals in B(X) can be classified. We show that the ideal of strictly singular
operators is the unique maximal ideal in B(X) for each hereditarily indecomposable Banach space X, and
we prove that there are 22ℵ0 distinct maximal ideals in B(G), where G is the Banach space constructed
by Gowers to solve Banach’s hyperplane problem.
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1. Introduction

The first result concerning ideals in the Banach algebra of continuous linear operators
on an infinite-dimensional Banach space is due to Calkin, who in [3] classified all the
ideals in B(�2). In particular he proved that the ideal of compact operators is the only
non-trivial, closed ideal in B(�2). For a non-separable Hilbert space H, Gramsch and
Luft have independently described all the closed ideals in B(H) and shown that they
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are totally ordered by inclusion (see [13] and [22], respectively). Another extension of
Calkin’s result is as follows.

Theorem 1.1 (Gohberg, Markus and Feldman [8]). For X = �p, where 1 � p <

∞, and X = c0, the ideal of compact operators is the unique non-trivial, closed ideal in
B(X).

We are not aware of any other infinite-dimensional Banach spaces X for which the
lattice of closed ideals in B(X) is completely understood.

The aim of this paper is to study the maximal ideals in B(X) for various Banach spaces
X and in this way gain insight into the closed ideal structure of B(X). In § 2 we set up
our basic notation and conventions, and in § 3 we outline the material from the theory of
operator ideals that we require. The main result of § 4 is that the ideal of weakly compact
operators is the unique maximal ideal in B(Jp), where 1 < p < ∞ and Jp is the pth James
space. The proof of this theorem also provides new information about the lattice of closed
ideals in B(Jp); it relies on generalizations of results known for James’s original space J2.
As a consequence of the uniqueness of the maximal ideal in B(Jp), we derive in § 5 that
the Brown–McCoy radical of B(X), which by definition is the intersection of all maximal
ideals in B(X), cannot be turned into an operator ideal. This implies that the Brown–
McCoy radical cannot be used to obtain an analogue of Pietsch’s construction of the
operator ideal of inessential operators from the Jacobson radical of B(X)/A(X). In § 6
we study the lattice of closed ideals in B(X) for the Banach space

X := J
⊕ν1
p1

⊕ J
⊕ν2
p2

⊕ · · · ⊕ J
⊕νn
pn

⊕ �pn+1 ⊕ �pn+2 ⊕ · · · ⊕ �pn+m
,

where n, m, ν1, . . . , νn are natural numbers and p1, . . . , pn+m are distinct real numbers
with p1, . . . , pn ∈ ]1, ∞[ and pn+1, . . . , pn+m ∈ [1, ∞[. We show that the closed ideals in
B(X) containing the ideal of inessential operators are classified by the non-zero, closed
ideals in B(J⊕ν1

p1
), . . . ,B(J⊕νn

pn
), B(�pn+1), . . . ,B(�pn+m). In particular B(X) has exactly

n + m maximal ideals; n of these maximal ideals have finite codimensions ν2
1 , . . . , ν2

n in
B(X), respectively, and m have infinite codimension in B(X). In § 7 we prove that the ideal
of strictly singular operators is the unique maximal ideal in B(X) for each hereditarily
indecomposable Banach space X. Finally, in § 8 we provide an example of a Banach
space G such that there are infinitely many (22ℵ0 , to be precise) distinct maximal ideals
in B(G), and we classify these maximal ideals.

2. Notation

Throughout this paper all vector spaces and algebras are assumed to be over the field C

of complex numbers.
For vector spaces X and Y, the collection of all linear maps from X to Y is denoted

by L(X, Y) (or L(X) in the case where X = Y). We write IX for the identity map on
X. Let T : X → Y be a linear map. We denote by imT the image of T and by kerT

the kernel of T . Suppose that X0 and Y0 are linear subspaces of X and Y, respectively,
satisfying T (X0) ⊆ Y0. Then we define T |Y0

X0
: x �→ Tx, X0 → Y0. If X0 = X, then we

omit the subscript X0, and if Y0 = Y, then we omit the superscript Y0.
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Let X and Y be Banach spaces. A continuous linear map from X to Y is termed an
operator. The collection of all operators from X to Y is denoted by B(X, Y) (or B(X)
in the case where X = Y). We write spanX0 for the linear span of a subset X0 of X;
spanX0 denotes its norm closure. We write X∗ for the dual space of X, and we denote
by κX : X → X∗∗ the canonical embedding of X into its bidual space X∗∗.

Let n be a natural number. The direct sum of the vector spaces X1, . . . ,Xn is denoted
by X1 ⊕ · · · ⊕ Xn (or X⊕n in the case where X1 = · · · = Xn = X). For each k ∈ {1, . . . , n},
we write Jk : Xk → X1 ⊕ · · · ⊕ Xn for the canonical kth coordinate embedding, and we
write Qk : X1 ⊕ · · · ⊕ Xn → Xk for the canonical kth coordinate projection. In the case
where X1, . . . ,Xn are Banach spaces, their direct sum is a Banach space for the norm
‖(x1, . . . , xn)‖ := max{‖x1‖, . . . , ‖xn‖}, where (x1, . . . , xn) ∈ X1 ⊕ · · · ⊕ Xn.

Let m and n be natural numbers, and let X1, . . . ,Xn and Y1, . . . ,Ym be vector spaces.
With a linear map T : X1 ⊕ · · · ⊕ Xn → Y1 ⊕ · · · ⊕ Ym, we associate the (m × n)-matrix
(Tj,k)m,n

j,k=1, where Tj,k is the linear map given by the commutative diagram

Xk

Tj,k ����������

Jk
��

Yj

X1 ⊕ · · · ⊕ Xn
T �� Y1 ⊕ · · · ⊕ Ym.

Qj

��

In this way we obtain a bijective correspondence between L(X1 ⊕ · · · ⊕ Xn, Y1 ⊕
· · · ⊕ Ym) and the set of (m × n)-matrices with their (j, k)th entry belonging to
L(Xk, Yj) for each pair (j, k) ∈ {1, . . . , m} × {1, . . . , n}. This correspondence is linear,
and, when defined, the composition of linear maps corresponds to the multiplication
of matrices. In the case where X1, . . . ,Xn and Y1, . . . ,Ym are Banach spaces, the sub-
space B(X1 ⊕ · · · ⊕ Xn, Y1 ⊕ · · · ⊕ Ym) of L(X1 ⊕ · · · ⊕ Xn, Y1 ⊕ · · · ⊕ Ym) is mapped
onto the set of (m × n)-matrices with their (j, k)th entry in B(Xk, Yj) for each pair
(j, k) ∈ {1, . . . , m} × {1, . . . , n}.

For an algebra A and a natural number n, we denote by Mn(A) the algebra of (n × n)-
matrices over A. The above results show that we may identify L(X⊕n) with Mn(L(X))
for each vector space X. In the case where X is a Banach space, this implies identifying
B(X⊕n) with Mn(B(X)).

3. Preliminaries on operator ideals

This section summarizes the parts of the vast theory of operator ideals that we require.
We begin with the fundamental definition which is due to Pietsch.

Definition 3.1. An operator ideal is an assignment I which associates with each pair
(X, Y) of Banach spaces a linear subspace I(X, Y) of B(X, Y) satisfying

(i) I(X, Y) is non-zero for some Banach spaces X and Y;
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(ii) for any Banach spaces W, X, Y and Z, the composite operator TSR belongs to
I(W, Z) whenever R belongs to B(W, X), S to I(X, Y) and T to B(Y, Z).

