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Abstract

The current research investigated the present and future projected distribution of rice (Oryza
sativa L.) based on climatic suitability under three representative concentration pathways
(RCPs) of the Intergovernmental Panel on Climate Change using maximum entropy
(MaxEnt) modelling. The MaxEnt models predict that rice distribution in Bhutan will
undergo major changes in terms of spatial range shift of varying magnitudes by 2060.
Under the anthropogenic radiative forcing of RCP2.6, RCP4.5 and RCP8.5, ecological space
of rice is predicted to change between 1 and 43%. Major changes are likely to take place in
major rice-growing ecological zones of the country. This is likely to have a negative impact
on the livelihood and food security of the people as crop production might start declining
due to unfavourable climatic factors. Therefore, the findings of this study could prove bene-
ficial for forecasting focus sites requiring interventions, including future climate research,
planning, policy formulation and conservation of natural resources.

Introduction

Distribution and adaptability of all biological organisms in a particular geographic location is
defined by bio-physical and environmental factors. Slight changes in bioclimatic variables
would have large ramifications on the characteristics of ecosystem functions, diversity and spe-
cies dynamics. Studies have indicated that the upward trend in the mean temperatures is likely
to have significant implications on the survival and distribution of species (IPCC, 2013; Pimm
et al., 2014). The habitats of plants and animals, and their niches, have been irrecoverably
altered, or lost to anthropogenic activities (Pimm et al., 2001; Lewis, 2006; Hof et al., 2011).
One of the most important issues of climate change in the recent years is the reduction of
environmental spaces of plants and animals, leading to habitat alteration (Bellard et al.,
2012). These environmental changes are reported to have led to shifts in the species’ geograph-
ical range, including extinction across the globe (Pearson et al., 2014; Pacifici et al., 2015).
Under the projected future climate, plants (crops) are reportedly most affected, through
changes in their phenotypic plasticity (Nicotra et al., 2010; Gray and Brady, 2016), distribution
pattern (Wang et al., 2014; Deb et al., 2017) and yield responses (Lobell and Field, 2007; Kim
et al., 2013; Leng and Huang, 2017; Van Oort and Zwart, 2018). Because farming is intrinsic-
ally dependent on environmental conditions and weather factors, agro-ecologies are one of the
most vulnerable systems that require utmost attention for long-term sustainability. Among the
agro-ecological entities, rice (Oryza sativa L.) is one of the most important crops that is highly
vulnerable to the climate change-induced vagaries of weather fluctuations (Mohanty et al.,
2013; Trisurat et al., 2018; Ray et al., 2019). Globally, rice is being grown in different regions
of the world: South East Asia, South Asia, Mediterranean countries, Middle East, Africa, USA,
Brazil and a few other Latin-American countries (Yoshida, 1981; Grisp, 2013). It has been
revealed that rice is the most important crop that feeds more people than any other crop in
the world (GRiSP, 2013; Muthayya et al., 2014; Chauhan et al., 2017). People of Bhutan eat
rice three times a day, and this crop constituted a lifeline for many Asians. In recent years,
there has been major interventions in rice research and development in the country.
However, the crop has been hit hard by increased frequency of drought and erratic precipita-
tion (NBC, 2011; Parker et al., 2017; Chhogyel and Kumar, 2018). Bhutan, by virtue of its loca-
tion in the Himalayas is reported to have experienced a large impact of climate change
(Chhogyel et al., 2020a).
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Technological breakthroughs, such as advances in geo-spatial
sciences, and computer soft power have enabled climate impact
and spatial-modelling studies. Among many, maximum entropy
(MaxEnt) modelling is one of the popular GIS-based software
packages used for the development of species distribution models
(Phillips et al., 2006; Abdelaal et al., 2019; Kariyawasam et al.,
2019). Studies have reported that MaxEnt is an internationally
accepted and widely used model for mapping and analysis of both
animals and plant species under different climate scenarios (Qin
et al., 2017; Esfanjani et al., 2018; Lamsal et al., 2018; Sharma
et al., 2018). There are also reports of species distribution modelling
(SDM) being developed for rice and its ecosystem (Heumann et al.,
2011; Ojara et al., 2017; Byeon et al., 2018).Modelling studied of Kim
et al. (2013), Chun et al. (2016) and Zhang and Tao (2013) reported
marked changes in the rice response to the changes in the projections
of future climate. Findings of these studies could be useful for envir-
onmental conservation and climate policy perspectives, besides con-
tributing to the scientific knowledge at large. Based on the spatial and
climatic heterogeneities of the rice ecosystem, it is important for
countries to model its distribution for future climate adaptation
and mitigation plans. The models that represent environmental
space for crops, such as rice under the projected future ensembles
of climatewill be highly useful to obtain a clearer picture of its impact
in the projected future. Thus, it is imperative that the rice-producing
countries, especially in South Asia and South East Asia, must put in
best policy support and development strategies to overcome the
scourge of climate change impacts for both short and long terms.
Moreover, rice paddies are considered as one of the most important
areas of scientific research, given that rice systems emit varying levels
of greenhouse gases into the atmosphere, particularly CH4 and N2O
(Linquist et al., 2012). Furthermore, under the impact of climate
change, water resources are said to be getting scarce and is projected
to decrease further (Schewe et al., 2014). Considering such a scenario
under the impacts of climate change rice, which requires the max-
imum water than any other crops, is likely to be affected the most
(Wassmann et al., 2000; Bouman et al., 2007; Mohanty et al.,
2013). Therefore, prediction of changes in the geographical distribu-
tion of rice using different levels of Intergovernmental Panel on
Climate Change’s (IPCC) representative concentration pathways
(RCPs) would provide some convincing evidence for the impacts
of climate change on the crop. In this context, the current research
was undertaken to study the impacts of climate change on distribu-
tion of Bhutan’s most important crop (rice) through MaxEnt mod-
ellingwith specific objectives: (1) tomodel the distribution pattern of
rice for the current and future climate, (2) to compare the projected
rice distribution pattern under the anthropogenic forcing of RCP2.6,
RCP4.5 and RCP8.5 and (3) to analyse spatial changes in environ-
mental spaces (suitability) under the future climate as indications
for future climate mitigation and adaption strategies in Bhutan. As
the country currently lacks published studies, the research output
so generated is aimed at providing a major thrust for the future cli-
mate studies and policy development, including rural livelihood pro-
jects and any other developmental initiatives that the country will
undertake for long-term sustainability of rice ecosystems.

