
4
Renormalization

Relativistic quantum field theories generally display infinities at suffi-
ciently high order in a loop expansion. These infinities must first be
regulated, meaning that cutoffs are applied to yield finite results that
can be manipulated with some mathematical rigor. The results are then
renormalized, so that the parameters of the Lagrangian and the cutoffs
are eliminated in favor of physical observables such as electric charge
and mass. If there are only a finite number of cutoffs as the number of
loops increases, the theory is said to be renormalizable and the cutoffs
can always be eliminated in favor of a finite number of observables. If
the number of required cutoffs increases without bound as the number
of loops increases then the theory is said to be nonrenormalizable and
one must specify an infinite number of observables to define the theory.
The general opinion is that a fundamental theory of nature should be
renormalizable. This is based on the belief that there are only a finite
number of independent parameters in our universe. An effective theory
only needs to describe nature over a finite range of distances or momenta,
and such a theory need not be renormalizable. In this chapter we consider
the basic aspects of a renormalizable theory and its implications for finite
temperatures. For definiteness we study a scalar field theory; the same
principles apply to more complicated theories, such as the gauge theories
to be studied in later chapters.

4.1 Renormalizing λφ4 theory

Recall that the interaction contribution to the partition function is given
by

lnZI = ln
( ∫

[dφ]eS∫
[dφ]eS0

)
(4.1)
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56 Renormalization

For the λφ4 theory the Lagrangian is

L = 1
2∂μφ∂μφ− 1

2m
2φ2 − λφ4 (4.2)

We found in Chapter 3 that we needed to add a counterterm −1
2δm

2φ2,
which is equivalent to saying that m2 = m2

R + δm2, where mR is the renor-
malized mass. The cutoff dependence of the self-energy at lowest order
could be canceled by a suitable choice of δm2.

Now we investigate what happens when we scale the field and the
coupling constant. Write

φ = Z1/2
3 φR (4.3)

Notice that we can integrate with [dφR] since Z3 cancels between the
numerator and denominator in (4.1). We also write

λ = Z1Z−2
3 λR (4.4)

The scaling factors Z1 and Z3 are known as the coupling constant and
the wavefunction renormalization, respectively. Usually in the literature
the symbol Z instead of Z is used for these, but here we do not want to
confuse them with the partition function.

The Lagrangian becomes

L = 1
2

[
∂μφR∂

μφR − (m2
R + δm2

)
φ2

R

]Z3 − λRφ
4
RZ1

= LR + 1
2

[
∂μφR∂

μφR −m2
Rφ

2
R

]
(Z3 − 1)

− 1
2Z3δm

2φ2
R − λRφ

4
R (Z1 − 1) (4.5)

where

LR = 1
2∂μφR∂

μφR − 1
2m

2
Rφ

2
R − λRφ

4
R (4.6)

The Lagrangian is thus expressed as a function of the renormalized field
and of the renormalized mass and coupling constant. The latter two
have numerical values that must be determined by experiment. All cut-
off dependence resides in the unobservable quantities Z1, Z3, and δm2.
In a perturbative renormalization scheme they should have power series
expansions

Z1 = 1 +
∞∑
n=1

anλ
n
R

Z3 = 1 +
∞∑
n=1

bnλ
n
R (4.7)

δm2 =
∞∑
n=1

cnλ
n
R
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4.2 Renormalization group 57

The coefficients an, bn, cn will depend in general upon the ultraviolet
cutoff Λc.

All renormalizable field theories can be dealt with in the manner
sketched above. The reader is referred to the excellent texts on relativistic
quantum field theory listed in the bibliography at the end of the chapter
for a full discussion of the renormalization program.

We remark again that whatever regularization and renormalization is
necessary and sufficient at zero temperature and chemical potential is
also necessary and sufficient at finite temperature and chemical potential.
(Recall the discussion in Section 3.4.)

4.2 Renormalization group

For the moment consider the λφ4 theory at T = 0 and with mR = 0. Gen-
eralization to mR > 0 and other theories is straightforward. The finite-
temperature effects are studied in Section 4.4.