We usually write I(X) instead of I(X, X).
An operator ideal I is closed if the subspace I(X, Y) is closed in the operator norm of

B(X, Y) for each pair (X, Y) of Banach spaces.

Remark 3.2. Operator ideals fit nicely into the matrix representation of operators
between direct sums of Banach spaces described in § 2. Indeed, for an operator ideal I,
Banach spaces X1, . . . ,Xn, Y1, . . . ,Ym, and an operator T : X1⊕· · ·⊕Xn → Y1⊕· · ·⊕Ym

with associated matrix (Tj,k)m,n
j,k=1, we have: T belongs to I(X1 ⊕· · ·⊕Xn, Y1 ⊕· · ·⊕Ym)

if and only if Tj,k belongs to I(Xk, Yj) for each pair (j, k) ∈ {1, . . . , m} × {1, . . . , n}.

In this paper, we shall consider the following standard closed operator ideals:

A the approximable operators;
K the compact operators;
S the strictly singular operators;
E the inessential operators (an operator T : X → Y is termed inessential

if IX − ST is a Fredholm operator for each operator S : Y → X);
V the completely continuous operators;
W the weakly compact operators.

For each pair (X, Y) of Banach spaces, the hierarchy among these operator ideals is as
follows (see [23, p. 93] and [24, §§ 1.11 and 26.7]):

B(X, Y)

��
��

��
��

��
��

��
��

��
��

��
��

E(X, Y)

V(X, Y)

��
��

��
��

��
��

W(X, Y)

��
��

��
��

��
��

S(X, Y)

V(X, Y) ∩ W(X, Y)

K(X, Y)

A(X, Y)

{0}.
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In this diagram, a line denotes set-theoretic inclusion with the larger set at the top of
the line. All the indicated inclusions may be proper.

We shall also consider operator ideals consisting of the operators that factor through a
given operator. Indeed, let E, F, X and Y be Banach spaces, let Γ : E → F be an operator,
and set

PΓ (X, Y) := span{TΓS | S ∈ B(X, E), T ∈ B(F, Y)} and QΓ (X, Y) := PΓ (X, Y).

Proposition 3.3. Let E and F be Banach spaces, and let Γ : E → F be a non-zero
operator. Then PΓ is an operator ideal, and QΓ is a closed operator ideal.

We call PΓ the algebraic operator ideal generated by Γ and QΓ the closed operator ideal
generated by Γ . These operator ideals generalize a construction due to Porta (see [25]
and [2]). In our application we shall require the following technical fact.

Proposition 3.4. Let E, F and X be Banach spaces, and let Γ : E → F be an operator.
An idempotent operator belongs to PΓ (X) if and only if it belongs to QΓ (X).

Proof. Suppose that P ∈ QΓ (X) is idempotent. If P = 0, then the result is obvious.
Otherwise we can take an operator S ∈ PΓ (X) such that ‖P −S‖ < ‖P‖−2. It follows that
‖P − PSP‖ < 1. Since PB(X)P is a Banach algebra with identity P , this implies that
PSP is invertible in PB(X)P by [4, Proposition 2.1.1], and so we can take T ∈ PB(X)P
such that (PSP )T = P . This shows that P belongs to PΓ (X). �

For an operator Γ : E → F, denote by Γ ⊕ Γ : E ⊕ E → F ⊕ F the diagonal operator
induced by Γ , that is, (Γ ⊕ Γ )(x, y) = (Γx, Γy) for (x, y) ∈ E ⊕ E. An immediate
generalization of the proof of [2, Theorem 5.13] yields the following proposition.

Proposition 3.5. Let E and F be Banach spaces. For each operator Γ : E → F, the
following assertions are equivalent:

(a) there are operators U : E⊕E → E and V : F → F⊕F such that Γ ⊕Γ = V ΓU ; and

(b) PΓ (X, Y) = {TΓS | S ∈ B(X, E), T ∈ B(F, Y)} for each pair (X, Y) of Banach
spaces.

Lemma 3.6. Let X and Y be Banach spaces.

(i) Let P : X → X and Q : Y → Y be idempotent operators. There are operators
S : X → Y and T : Y → X such that P = TS and Q = ST if and only if the images
of P and Q are isomorphic.

(ii) Suppose that S : X → Y and T : Y → X are operators such that TS is idempotent.
Then STST is idempotent, and the images of TS and STST are isomorphic.

Proof. (i) If S : X → Y and T : Y → X are operators with P = TS and Q = ST , then
S(im P ) ⊆ im Q, T (im Q) ⊆ im P , and S|im Q

im P is an isomorphism with inverse T |im P
im Q.

Conversely, if U : im P → im Q is an isomorphism, then the operators S := U |YP |im P

and T := (U−1)|XQ|im Q satisfy TS = P and ST = Q.
(ii) This is immediate from (i). �
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In the case where the generating operator Γ is idempotent, we can now reformulate
Proposition 3.5 as follows.

Corollary 3.7. For an idempotent operator Γ on a Banach space E, the following
assertions are equivalent:

(a) im Γ contains a complemented subspace isomorphic to im Γ ⊕ im Γ ; and

(b) PΓ (X, Y) = {TS | S ∈ B(X, im Γ ), T ∈ B(im Γ, Y)} for each pair (X, Y) of Banach
spaces.

4. The lattice of closed ideals in B(Jp) for 1 < p < ∞

Throughout this section, we fix a real number p in the open interval ]1, ∞[. Our aim
is to understand the lattice of closed ideals in B(Jp), where Jp is the pth James space
(to be defined below). Our main result is that W(Jp) is the unique maximal ideal in
B(Jp).

For p = 2, Loy and Willis have shown that K(J2) � QI�2
(J2) � W(J2) and that

QI�2
(J2) 	⊆ S(J2) = E(J2) (see [21, Theorem 2.7]). Saksman and Tylli have improved

this by observing that K(J2) = S(J2) (see [26, Remark 3.9]). We generalize these results
to arbitrary p ∈ ]1, ∞[, and we complement them, showing that the lattice of closed ideals
in B(Jp) has the following structure:

B(Jp)

W(Jp)

QI�p
(Jp)

A(Jp) = K(Jp) = S(Jp) = E(Jp) = V(Jp)

{0},

where all the indicated inclusions are proper, and only at the dotted line may there be
further closed ideals.

Definition 4.1. For each sequence x = (αk)k∈N of complex numbers, set

‖x‖Jp := sup
{(n−1∑

m=1

|αkm − αkm+1 |p
)1/p ∣∣∣∣ n, k1, . . . , kn ∈ N, n � 2, k1 < k2 < · · · < kn

}
.
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The pth James space is

Jp := {(αk)k∈N | αk ∈ C (k ∈ N), ‖(αk)k∈N‖Jp
< ∞ and αk → 0 as k → ∞}.

Then (Jp, ‖ · ‖Jp) is a Banach space with a monotone basis (ek)k∈N given by ek =
(δk,m)m∈N for each k ∈ N, where δk,m is Kronecker’s delta symbol. This basis is shrinking,
so that the biorthogonal functionals (fk)k∈N associated with (ek)k∈N form a basis for J∗

p.
A fundamental property of Jp is that it is quasireflexive, that is, its canonical image

κJp(Jp) in its bidual space J∗∗
p has codimension one; for p = 2, this is due to James

(see [16]). An immediate consequence of the quasireflexivity of Jp is that the ideal W(Jp)
of weakly compact operators has codimension one in B(Jp) and hence is a maximal
ideal.