Materials and methods

Study site

The study is based on the national rice area of the Himalayan
country of Bhutan in Asia, located in the eastern part of the
Himalayas, between China and India (NEC, 2011). Bhutan’s

border stretches between latitudes 26°42′2.36′′N and 28°
14′51.64′′N and longitudes 89°46′5.7′′E and 90°32′3.29′′E
(Fig. 1). It is one of the smallest countries in the world with a geo-
graphical area of just 38 394 km2 (NSSC and PPD, 2011) and is a
mountainous country with rugged topographic features. However,
Bhutan has a highly heterogeneous climate supporting rich bio-
diversity (NBSAP, 2014), thus making it an important study
area for the current research. It stretches from the sub-tropical
region in the south to temperate regions in the north with an ele-
vation range of 100–2600 m above mean sea level (Chhogyel et al.,
2018). Rice in Bhutan is concentrated in the narrow valleys and
smaller land parcels across mountain slopes throughout the coun-
try (Chhogyel et al., 2015; DoA, 2016). Though rice is the most
studied crop, for Bhutan not many studies have been undertaken
to fully understand the crop response under the country’s chan-
ging climate and environmental conditions. This crop has been
chosen as the biological entity for SDM, or the environmental
niche modelling (ENM) study because it is the most widely culti-
vated crop species in Bhutan and it is imperative that the distribu-
tion pattern of the crop is stratified based on its environmental
suitability that potentially indicates distribution.