Let Γ(n) be a 1PI Green’s function of n powers of the field φ. The
statement that the theory is renormalizable means that

Zn/2
3

(
λ,

Λc

M

)
Γ(n)(p, λ,Λc) = Γ(n)

R (p, λR,M) (4.8)

The unrenormalized Green’s function depends on the unrenormalized cou-
pling and on the cutoff Λc. The symbol p can represent one momentum
or a set of momenta (p1, p2, . . .). Since Z3 is dimensionless it can only
depend on λ and on Λc/M . What is M? Green’s functions are typically
infinite, so we must specify their value at some particular point, for exam-
ple, p2 = M2, using one or other of the following diagrams:

pp

or

pp

0 0

We could require Γ(n)
R to have its free-field value at p2 = M2, that is,

Γ(n)
R (p2 = M2, λR,M) = Γ(n)

R (p2 = M2, 0,M) (4.9)

as is frequently done, but the choice is arbitrary. Physical results should
be independent of the renormalization scheme, in particular, independent
of the choice of M .

The requirement of renormalizability has consequences. To see them,
take the total derivative of the left- and right-hand sides of (4.8) with
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58 Renormalization

respect to M , keeping λ and Λc fixed:

M
d

dM

(
Zn/2

3 Γ(n)
)

= M

(
∂Zn/2

3

∂M

)
λ,Λc

Γ(n)

(4.10)

M
d

dM
Γ(n)

R = M

(
∂Γ(n)

R

∂M

)
λR

+

(
∂Γ(n)

R

∂λR

)
M

(
∂λR

∂M

)
λ,Λc

Now for sake of convenience of notation define

γ(n) = −Z−n/2
3 M

(
∂Zn/2

3

∂M

)
λ,Λc

= Z−n/2
3 Λc

(
∂Zn/2

3

∂Λc

)
λ,M

=
1
2
nΛcZ−1

3

(
∂Z3

∂Λc

)
λ,M

= nγ(1) (4.11)

and

βλ = M

(
∂λR

∂M

)
λ,Λc

= −Λc

(
∂λR

∂Λc

)
λ,M

(4.12)

in the conventional notation. The quantity βλ must not be confused
with the inverse temperature. Putting these all together, we arrive at
the renormalization-group equation(

M
∂

∂M
+ βλ

∂

∂λR
+ γ(n)

)
Γ(n)

R = 0 (4.13)

All the Γ(n)
R must satisfy this equation on account of renormalizability. It

expresses the invariance of physical observables under changes in M , the
renormalization scale.

The renormalized 1PI Green’s function has the general functional form

Γ(n)
R = pDz

( p

M
, λR

)
where D is the dimension of Γ(n) and z is a dimensionless function of the
two displayed dimensionless variables. After substitution into (4.13), fac-
toring out pD, and then defining x = M/p, y = λR, we obtain the linear,
homogeneous, first-order partial differential equation(

x
∂

∂x
+ βλ(y)

∂

∂y
+ γ(n)(y)

)
z(x, y) = 0 (4.14)

https://doi.org/10.1017/9781009401968.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401968.005


4.2 Renormalization group 59

This equation can be solved by the method of characteristics. The solution
is

z = f(u(x, y)) exp
(∫ x0

x
γ(n)(x

′)
dx′

x′

)
(4.15)

Here x0 is a reference point, f is an arbitrary function, and u(x, y) = c
represents the relationship between x and y when they satisfy the differ-
ential equation

x
dy

dx
= βλ(y) (4.16)

The solution to this equation involves one constant of integration, cor-
responding to c. What is meant by γ(n)(x) is γ(n)(y(x)) where y(x) is
determined from u(x, y) = c. Translating this back into the original nota-
tion we have the solution to (4.13) as

Γ(n)
R = G

(
p, λ̄

(
M ′

M

))
exp

(∫ M ′/p

M/p
γ(n)(x)

dx

x

)
(4.17)

The function G is arbitrary and undetermined by the renormalization-
group equation. The renormalization-group running coupling λ̄ satisfies
the differential equation