We shall now introduce a class of operators on Jp which will play an important role in
our analysis of the closed ideal structure of B(Jp). Set

J := {(jk)k∈N0 | j0 = 0, jk ∈ N and jk−1 < jk (k ∈ N)},

and, for each j = (jk)k∈N0 ∈ J, define

Hjek :=
jk∑

m=jk−1+1

em and Gjek :=

{
em if k = jm for some m ∈ N,

0 otherwise,
(k ∈ N).

(4.1)
By linearity and continuity, Hj and Gj extend to operators (also denoted by Hj and Gj)
of norm one on Jp satisfying

GjHj = IJp . (4.2)

It follows that HjGj and hence Pj := IJp − HjGj are idempotent operators.

Lemma 4.2. Let j ∈ J. The kernel of Pj is given by

ker Pj = im Hj =
{ ∞∑

k=1

αk

( jk∑
m=jk−1+1

em

) ∣∣∣∣ (αk)k∈N ∈ Jp

}
, (4.3)

and it is isomorphic to Jp. The image of Pj is given by

im Pj = ker Gj = span {ek | k ∈ N \ {jm | m ∈ N}}, (4.4)

and it is reflexive.

Proof. The identities (4.3) and (4.4) are easily verified using (4.2). Lemma 3.6 (i)
implies that ker Pj = im HjGj

∼= im GjHj = Jp. Since ker Pj ⊕ im Pj
∼= Jp, we conclude

that im Pj is reflexive. �

Note that Lemma 4.2 has [5, Corollary 3 and Theorem 5 (including Remark (ii))] as
immediate consequences.
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To determine the isomorphism type of the complemented subspace im Pj of Jp for each
j ∈ J, we consider, for each n ∈ N, the n-dimensional Banach space

J
(n)
p := span{e1, . . . , en}

equipped with the norm it inherits as a subspace of Jp. Let (nk)k∈N be a sequence of
natural numbers, and let (

⊕∞
k=1 J

(nk)
p )�p

denote the direct sum of J
(n1)
p , J

(n2)
p , . . . in the

sense of �p. As for finite direct sums, we write

Jk : J
(nk)
p →

( ∞⊕
m=1

J
(nm)
p

)
�p

for the canonical kth coordinate embedding. The canonical basis

(J1(e1), J1(e2), . . . , J1(en1), J2(e1), J2(e2), . . . ,

J2(en2), . . . , Jk(e1), Jk(e2), . . . , Jk(enk
), . . . )

of (
⊕∞

k=1 J
(nk)
p )�p

satisfies

‖Jk(e1) + Jk(e2) + · · · + Jk(enk
)‖ = ‖e1 + e2 + · · · + enk

‖Jp = 1 (k ∈ N).

If the sequence (nk)k∈N is unbounded, then this implies that (
⊕∞

k=1 J
(nk)
p )�p is not uni-

formly convexifiable by Gurarĭı–Gurarĭı’s Theorem (see [14, Theorems 345 and 352]); for
p = 2, this is observed in [5, p. 267]. On the other hand, Clarkson’s theorem states that
�p is uniformly convex (see [14, Theorem 333]), and so we reach the following conclusion.

Lemma 4.3. Let (nk)k∈N be an unbounded sequence of natural numbers. Then �p is
not isomorphic to (

⊕∞
k=1 J

(nk)
p )�p .

Proposition 4.4. For each j = (jk)k∈N0 ∈ J, set gap(j) := {k ∈ N | jk > jk−1 + 1}.

(i) If gap(j) is the empty set, then Pj = 0 and QPj
(Jp) = {0}.

(ii) If gap(j) is a finite, non-empty set, then Pj has finite rank and QPj
(Jp) = A(Jp).

(iii) If gap(j) is an infinite set and the sequence (jk − jk−1)k∈N is bounded, then the
image of Pj is isomorphic to �p and QPj

(Jp) = QI�p
(Jp).

(iv) If the sequence (jk − jk−1)k∈N is unbounded, then the image of Pj is isomorphic to
(
⊕∞

n=1 J
(n)
p )�p and QI�p

(Jp) � QPj
(Jp) ⊆ W(Jp).

This characterization will be completed in Proposition 4.18, below, where we show
that if the sequence (jk − jk−1)k∈N is unbounded, then QPj

(Jp) = W(Jp).
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Proof. Clauses (i) and (ii) are obvious, so we may assume that gap(j) is an infinite
set, say gap(j) = {ν1, ν2, . . . }, where ν1 < ν2 < · · · . For each k ∈ N, set µk := jνk−1 ∈ N0

and nk := jνk
− jνk−1 − 1 ∈ N. Using (4.4), it is straightforward to verify that

im Pj = span {eµk+m | k ∈ N, m ∈ {1, . . . , nk}}.

Observe that µk + nk < µk+1 for each k ∈ N, so that we can define a linear map

V : span{eµk+m | k ∈ N, m ∈ {1, . . . , nk}} →
( ∞⊕

k=1

J
(nk)
p

)
�p

by V eµk+m := Jk(em) for k ∈ N and m ∈ {1, . . . , nk}. As in the proof of [5, Lemma 2], we
can show that V is continuous and bounded below. Since V has dense image, it extends
to an isomorphism from imPj onto (

⊕∞
k=1 J

(nk)
p )�p

.
In the case where the sequence (jk−jk−1)k∈N is bounded, it is clear that (

⊕∞
k=1 J

(nk)
p )�p

is isomorphic to �p, and (iii) follows.
For (jk − jk−1)k∈N unbounded, (

⊕∞
k=1 J

(nk)
p )�p is isomorphic to (

⊕∞
n=1 J

(n)
p )�p by [6,

Lemma 5] because the Banach–Mazur distance between the (m+n)-dimensional Banach
spaces J

(m+n)
p and J

(m)
p ⊕ J

(n)
p is uniformly bounded in (m, n) ∈ N2. The inclusions

QI�p
(Jp) ⊆ QPj

(Jp) ⊆ W(Jp) hold because im Pj is reflexive and contains a comple-
mented subspace isomorphic to �p. Assume towards a contradiction that Pj belongs
to QI�p

(Jp). Then Proposition 3.4 shows that Pj actually belongs to PI�p
(Jp). By Corol-

lary 3.7, there are operators S : Jp → �p and T : �p → Jp such that Pj = TS. It follows
from Lemma 3.6 (ii) that Q := STST ∈ B(�p) is idempotent and imQ is isomorphic
to im Pj . In particular, imQ is infinite dimensional, so [20, Theorem 2.a.3] implies that
im Q is isomorphic to �p, contradicting Lemma 4.3. �

We note in particular that Proposition 4.4 (iv) generalizes Loy and Willis’s observation
that QI�2

(J2) � W(J2).

Corollary 4.5. The closed ideal QI�p
(Jp) is properly contained in W(Jp).

For p = 2, our next proposition is a combination of results due to Herman and Whitley
(see the proof of Lemma 1 in [15]) and Casazza, Bor-Luh Lin and Lohman (see [5, The-
orem 10]). The original proofs can be generalized directly; our approach using Proposi-
tion 4.4 gives a quick unified proof.