Bhutan is a carbon negative country and does not contribute to
global warming; however, the impacts of climate change have
been increasingly felt in recent years. Scientific findings from a
small country, such as Bhutan, could potentially capture a
wider audience as the issues of climate change impacts reverberate
around the world. Thus, the current research on Bhutan could be
taken as a case study of a developing country in Asia.

Data use and processing

Two important categories of inputs used for MaxEnt modelling
include species occurrence (presence-only) and environmental
variables. The occurrence of species in an environmental space is
indicated by location points, or the geographic coordinates (long-
itudes and latitudes in decimal degrees) of that particular place
and was assessed in the current work based on the observation
of rice-growing areas in the country. Geographic coordinates cor-
responding to the different locations of rice areas were used as
data confirming species presence for running the model. A total
of 514 geographic coordinates were derived from the raster file of
rice cultivation area, which was obtained from the Ministry of
Agriculture and Forests, Royal Government of Bhutan. For
maximum coverage of the study area, an additional 993 species
location points were collected from the rice cultivation areas
using Google Earth Pro (https://www.google.com/earth). Altogether,
a sum of 1507 geographic coordinates of species presence-only data
(514 from country raster file and 993 from online Google Earth)
were collected and pre-processed with spatial rarefication at 2 km
resolution to remove highly auto-correlated geographic coordinates
that contribute to environmental biases. According to Boria et al.
(2014), spatial data filter is said to reduce the effects of sampling
bias by reducing the degree of overfitting in the model.

In the case of bioclimatic variables, data (WorldClim version
1.2) were acquired from the public domain of the global climate
website (https://worldclim.org/data/bioclim.html). The biocli-
matic variables were current (1970–2000) and future projected
climate data (2041–2060). A total of 19 grid-based bioclimatic
variables at 30 arcsec (∼1 km2) were downloaded and processed,
mainly for removing collinearity of data. The collinearity between
the 19 variables was evaluated using the ‘remove collinearity’
function in R. The highly correlated variables were removed

26 Ngawang Chhogyel et al.

https://doi.org/10.1017/S0021859620000350 Published online by Cambridge University Press

https://www.google.com/earth
https://www.google.com/earth
https://worldclim.org/data/bioclim.html
https://worldclim.org/data/bioclim.html
https://doi.org/10.1017/S0021859620000350


and predictors for which pairwise Pearson’s correlation coefficient
between variables with R⩾ 0.80 were used (Yang et al., 2013; Qin
et al., 2017; Jayasinghe and Kumar, 2019; Kariyawasam et al.,
2019). Additional geo-physical inputs, such as Digital Elevation
Model (DEM), having a similar resolution to that of bioclimatic
variables, were downloaded from the global multi-resolution ter-
rain elevation data 2010 (http://lta.cr.usgs.gov/GMTED2010) and
clipped for the study area. From this, slope and aspect rasters of
the study area were derived and used as additional layers for
the MaxEnt modelling work. Elevation, slope and aspect are
important limiting factors in rice cultivation for a mountainous
country, such as Bhutan, where crop-growing terraces are limited
to gentle slopes and river valleys. Finally, we had ten sets of input
variables (seven bioclimatic and three geo-physical) used for gen-
erating rice distribution models (Table 1). The environmental
variables were rasterized into the same boundaries and pixel
sizes, including the coordinate systems using Geographic
Information System (GIS), ArcMap version 10.4.1. Also, all the
input environmental variables were re-projected to
CGS_WGS_1984 with a spatial resolution of 1 km2, after which
the layers were converted to ASCII format for export and subse-
quent modelling process in MaxEnt software.