χ
dλ̄

dχ
= βλ(λ̄) (4.18)

where χ = M ′/M , subject to the condition

λ̄(χ = 1) = λR (4.19)

The exponential in (4.17) is referred to as the anomalous dimension of
Γ(n)

R .
To the lowest nontrivial order, βλ is computed to be (Exercise 4.1)

βλ(λ̄) =
9

2π2
λ̄2 (4.20)

The differential equation to be solved is

χ
dλ̄

dχ
=

9
2π2

λ̄2 (4.21)

The solution satisfying (4.19) is

λ̄ =
λR

1 − (9/4π2)λR lnχ2
(4.22)
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The denominator may be expanded in a power series in λR:

λ̄ = λR

∞∑
n=0

[
9λR

4π2
ln
(
M ′2

M2

)]n
(4.23)

This expansion may be arrived at in a completely independent manner,
as follows. At each order in perturbation theory compute the logarith-
mic contribution of the highest power. This is known as the leading-log
approximation. One obtains the same result as a consequence of the renor-
malization group.

The renormalization-group running coupling λ̄ does not depend on M
and λR separately but only on a particular combination of them. In (4.22)
define

9
2π2

ln Λ ≡ λ−1
R +

9
2π2

lnM (4.24)

Furthermore, let us choose M ′2 = p2, the only natural scale in the prob-
lem. Then

λ̄ =
4π2

9 ln (Λ2/p2)
(4.25)

The effective coupling λ̄ no longer depends on the coupling λR originally
appearing in the Lagrangian! This is often referred to as dimensional
transmutation. There is no longer an intrinsic coupling constant, but in
its place there is an intrinsic energy scale Λ (not to be confused with
the cutoff Λc). The effective coupling λ̄ depends on the momentum p.
As p/Λ → 0, we have λ̄ → 0, which is infrared freedom. The coupling
effectively goes to zero at large distance so that weak coupling expansions
should be quite accurate there. Since to lowest order the beta function
βλ is positive, it follows that λ̄ must be larger at short distances. In fact,
from (4.25), λ̄ → ∞ as p/Λ → 1. This is certainly an artifact of the lowest-
order perturbation expansion of βλ, but nevertheless it indicates that the
coupling grows as the distance decreases.

4.3 Regularization schemes

We have regulated the divergences in the scalar field theory by placing an
upper limit on the integration over four-momentum in Euclidean space.
There are alternative regularization procedures, dimensional regulariza-
tion being the most commonly used by far. Dimensional regularization is
almost indispensable in gauge theories. The idea is to work in n = 4 − ε
dimensions where integrals converge and then analytically continue to
ε → 0.
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Consider the self-energy in scalar field theory. The one-loop expression
in Minkowski space is

Πvac
1 = −12λκε

∫
dnl

(2π)n
i

l2 −m2 + iε

= −12λκε

(2π)n
πn/2Γ(1 − n/2)

m2−n
(4.26)

This scheme requires the introduction of a mass scale κ to compensate
for the deviation from four dimensions and so ensuring that λ remains
dimensionless. The Γ function has poles at the negative integers. Using

Γ(−n + δ) =
(−1)n

n!

(
1
δ

+ ψ(n + 1) + O(δ)
)
, (4.27)

with

ψ(n + 1) = 1 +
1
2

+ · · · + 1
n
− γE (4.28)

where γE is Euler’s constant, we find that

Πvac
1 =

3λm2

4π2

[
2
ε

+ ψ(2) + ln
(
κ2

m2

)
+ ln 4π + O(ε)

]
(4.29)

This may be compared with the momentum cutoff scheme

Πvac
1 =

3λ
4π2

[
Λ2

c −m2 ln
(

Λ2
c

m2

)
+ O

(
m4

Λ2
c

)]
(4.30)

In the “minimal subtraction” scheme (MS) none of the constant terms
are absorbed into the mass, only the divergent 1/ε term. In the “modified
minimal subtraction” scheme (MS) the finite constant terms are absorbed
too. A similar absorption is made for the renormalized coupling.