Lemma 4.6. Let (xk)k∈N be a normalized block basic sequence of the basis (ek)k∈N

of Jp with a ‘gap’ between any two consecutive blocks, that is, each basis vector has the
form

xk =
jk−1∑

m=jk−1+1

αmem (k ∈ N),

where α1, α2, . . . are complex numbers, j0 = 0, and j1, j2, . . . are integers satisfying

jk > jk−1 + 1 (k ∈ N).
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Then (xk)k∈N is equivalent to the standard basis of �p, and span {xk | k ∈ N} is comple-
mented in Jp.

Proof. By assumption, j := (jk)k∈N0 belongs to J with gap(j) = N. As in the proof
of Proposition 4.4, we can construct an isomorphism V : im Pj → (

⊕∞
k=1 J

(nk)
p )�p , where

nk = jk − jk−1 − 1 for each k ∈ N. Since span {xk | k ∈ N} is contained in imPj by (4.4)
and imPj is complemented in Jp, it suffices to show that the basic sequence (V xk)k∈N is
equivalent to the standard basis of �p and that span {V xk | k ∈ N} is complemented in
(
⊕∞

k=1 J
(nk)
p )�p

. However, this follows immediately from the facts that V xk ∈ im Jk for
each k ∈ N, inf{‖V xk‖ | k ∈ N} > 0, and sup{‖V xk‖ | k ∈ N} < ∞. �

We can now generalize the proof of [5, Corollary 11] to obtain the following important
result.

Corollary 4.7. Each closed, infinite-dimensional subspace of Jp contains a subspace
which is isomorphic to �p and complemented in Jp.

Lemma 4.8. Suppose that (xk)k∈N is a sequence in Jp satisfying the following:

(i) (xk)k∈N converges weakly to zero; and

(ii) inf{‖xk‖Jp | k ∈ N} > 0.

Then a subsequence of (xk)k∈N is a basic sequence equivalent to the standard basis of �p.

Proof. By [20, Proposition 1.a.12], a subsequence (x′
k)k∈N of (xk)k∈N is equivalent to

a block basic sequence (wk)k∈N of (ek)k∈N. Lemma 4.6 implies that (w2k/‖w2k‖Jp)k∈N

is equivalent to the standard basis (dk)k∈N of �p. By the uniform boundedness principle,
(xk)k∈N is norm-bounded, and therefore (wk)k∈N is norm-bounded. Condition (ii) implies
that inf{‖wk‖Jp | k ∈ N} > 0. It follows that (w2k)k∈N is equivalent to (dk)k∈N because
(dk)k∈N is an unconditional basis. Hence the subsequence (x′

2k)k∈N of (xk)k∈N has the
desired properties. �

We can now generalize Loy–Willis’s and Saksman–Tylli’s result that K(J2) = E(J2).

Proposition 4.9. The ideals of approximable, compact, strictly singular, inessential
and completely continuous operators coincide in B(Jp):

A(Jp) = K(Jp) = S(Jp) = E(Jp) = V(Jp).

Proof. The fact that Jp has a basis implies that A(Jp) = K(Jp). Since J∗
p has a basis, it

is separable, and so K(Jp) = V(Jp) by [18, Theorems 3 and 5]. As observed in [21, p. 334]
in the case p = 2, Corollary 4.7 implies that S(Jp) = E(Jp) by [4, Theorem 5.6.5].
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Suppose that the operator T on Jp is not completely continuous. Then there is a
sequence (xk)k∈N in Jp satisfying

(i) (xk)k∈N converges weakly to zero; and

(ii) inf{‖Txk‖Jp
| k ∈ N} > 0.

Condition (ii) implies that inf{‖xk‖Jp | k ∈ N} > 0, and so, by Lemma 4.8, we can take
a subsequence (x′

k)k∈N of (xk)k∈N and an operator U : �p → Jp which is bounded below
and satisfies Udk = x′

k for each k ∈ N, where (dk)k∈N is the standard basis of �p.
The sequence (Tx′

k)k∈N converges weakly to zero by (i), and inf{‖Tx′
k‖Jp | k ∈ N} > 0

by (ii). Hence, another application of Lemma 4.8 yields a subsequence (x′
km

)m∈N of
(x′

k)k∈N and an operator V : �p → Jp which is bounded below and satisfies V dm = Tx′
km

for each m ∈ N. The fact that (dk)k∈N is a (sub)symmetric basis implies that there is
an operator W : �p → �p which is bounded below and satisfies Wdm = dkm for each
m ∈ N by [20, § 3.a]. Since TUWdm = V dm for each m ∈ N, we have TUW = V , and
so T is not strictly singular because V is not strictly singular. We have thus shown that
S(Jp) ⊆ V(Jp) = K(Jp), and the proof is complete. �

Lemma 4.10. For each non-compact operator T on Jp, there is a closed subspace W

of Jp satisfying

(i) W is isomorphic to �p;

(ii) the restriction of T to W is bounded below; and

(iii) T (W) is complemented in Jp.

Proof. By Proposition 4.9, T is not strictly singular. Take a closed, infinite-dimen-
sional subspace X of Jp such that T |X is bounded below. Then T (X) is a closed, infinite-
dimensional subspace of Jp, so that Corollary 4.7 implies that T (X) contains a subspace
Y which is isomorphic to �p and complemented in Jp. Set W := X ∩ T−1(Y). It follows
that T |Y

W
: W → Y is an isomorphism, and hence (i)–(iii) hold. �

Remark 4.11. Conditions (ii) and (iii) of Lemma 4.10 imply that the subspace W is
complemented in Jp by [28, Lemma 1.1].

Corollary 4.12. Each ideal in B(Jp) strictly larger than K(Jp) contains PI�p
(Jp).

Proof. Suppose that I is an ideal in B(Jp) containing a non-compact operator T . Then
there is a closed subspace W of Jp satisfying conditions (i)–(iii) of Lemma 4.10. Take an
isomorphism U : �p → W and an idempotent operator P on Jp with im P = T (W). Set
V := (T |T (W)

W
U)−1 ∈ B(T (W), �p). For each operator S in PI�p

(Jp), there are operators
A : Jp → �p and B : �p → Jp with S = BA by Corollary 3.7. We define operators C and
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D on Jp such that the diagram

Jp
S ��

C

���
�
�
�
�
�
�
�
�
�
�
�

A

������������� Jp

�p

U ∼=
��

�p

B

���������������

W
T |T (W)

W

∼=
��

��
IJp |W

��											
T (W)

V∼=
��

Jp
T �� Jp

P |T (W)��













D

���
�
�
�
�
�
�
�
�
�
�
�

is commutative. It follows that S factors through T , and hence S belongs to I. �

With each operator T on Jp, we associate the (infinite) matrix (Tk,m)∞
k,m=1, where

Tk,m := fk(Tem) ∈ C (k, m ∈ N).

The facts that (fk)k∈N is a basis of J∗
p and that

∑n
m=1 em is a unit vector in Jp for each

n ∈ N imply that the series
∑∞

m=1 Tk,m converges for each k ∈ N. In other words, the
rows of the matrix of T are summable. Set

D(Jp) :=
{

T ∈ B(Jp)
∣∣∣∣ ∞∑

m=1

Tk,m = 0 for each k ∈ N and (Tk,m)∞
k,m=1 has only

finitely many non-zero entries in each row and column
}

.