MaxEnt and its features

MaxEnt is a GIS-based software package that is quite efficient and
user friendly for SDM and species niche modelling (SNM)
(Phillips et al., 2006; Elith and Leathwick, 2009). It is a powerful
programme for modelling species distributions from
presence-only records, and is widely used in biogeography, con-
servation biology, ecology and evolutionary sciences
(Moreno-Amat et al., 2015; Vale et al., 2016; Merow et al.,
2017). Though MaxEnt is said to under-estimate climatic toler-
ance of species (Bocsi et al., 2016), Elith et al. (2006) had the
view that it’s predictive performance is consistently competitive
with the highest performing methods and currently finds exten-
sive use in species distribution studies (Duan et al., 2014;
Moreno-Amat et al., 2015). The use of species presence-only
data in MaxEnt modelling means that there is no inclusion of

unreliable absence-data that show tendency to preclude modelling
of potential distributions due to their strong imprints of biotic
interactions, dispersal constraints and other disturbances (Elith
et al., 2011). Thus, in the presence-only data the models are
based on probability of the presence of species, conditioned to
exist in a set of environmental covariates that represent environ-
mental conditions. This means that the species presence-only data
show the probability of species prevalence as the MaxEnt outputs.
The core of the MaxEnt model output is the relative suitability of
one place over another based on certain environmental covariates
and could be mathematically put as a ratio of conditional densities
of covariates at presence sites f1(z) to unconditional densities of
covariates across the study area f (z), represented as f1(z)/f(z).
This is referred to as logistic output (log of output) and better
represented as below (Phillips et al., 2006; Elith et al., 2011):

n (z) = log(f1(z)/f (z) (1)

where n(z) is the logistic output for relative suitability of the
species in that particular place, f1(z) is the covariates of species
presence and f(z) is the covariates across the environmental space.

This notation is the logit core that calibrates the intercept
(species occurrence point) to denote the implied probability of
the presence at the particular site with typical conditions.
Simply put, f1(z) could be expanded as below:

f1(z) = f (z)en(z) (2)

where en(z) = α + β⋅h(z), in which h(z) is the vector of features, β is
the vector of coefficients, which are the constraints on the means
of covariates to the means of features and α is a normalizing con-
stant that ensures f1(z) integrates or sums up to 1.

From this relationship, it establishes that the target of MaxEnt
model is en(z) which estimates the probability ratio explained in
Eqn (1).

The current study gathered species-presence data for rice to
model crop suitability. It is also known that rice is a crop that
has specific bio-physical requirements, and is considered to be
highly sensitive to the impacts of climate change. Thus, there is

Fig. 1. Ecological distribution and niche model of rice
area in Bhutan under the current climate (1970–2000).
Circles represent areas where rice is present.
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a need to develop an ENM for rice under projected future climate
based on the current data to serve as a model for the changing
environmental conditions.

Settings of the model

MaxEnt software, version 3.4.1 (Phillips et al., Internet) was used
for developing a species distribution model for rice in Bhutan. For
improving the model performance, a convergence threshold of
10−5 was calibrated with a maximum number of iterations at
5000. These settings provide the models adequate time for conver-
gence of input information to build-up the models. It should be
noted that a high number of iterations gives the models sufficient
time to process the data, thus avoiding over- or under-prediction
of the species distribution. Other calibrations for improving the
models included setting the maximum number of background
points at 50 000, with a regularization multiplier value of
2. These were mainly for making the fitted surface more regular,
or smooth, by controlling overfitting in the environmental space.
Regularization multiplier value of 2 meant doubling the regular-
ization, or making the surface more regular (smooth/even) with
a large number of background points. The run type was a cross-
validation method that divides the original samples into a set of
training and testing of the models. The MaxEnt output was

formatted to logistics with 75% of the occurrence records were
used for training and 25% for random testing of the model.
This means that 75% of the data inputs were used for suitability
mapping of rice in modelling and 25% of the data for random
testing of the model generated by MaxEnt. Furthermore, an
auto feature option was selected with five replications, and the
rest were kept as default. By these, the occurrence data are
randomly split into a number of equal-sized groups called
‘folds’, and models are created leaving out each fold in turn.
These settings have been undertaken to give a broader and less
discriminating prediction (Phillips et al., 2006). Other settings
included fade-by-clamping that take care of inaccuracies in pre-
dictions outside the environmental range of training data and
the threshold rule was set to maximum training sensitivity plus
the specificity logistics for the present and 2060 suitability
maps. Such a setting was found to be one of the best methods
for species presence, absence or for presence-only data when ran-
dom points were used (Liu et al., 2005).