The arbitrariness in choosing the counterterms is a reflection of the
whole regularization and renormalization program in quantum field the-
ory. After expressing physical observables in terms of them, there should
be no difference. However, the intrinsic scale Λ does depend on the scheme;
for example, there are ΛMOM, ΛMS, ΛMS, and so on. Their numerical values
will in general be different. This is nowhere more apparent than in QCD.

4.4 Application to the partition function

Now we investigate the implications of the renormalization group for the
partition function. Let T replace p. As given in (4.1), lnZI is comparable
with a Green’s function that is zeroth order in the field. It has dimension
exactly four and no anomalous dimension. Thus, (4.17) instructs us to
replace λR with λ̄. If we had an exact expression for lnZ then the choice of
renormalization scale M would indeed be arbitrary. Since we only compute
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62 Renormalization

a finite number of terms in a weak-coupling expansion, we should choose
M in an optimal way so as to minimize the contribution of higher-order
terms. For the massless self-interacting scalar field we take M = bT , where
b is a number of order unity, since this is the only energy scale in the
problem. We then have

λ̄ =
2π2

9 ln(Λ/bT )
(4.31)

As T/Λ → 0 the thermodynamics is well approximated by a gas of non-
interacting massless bosons. As T/Λ → 1 the system becomes strongly
coupled and the weak coupling expansion is no longer a reasonable approx-
imation. What really happens at very high temperatures is unknown.

In Chapter 3 the pressure was calculated up to order λ3/2. It has been
calculated up to order λ2 by Frenkel, Saa, and Taylor [1], and to order
λ5/2 by Parwani and Singh [2]. Using the minimal subtraction scheme,

P =
π2

90
T 4

{
1 − 5

24

(
9λR

π2

)
+

5
18

(
9λR

π2

)3/2

− 5
36

(
9λR

π2

)2 [3
4

ln
(

2πT
M

)
+ c1

]
+

5
36

(
9λR

π2

)5/2 [
ln
(

9λR

π2

)
+

3
2

ln
(

2πT
M

)
+ c2

]}
(4.32)

is obtained. Here the prime has been dropped from the M in accordance
with the notation in Section 4.2. The constants are given by

c1 =
3
8

ln (4π) +
1
2
ζ ′(−3)
ζ(−3)

− ζ ′(−1)
ζ(−1)

+
γE

8
+

59
60

≈ −0.606 85

c2 =
ζ ′(−1)
ζ(−1)

+
γE

4
− 2 ln 3 − 5

4
≈ −1.317 87 (4.33)

If the scale M is held fixed then the perturbative expansion is not reliable
at high temperatures on account of the logarithmic terms ln(2πT/M).
The renormalization group tells us that we should not choose M constant
but proportional to the temperature. If we choose M = bT then the large
temperature-dependent logarithms are of order unity. Indeed, if we choose
the coefficient b just right then there is no contribution of order λ2

R at all!
It is compensated by corresponding contributions at higher orders in λR.
Equivalently, we can eliminate the logarithmic terms ln(2πT/M) by re-
expressing the pressure in terms of the renormalization-group running
coupling from (4.23),

λ̄ = λR

[
1 +

9λR

2π2
ln
(
bT

M

)]
+ O(λ3

R) (4.34)

The result, of course, is the same.
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4.5 Exercises

4.1 Derive (4.20) from the definition (4.12). Hint: The renormalized cou-
pling λR can be determined from the expression −(1/3!)(δ2 lnZ1/
δD2

0)1PI. Use (3.11) and (3.15) to obtain a diagrammatic expansion
for λR. You will find that the order-λ2 correction is given by a single
one-loop diagram. Note that you only need the cutoff (Λc) depen-
dence to determine βλ.

4.2 Verify the claim surrounding (4.34).
4.3 Make a plot illustrating the convergence of the expansion of the

pressure in (4.32) using M = T . Repeat the exercise with M = πT ,
2πT , and 2πT e4c1/3.

4.4 Derive a renormalization-group equation for Γ(n)
R at finite tempera-

ture as well as finite momentum, and then find the solution. Discuss
how you might want to choose the optimal value of M when there
are two variables, p and T .
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