Loy and Willis note that an operator T on J2 is weakly compact if and only if the
sequence (

∑∞
m=1 Tk,m)k∈N converges to zero (see [21, p. 328]). This observation is also

true for operators on Jp for any p ∈ ]1, ∞[. It follows that D(Jp) is contained in W(Jp).
Conversely, each weakly compact operator on Jp is the sum of a compact operator and an
operator belonging to D(Jp). This result is proved by Loy and Willis for p = 2 (see [21,
Lemma 2.1]). Their proof carries over to the general case provided that the reference
to [1, 3.2] is replaced with the elementary observation that, for each (αk)k∈N ∈ Jp, the
coordinatewise multiplication map (βk)k∈N �→ (αkβk)k∈N defines a compact operator on
Jp of norm at most 2‖(αk)k∈N‖Jp . In conclusion, we have

W(Jp) = D(Jp) + K(Jp). (4.5)

The left shift

Λ :
∞∑

k=1

αkek �→
∞∑

k=1

αk+1ek, Jp → Jp,
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is an operator of norm one on Jp, and hence

An,j :=
1
n

Hj

n−1∑
k=0

Λk (n ∈ N, j ∈ J)

is an operator of norm at most one on Jp. The operators An,j are at the heart of Loy
and Willis’s construction of a bounded right approximate identity in W(J2) (see [21,
Theorem 2.3]; note that An,j is denoted by A(n, j) in [21]). Loy and Willis’s proof can
be adapted to work for any p ∈ ]1, ∞[, yielding the following key result.

Lemma 4.13. For each operator T belonging to D(Jp), there is an element j ∈ J such
that

‖TAn,j‖ � p∗
√

2
n

‖T‖ (n ∈ N),

where p∗ = p/(p − 1) is the conjugate exponent of p.

Lemma 4.14. The operator IJp − Λ belongs to the ideal PI�p
(Jp).

Proof. This is immediate from the fact that IJp
− Λ = Θ∆, where

∆: (αk)k∈N �→ (αk − αk+1)k∈N, Jp → �p,

is the coordinatewise difference operator, and

Θ : (αk)k∈N �→ (αk)k∈N, �p → Jp,

is the formal inclusion operator. �

Corollary 4.15. For each operator T belonging to D(Jp), there is an element j ∈ J

such that THj belongs to QI�p
(Jp).

Proof. Let π : B(Jp) → B(Jp)/QI�p
(Jp) be the quotient homomorphism, and take j ∈

J as in Lemma 4.13. Then, for each n ∈ N, we have

p∗
√

2
n

‖T‖ � ‖TAn,j‖ � ‖π(TAn,j)‖ =
∥∥∥∥π(T )

1
n

π(Hj)
n−1∑
k=0

π(Λ)k

∥∥∥∥ = ‖π(THj)‖

because π(Λ) = π(IJp) by Lemma 4.14. Since p∗√2/n‖T‖ → 0 as n → ∞ and ‖π(THj)‖
is independent of n, we conclude that π(THj) = 0, and the result follows. �

Theorem 4.16. The ideal W(Jp) of weakly compact operators is the unique maximal
ideal in B(Jp).

Proof. The fact that the ideal W(Jp) has codimension one in B(Jp) implies that it is
maximal.

To see that it is unique, we show that each proper, closed ideal I in B(Jp) is con-
tained in W(Jp). If I = {0} or I = K(Jp), then this is certainly true. Otherwise Corol-
lary 4.12 implies that QI�p

(Jp) is contained in I. Each operator R on Jp can be written

https://doi.org/10.1017/S0013091500001097 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500001097


536 N. J. Laustsen

R = ζIJp
+ S, where ζ belongs to C and S belongs to W(Jp). By (4.5), we can take T

in D(Jp) and K in K(Jp) such that S = T + K. Corollary 4.15 implies that THj belongs
to QI�p

(Jp) (and hence to I) for some j ∈ J. Suppose that R belongs to I. Then, by (4.2),
we obtain

ζIJp = Gj(R − S)Hj = Gj(RHj − THj − KHj) ∈ I.

It follows that ζ = 0, and consequently R belongs to W(Jp). �

A similar result holds for the algebra B(J⊕n
p ) of operators on the direct sum of n copies

of Jp, where n is any natural number. This is an immediate consequence of the above
theorem, the identifications of B(J⊕n

p ) and W(J⊕n
p ) with Mn(B(Jp)) and Mn(W(Jp)),

respectively, and the standard algebraic fact [23, Proposition 1.6.10].

Corollary 4.17. For each natural number n, the ideal W(J⊕n
p ) of weakly compact

operators is the unique maximal ideal in B(J⊕n
p ).

Finally, Corollary 4.15 enables us to complete the characterization of the ideals QPj
(Jp)

for j ∈ J begun in Proposition 4.4. Our result shows in particular that W(Jp) is the closed
ideal generated by a single idempotent operator.

Proposition 4.18. Let j = (jk)k∈N0 ∈ J. If the sequence (jk−jk−1)k∈N is unbounded,
then

QPj
(Jp) = W(Jp).

Proof. We already know that K(Jp) ⊆ QI�p
(Jp) ⊆ QPj

(Jp) ⊆ W(Jp), so by (4.5) it
suffices to show that D(Jp) is contained in QPj

(Jp). For each T in D(Jp), Corollary 4.15
implies that THi belongs to QI�p

(Jp) for some i ∈ J. It follows from Proposition 4.4 that
im Pi is isomorphic to a complemented subspace of im Pj . Hence Pi belongs to QPj

(Jp),
and so

T = TPi + THiGi ∈ QPj
(Jp),

as required. �

Question 4.19. Are there any closed ideals in B(Jp) between QI�p
(Jp) and W(Jp)?

5. The Brown–McCoy radical of B(X)

In this section we calculate the Brown–McCoy radical of the algebra B(X) for various
Banach spaces X, and we show that it cannot be turned into an operator ideal.

Definition 5.1. Let B be a unital algebra. The Brown–McCoy radical (also known
as the strong radical) of B is the intersection of all maximal ideals in B. The Jacobson
radical of B is the intersection of all maximal left ideals in B. We denote these radicals
by radBM B and radJ B, respectively.

The Brown–McCoy and Jacobson radicals are proper ideals in B. The Brown–McCoy
radical always contains the Jacobson radical by [23, Theorem 4.5.9]. In the case where
B is a unital Banach algebra, maximal (left) ideals are automatically closed, so that
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the Brown–McCoy and Jacobson radicals are closed ideals in B. We refer to [23, §§ 4.3
and 4.5] for further results on these radicals as well as their definitions in the non-unital
case.