The model output was based on the area under the receiver
operating characteristic (ROC) curve, which is also referred to
as area under curve (AUC) (Elith et al., 2006; Phillips et al.,
2006). AUC is a curve that describes relationship between propor-
tion of correctly predicted presences of species and proportion of
species absence incorrectly predicted in the model. According to

Table 1. Bioclimatic variables used for SDM of rice

No.
Environmental

variables Variable designations Remarks

1 Bio1a Annual mean temperature 19 bioclimatic variables downloaded and processed for use in MaxEnt
modelling

2 Bio2a Mean diurnal range

3 Bio3a Isothermality

4 Bio4 Temperature seasonality

5 Bio5 Max. temperature of warmest month

6 Bio6 Min. temperature of coldest month

7 Bio7 Temperature annual range

8 Bio8 Mean temperature of wettest
quarter

9 Bio9 Mean temperature of driest quarter

10 Bio10 Mean temperature of warmest
quarter

11 Bio11 Mean temperature of coldest quarter

12 Bio12a Annual precipitation

13 Bio13 Precipitation of wettest month

14 Bio14a Precipitation of driest month

15 Bio15a Precipitation seasonality

16 Bio16 Precipitation of wettest quarter

17 Bio17 Precipitation of driest quarter

18 Bio18a Precipitation of warmest quarter

19 Bio19 Precipitation of coldest quarter

20 Elevation Altitude/height from mean sea level Additional bio-physical variables used in modelling

21 Slope Inclination of surface gradient

22 Aspect Orientation of slope

aIndicates selected bioclimatic variables based on collinearity test and rest were discarded.
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Thuiller et al. (2006), AUC values ranging between 0.9 and 1.0
show excellent model performance, whereas AUC values of 0.8–
0.9 means good; 0.7–0.8 is average; 0.6–0.7 is poor and 0.5–0.6
is insufficient. However, the AUC values must be weighted care-
fully because there are issues of commission and omission errors
(Lobo et al., 2008). Lobo et al. (2008) argued that the use of AUC
in ROC curves has its drawbacks: (1) it is said to ignore the pre-
dicted probability values and goodness-of-fit of the model, (2) it
presents a summary of the test performance and not the regions
of the ROC space, (3) the omission and commission errors are
weighted equally, (4) information on the spatial distribution of
model errors are never provided and (5) it does not take into
account the total extent to which models are carried out, which
greatly influences the rate of well-predicted absences and the
AUC scores. In the current work, instead of using only the
AUC, the model’s sensitivity and specificity was reported so
that the relative importance of commission and omission errors
can be considered in order to assess the method performance.
These allow flexibility in assigning weightage to both types of
errors (commission and omission) in fixing an appropriate
threshold for prediction. Therefore, the values of AUC have to
be backed up with information, such as specificity and sensitivity
of the models so generated. Nonetheless, AUC has been used
extensively and will continue to be used across disciplines, includ-
ing SDM studies.

For predicting the relative contribution of the different vari-
ables in the model, the jackknife procedure was applied. The jack-
knife procedure also gives us an idea about the usefulness of
variables, which might help in trimming the variable size based
on their relative contribution to the models. The variables are
judged based on the resulting training gains shown by the biocli-
matic variables. The most significant variables are those that show
highest training gains. It has been stated that in the Jackknife pro-
cedure, each variable is omitted and the model gets rebuilt with
repeated readjustments (Phillips et al., 2006; Kalle et al., 2013).