It is well known that radJ B(X) = {0} for each Banach space X. In contrast to this, we
note that

A(X) ⊆ radBM B(X) (5.1)

whenever the Banach space X is infinite dimensional. It follows from Theorem 1.1 that

radBM B(c0) = K(c0) = A(c0) and radBM B(�p) = K(�p) = A(�p) (1 � p < ∞),

so that the Brown–McCoy radical is as ‘small’ as possible in these cases. On the other
hand, Corollary 4.17 shows that the inclusion in (5.1) may be proper since

radBM B(J⊕n
p ) = W(J⊕n

p ) � A(J⊕n
p ) (n ∈ N, 1 < p < ∞). (5.2)

Yood observed that the Jacobson radical of B(X)/A(X) is non-zero for certain Banach
spaces X (see [31, p. 615]). Kleinecke then defined the ideal of inessential operators by

E(X) = π−1(radJ(B(X)/A(X))) (5.3)

for each Banach space X, where π : B(X) → B(X)/A(X) is the quotient homomorphism
(see [17]). Subsequently, Pietsch gave the ‘operator ideal’ definition of E(X, Y) that we
used on p. 526, and showed that it coincides with Kleinecke’s original definition (5.3) for
X = Y (see [24, 26.7.2] and [17, Theorem 1]).

It follows from (5.1) and [23, Theorem 4.5.3(b)] that

π−1(radBM(B(X)/A(X))) = radBM B(X) (5.4)

for each infinite-dimensional Banach space X. Our aim is to show that—unlike Pietsch’s
observation that the assignment X �→ π−1(radJ(B(X)/A(X))) can be turned into an
operator ideal E—it is impossible to turn the assignment

X �→ π−1(radBM(B(X)/A(X))) = radBM B(X)

into an operator ideal. To make this statement precise, we give the following definition.

Definition 5.2. Let X �→ JX be an assignment which associates with each infinite-
dimensional Banach space X an ideal JX in B(X). If there is an operator ideal I such
that I(X) = JX for each infinite-dimensional Banach space X, then we say that the
assignment X �→ JX can be turned into an operator ideal.

Theorem 5.3. The assignment X �→ radBM B(X) cannot be turned into an operator
ideal.

Proof. Assume towards a contradiction that I is an operator ideal satisfying I(X) =
radBM B(X) for each infinite-dimensional Banach space X, and take any p ∈ ]1, ∞[. It
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follows from Proposition 4.4 (iii) that there are operators S : Jp → �p and T : �p → Jp

such that ST = I�p
. Since

TS ∈ PI�p
(Jp) ⊆ W(Jp) = radBM B(Jp) = I(Jp),

we conclude that
I�p = S(TS)T ∈ I(�p) = radBM B(�p),

contradicting the fact that radBM B(�p) is a proper ideal in B(�p). �

6. Maximal ideal structure of B(X)

The aim of this section is to construct, for each natural number n, a Banach space X

such that B(X) has exactly n maximal ideals, and each of these n maximal ideals has a
prescribed codimension from the set {k2 | k ∈ N} ∪ {∞}. Note that, by Wedderburn’s
Theorem (see [23, Theorem 8.1.1]), the square numbers and infinity are the only possible
codimensions of maximal ideals in B(X), and so this result is the ‘best possible’.

We begin with some elementary, but very useful, algebraic observations which extend
the work of Volkmann (see [29]). Take an integer n � 2, let W1, . . . ,Wn be vector spaces,
and set W := W1 ⊕· · ·⊕Wn. Recall from § 2 that J1, . . . , Jn are the canonical coordinate
embeddings and Q1, . . . , Qn are the canonical coordinate projections associated with the
direct sum, and consider a subalgebra B of L(W) satisfying

JjQj ∈ B (j ∈ {1, . . . , n}).

Observe that IW =
∑n

j=1 JjQj ∈ B, so that B is unital.
For j, k ∈ {1, . . . , n}, set Bj,k := QjBJk. This is a linear subspace of L(Wk, Wj), and

for a linear map T : Wk → Wj we have: T belongs to Bj,k if and only if JjTQk belongs
to B. We write Bj instead of Bj,j . This is a unital subalgebra of L(Wj).

Lemma 6.1.

(i) Let j ∈ {1, . . . , n}, let I be a subset of Bj , and set

Î := {T ∈ B | QjTJj ∈ I}. (6.1)

Then Qj ÎJj = I. Moreover, I is an ideal in Bj satisfying

Bj,kBk,j ⊆ I (k ∈ {1, . . . , n} \ {j}) (6.2)

if and only if Î is an ideal in B.

(ii) Let I be an ideal in B, and let j ∈ {1, . . . , n}. Then

QjIJj = {T ∈ Bj | JjTQj ∈ I},

and this is an ideal in Bj .
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In the following we write I � A to denote that I is an ideal in an algebra A. For each
j ∈ {1, . . . , n}, the set

Ij := {I � Bj | Bj,kBk,j ⊆ I(k ∈ {1, . . . , n} \ {j})}

of ideals in Bj satisfying (6.2) is a sublattice of the lattice of ideals in Bj , and the set

I := {I � B | JjBj,kQk ⊆ I(j, k ∈ {1, . . . , n}, j 	= k)}

is a sublattice of the lattice of ideals in B. These lattices are related as follows.

Lemma 6.2. Equip I1 × · · · × In with the product order. Then the map

Υ : (I1, . . . , In) �→
n⋂

j=1

Îj , I1 × · · · × In → I,

where Îj is given by (6.1), is an order isomorphism with inverse

Υ−1 : I �→ (Q1IJ1, . . . , QnIJn), I → I1 × · · · × In.

Corollary 6.3.

(i) Let j ∈ {1, . . . , n}, and let M be a maximal ideal in Bj containing Bj,kBk,j for each
k ∈ {1, . . . , n} \ {j}. Then

Υ (B1, . . . ,Bj−1, M, Bj+1, . . . ,Bn) = {T ∈ B | QjTJj ∈ M}

is a maximal ideal in B.

(ii) Let N be a maximal ideal in B containing JjBj,kQk whenever j, k ∈ {1, . . . , n} are
distinct. Then Υ−1(N ) = (B1, . . . ,Bj−1, M, Bj+1, . . . ,Bn) for some j ∈ {1, . . . , n}
and some maximal ideal M in Bj .

We shall now specialize to the case where W1, . . . ,Wn (and hence W) are Banach
spaces and B = B(W). Then Bj,k = B(Wk, Wj) for each pair (j, k) ∈ {1, . . . , n}2.

We shall restrict our attention to closed ideals. The lattice isomorphism Υ preserves
closed ideals in the strong sense that, for (I1, . . . , In) ∈ I1 × · · · × In, we have that
I1, . . . , In are closed if and only if Υ (I1, . . . , In) is closed. It follows that we may regard
Υ as a lattice isomorphism from Icl1 × · · · × Icln onto Icl, where Icl1 , . . . , Icln and Icl are the
lattices consisting of the closed ideals belonging to I1, . . . , In and I, respectively.

We shall further assume that there are only a ‘few’ operators between any two spaces
Wj and Wk whenever j, k ∈ {1, . . . , n} are distinct. To make this precise, we require
González’s concept of essentially incomparable Banach spaces defined in the following
proposition.

Proposition 6.4 (González [9]). Let X and Y be Banach spaces. Each operator
from X to Y is inessential if and only if each operator from Y to X is inessential.

If either (and hence both) of these assertions is satisfied, then X and Y are termed
essentially incomparable.

https://doi.org/10.1017/S0013091500001097 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500001097


540 N. J. Laustsen

Lemma 6.5. Let W1, . . . ,Wn be pairwise essentially incomparable Banach spaces.
For each j ∈ {1, . . . , n}, the set

Ej := {I � B(Wj) | I is closed and E(Wj) ⊆ I}

is a sublattice of Iclj , and Υ maps E1 × · · · × En onto the sublattice

E := {I � B(W) | I is closed and E(W) ⊆ I}

of Icl.

Proof. Let j, k ∈ {1, . . . , n} be distinct. Then Bj,k = E(Wk, Wj) because Wj and Wk

are essentially incomparable. It follows that Bj,kBk,j ⊆ E(Wj) and JjBj,kQk ⊆ E(W),
and consequently Ej and E are subsets of Iclj and Icl, respectively. It is clear that Ej and
E are closed under the lattice operations.

If (I1, . . . , In) ∈ E1 × · · · × En, then QjE(W)Jj = E(Wj) ⊆ Ij for each j ∈ {1, . . . , n},
and hence E(W) ⊆

⋂n
j=1 Îj = Υ (I1, . . . , In). This shows that Υ (E1 × · · · × En) ⊆ E.

Conversely, if I ∈ E, then E(Wj) = QjE(W)Jj ⊆ QjIJj for each j ∈ {1, . . . , n}, so
that Υ−1(I) ∈ E1 × · · · × En. �

The importance of the above lemma lies in the fact that we can improve the iden-
tity (5.1) to yield that, for each infinite-dimensional Banach space X, the ideal of inessen-
tial operators on X is contained in the Brown–McCoy radical of B(X), so that maximal
ideals automatically belong to the lattices Ej and E.

Proposition 6.6. Let X be an infinite-dimensional Banach space. Then

E(X) ⊆ radBM B(X).

Proof. By [23, Theorem 4.5.9], radJ(B(X)/A(X)) ⊆ radBM(B(X)/A(X)), and hence
the result follows from (5.3) and (5.4). �

Remark 6.7. The identity (5.2) gives explicit examples of Banach spaces X for which
the inclusion E(X) ⊆ radBM B(X) is proper.

Corollary 6.8. Let W1, . . . ,Wn be pairwise essentially incomparable, infinite-dimen-
sional Banach spaces. Then the map

(j,M) �→ {T ∈ B(W) | QjTJj ∈ M},
n⋃

j=1

{(j,M) | M maximal ideal in B(Wj)} → {N | N maximal ideal in B(W)}

is a bijection.

We note in particular the following special case, which improves [29, Satz 2(c)].
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Corollary 6.9. Let W1, . . . ,Wn be pairwise essentially incomparable, infinite-dimen-
sional Banach spaces. For each j ∈ {1, . . . , n}, let Mj be a subset of B(Wj), and set

Nj := {T ∈ B(W) | QjTJj ∈ Mj}.

Then Mj is the only maximal ideal in B(Wj) for each j ∈ {1, . . . , n} if and only if
N1, . . . ,Nn are the only maximal ideals in B(W).

Remark 6.10. The condition that the Banach spaces W1, . . . ,Wn are pairwise essen-
tially incomparable cannot be removed from the above results. For example, take W1 = �p

and W2 = Jp for some p ∈ ]1, ∞[. These spaces are not essentially incomparable. We know
that K(W1) is the unique maximal ideal in B(W1) and that W(W2) is the unique max-
imal ideal in B(W2). However, B(W1 ⊕ W2) also has a unique maximal ideal because
W1 ⊕ W2 is isomorphic to W2 by Lemma 4.2 and Proposition 4.4 (iii). This shows that
Corollary 6.9 fails in this case.

The following fact is a consequence of Remark 3.2; it extends [9, Observation 1(b)].

Lemma 6.11. Let m and n be natural numbers, and let X1, . . . ,Xn and Y1, . . . ,Ym

be Banach spaces. Then X1 ⊕ · · · ⊕ Xn and Y1 ⊕ · · · ⊕ Ym are essentially incomparable
if and only if Xk and Yj are essentially incomparable for each pair (j, k) ∈ {1, . . . , m} ×
{1, . . . , n}.

We are now ready to prove our main result; it classifies all the closed ideals in B(X)
containing E(X), where X is a finite direct sum of James spaces and �p-spaces. In par-
ticular it shows that for any choice of finitely many square numbers, there is a Banach
space X such that B(X) has maximal ideals of these codimensions; and in addition there
may be any finite number of maximal ideals of infinite codimension.

Theorem 6.12. Let n, m and ν1, . . . , νn be natural numbers, let p1, . . . , pn+m be
distinct real numbers with p1, . . . , pn ∈ ]1, ∞[ and pn+1, . . . , pn+m ∈ [1, ∞[, and set

X := J
⊕ν1
p1

⊕ J
⊕ν2
p2

⊕ · · · ⊕ J
⊕νn
pn

⊕ �pn+1 ⊕ �pn+2 ⊕ · · · ⊕ �pn+m
.

Then

Ej =

{
{I � B(J⊕νj

pj ) | I is non-zero and closed}, 1 � j � n,

{K(�pj ), B(�pj )}, n + 1 � j � n + m,
(6.3)

and Υ is a lattice isomorphism from E1 × · · · × En+m onto

E = {I � B(X) | I is closed and E(X) ⊆ I}.

Proof. By [21, Theorem 4.5], the Banach spaces Jp1 , . . . ,Jpn
, �pn+1 , . . . , �pn+m

are
pairwise essentially incomparable. Lemma 6.11 then implies that

J
⊕ν1
p1

, . . . ,J⊕νn
pn

, �pn+1 , . . . , �pn+m

are pairwise essentially incomparable.
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For j ∈ {1, . . . , n}, A(Jpj
) = E(Jpj

) by Proposition 4.9, and hence A(J⊕νj
pj ) = E(J⊕νj

pj )
by Remark 3.2. It follows that E(J⊕νj

pj ) is contained in every closed, non-zero ideal in
B(J⊕νj

pj ). Theorem 1.1 shows that K(�pj
) = E(�pj

) and that K(�pj
) and B(�pj

) are the
only closed, non-zero ideals in B(�pj ) for j ∈ {n + 1, . . . , n + m}. This proves (6.3). Now
the result follows from Lemma 6.5. �

Corollary 6.13. Define the Banach space X as in Theorem 6.12. Then there are
exactly n + m distinct maximal ideals N1, . . . ,Nn+m in the algebra B(X), and they are
given by

Nj =

{
{T ∈ B(X) | QjTJj ∈ W(J⊕νj

pj )}, 1 � j � n,

{T ∈ B(X) | QjTJj ∈ K(�pj )}, n + 1 � j � n + m.

In particular Nj has codimension ν2
j in B(X) for 1 � j � n, whereas Nj has infinite

codimension in B(X) for n + 1 � j � n + m.

Remark 6.14.

(i) The conclusions of Theorem 6.12 and Corollary 6.13 remain true if we replace one
of the �p-spaces �pn+1 , . . . , �pn+m by c0.

(ii) Special cases of Theorem 6.12 and Corollary 6.13 are obtained by taking either
m = 0 or n = 0, that is, leaving out either the �p-spaces �pn+1 , . . . , �pn+m or the
James spaces J⊕ν1

p1
, . . . ,J⊕νn

pn
. The latter of these cases is the case considered by

Volkmann in [29].

7. Uniqueness of the maximal ideal in B(X) for hereditarily indecomposable
Banach spaces X

In this section we give another example of a class of Banach spaces X such that B(X)
has a unique maximal ideal, and this maximal ideal has finite codimension.

Definition 7.1. An infinite-dimensional Banach space X is hereditarily indecomposable
if no closed subspace W of X admits an idempotent operator P : W → W such that
neither im P nor kerP is finite dimensional.

Gowers and Maurey’s fundamental results about hereditarily indecomposable Banach
spaces are that they exist and that

B(X) = S(X) + CIX (7.1)

for each hereditarily indecomposable Banach space X (see [11]).

Proposition 7.2. Let X be a hereditarily indecomposable Banach space. Then S(X)
is the unique maximal ideal in B(X).

More generally, for each natural number n, S(X⊕n) is the unique maximal ideal in
B(X⊕n), and radBM B(X⊕n) = S(X⊕n).
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Proof. The ideal S(X) is maximal by (7.1). Proposition 6.6 implies that each maximal
ideal in B(X) contains E(X) and hence S(X). Now the first clause is immediate. The
second clause is proved analogously to Corollary 4.17. �

Remark 7.3.

(i) A completely different class of Banach spaces X with the property that the ideal
of strictly singular operators is the unique maximal ideal in B(X) is described
in [30, Theorem 6.2], where Whitley proves that this is true for any Banach space X

such that each closed, infinite-dimensional subspace of X contains a subspace which
is isomorphic to X and complemented in X. Schlumprecht’s space is an interesting
example of a Banach space satisfying this condition (see [27]).

(ii) A result similar to Corollary 6.13 can be obtained by replacing the James spaces
Jp1 , . . . ,Jpn by pairwise essentially incomparable, hereditarily indecomposable
Banach spaces X1, . . . ,Xn and then applying Proposition 7.2 instead of Corol-
lary 4.17.

To find such spaces, take any hereditarily indecomposable Banach space X1

and choose a descending chain X1 ⊇ X2 ⊇ · · · ⊇ Xn of closed, infinite-
dimensional subspaces of X1 such that Xj+1 has infinite codimension in Xj for
each j ∈ {1, . . . , n − 1}. It is shown in the proof of Proposition 4.5 in [19] that
B(Xj , Xk) = S(Xj , Xk) for 1 � j < k � n, so that the spaces X1, . . . ,Xn are
pairwise essentially incomparable. It follows from [19, Example 5.1] that, for dis-
tinct numbers p1, . . . , pm ∈ [1, ∞[, the Banach spaces X1, . . . ,Xn, �p1 , . . . , �pm

are
pairwise essentially incomparable.

8. Classification of the maximal ideals in B(G) for the Gowers space G

In this section we shall display a Banach space G such that the Banach algebra B(G)
has infinitely many maximal ideals; specifically, there are 22ℵ0 distinct maximal ideals
in B(G), each of codimension one. The Banach space G required for this is a creation of
Gowers, originally designed to solve Banach’s hyperplane problem (see [10]). It has sub-
sequently been investigated in more detail by Gowers and Maurey in [12, Section (5.1)].
Their main result about this space will be stated in Theorem 8.1, below. To do so, we
require some elementary facts about certain operators on Banach spaces with an uncon-
ditional basis.

Let X be a Banach space with an unconditional basis b = (bn)n∈N. Denote by (gn)n∈N

the associated biorthogonal functionals. The unconditionality of the basis b means that,
for each ξ = (ξn)n∈N ∈ �∞, there is an operator

∆b(ξ) : x �→
∞∑

n=1

ξngn(x)bn, X → X,

and the norms of these operators are uniformly bounded:

Kb := sup{‖∆b(ξ)‖ | ξ ∈ �∞, ‖ξ‖ � 1} < ∞.
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The assignment ∆b : ξ �→ ∆b(ξ), �∞ → B(X), is clearly linear and multiplicative, so that
∆b is a continuous algebra homomorphism. Moreover, ∆b has a left inverse:

Γb : T �→ (gn(Tbn))n∈N, B(X) → �∞.

This is an operator of norm at most Kb; it is not multiplicative. The diagonal operator
diagb : B(X) → B(X) associated with the unconditional basis b is now defined by

diagb(T ) := (∆bΓb)(T ) (T ∈ B(X)).

Theorem 8.1 (Gowers [10]; Gowers and Maurey [12]). There is a Banach space
G with an unconditional basis b such that T − diagb(T ) is strictly singular for each
T ∈ B(G).

We shall refer to this Banach space G as the Gowers space. The basis b will be termed
the canonical unconditional basis of G. Our analysis of B(G) relies on the following
elementary lemma.

Lemma 8.2. Let X be a Banach space with an unconditional basis b. For each ξ ∈ �∞,
the following assertions are equivalent.

(a) ξ ∈ c0.

(b) ∆b(ξ) ∈ A(X).

(c) ∆b(ξ) ∈ E(X).

Corollary 8.3. Let b be the canonical unconditional basis of the Gowers space G,
and let Π1 : B(G) → B(G)/S(G) and Π2 : �∞ → �∞/c0 be the quotient homomorphisms.
There is a continuous algebra isomorphism Ψ : �∞/c0 → B(G)/S(G) such that the dia-
gram

�∞
∆b ��

Π2

���
��

��
��

��
��

��
� B(G)

Π1 �� B(G)/S(G)

�∞/c0

∼=
Ψ

		�
�

�
�

�
�

�
�

is commutative.

In order to state the main result of this section, we require some terminology. A
character on an algebra A is a non-zero algebra homomorphism from A to C. For each
m ∈ N, the map (ξn)n∈N �→ ξm, �∞ → C, is a character on the algebra �∞. These
characters are termed the point evaluations.

Theorem 8.4. Let G be the Gowers space. Each maximal ideal in B(G) has codimen-
sion one, and the following five sets are in a bijective correspondence to each other:

(a) the set of maximal ideals in B(G);

(b) the set of maximal ideals in �∞/c0;
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(c) the set of characters on �∞ that are not point evaluations;

(d) the set of free ultrafilters on N; and

(e) the set (βN) \ N, where βN is the Stone–Čech compactification of N.

In particular there are 22ℵ0 distinct maximal ideals in B(G).

Proof. Each maximal ideal in B(G) contains S(G) by Proposition 6.6, so the first
clause and the bijective correspondence between the sets in (a) and (b) follow from
Corollary 8.3. The bijective correspondence between the sets in (b) and (c) is well known
and easy to check, whereas the bijective correspondence between the sets in (c), (d)
and (e) is standard; we refer to [7, Chapters 6–7] for details. The final clause follows
from [7, Theorem 9.2]. �
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A264 (1967), 95–96.
26. E. Saksman and H.-O. Tylli, Weak compactness of multiplication operators on spaces

of bounded linear operators, Math. Scand. 70 (1992), 91–111.
27. T. Schlumprecht, A complementably minimal Banach space not containing c0 or �p, in

Seminar Notes in Functional Analysis and Partial Differential Equations, Baton Rouge,
LA, 1992.

28. E. Tarafdar, Improjective operators and ideals in a category of Banach spaces, J. Aust.
Math. Soc. 14 (1972), 274–292.

29. P. Volkmann, Operatoralgebren mit einer endlichen Anzahl von maximalen Idealen,
Studia Math. 55 (1976), 151–156.

30. R. J. Whitley, Strictly singular operators and their conjugates, Trans. Am. Math. Soc.
113 (1964), 252–261.

31. B. Yood, Difference algebras of linear transformations on a Banach space, Pac. J. Math.
4 (1954), 615–636.

https://doi.org/10.1017/S0013091500001097 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500001097