Future projection

For MaxEnt models, the projections were based on 2041–2060
future climate scenarios under IPCC’s anthropogenic radiative
forcing of RCP2.6, RCP4.5 and RCP8.5 (www.worldclim.org).
The model for Interdisciplinary Research on Climate version 5
(MIROC5) of the global climate model was used as it has a better
simulation of the climatic parameters due to improved anthropo-
genic radiative forcing than its past versions (Watanabe et al.,
2010). Other studies, especially in the south Asian and
Himalayan regions, have also used MIROC5 due to its improved
capabilities in capturing features well (Mishra et al., 2014;
Sharmila et al., 2015). Future simulations were compared
among the different RCPs. RCP8.5 is an extreme carbon emission
climate scenario with a radiative forcing of +8.5W/m2 (∼935 ppm
CO2 equivalent), whereas RCP4.5 is a medium range emission
scenario with radiative forcing of about +4.5W/m2 (∼650 ppm
CO2 equivalent) and RCP2.6 represents the lowest emission scen-
ario (IPCC, 2013).

To detect spatial differences in crop suitability under the cur-
rent and future climate scenarios, a pairwise comparison of the
models was undertaken: the current v. RCP2.6, the current v.
RCP4.5 and the current v. RCP8.5. Essentially, the suitability
maps (models) were overlaid and changes (decrease or increase)
in suitability between the current and future RCPs were assessed
based on differences or overlaps in grids and number of pixels

corresponding to different suitability classes (marginal, low,
medium and high). The differences in area were obtained by
multiplying the numbers and size of pixel for each of the suitabil-
ity classes, thus defining future distribution. Projected geograph-
ical distribution was undertaken on the basis that ecological
niches are dictated by the climatic suitability of the species (De
Meyer et al., 2007; Banag et al., 2015). Climatic suitability of
rice, indicating projected distribution by 2060, was categorized
into marginal, low, medium and high areas. Categorization of
suitability classes were defined based on probabilities of occur-
rences at <25, 25–40, 40–60 and >60% for marginal, low, medium
and high suitability, respectively. Other MaxEnt modelling studies
have also reported more or less similar thresholds for the analysis
of suitability for projecting species distribution (He and Zhou,
2011; Yang et al., 2013). The marginal suitability in the current
context means unsuitable area for rice with <25% species pres-
ence. The changes in area were derived from the pixel shifts in
each category of the probabilities of suitability, indicating distri-
bution using ArcGIS.

Results

Model development

The MaxEnt generated crop suitability models for the future cli-
mate of 2070 were the projected rice distribution models. The pre-
diction models for rice distribution showed that the largest
contributions came from the variables, such as precipitation of
the warmest quarter (71.4%), mean diurnal range of temperatures
(6.1%) and precipitation seasonality (5.4%) (Table 2). Other vari-
ables, viz., aspect, elevation and annual mean temperature con-
tributed 3.9, 3.5 and 3.1%, respectively. The precipitation of the
driest month and annual precipitation had the least effect on
the rice model with a contribution of about 1% each. However,
in terms of permutation importance, which shows all possible
combinations of the variables used based on the presence and
random selection of background points, elevation, annual precipi-
tation, precipitation seasonality and mean annual range of

Table 2. Average values of the five replicate runs contributing to the rice
distribution model

No. Variables
Percent

contribution
Permutation
importance

1 Precipitation of
warmest quarter

71.4 0.2

2 Mean diurnal range
of temperature

6.1 11.7

3 Precipitation
seasonality

5.4 16.1

4 Aspect 3.9 2.1

5 Elevation 3.5 43.2

6 Annual mean
temperature

3.1 1.8

7 Isothermality 2.5 1

8 Slope 1.8 1.2

9 Precipitation of
driest month

1.5 1.3

10 Annual precipitation 0.9 21.3
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temperature had the largest contribution as detailed in Table 2.
Permutation importance is an auto-generated variable contribu-
tion parameter obtained for predicting distribution of the species
in question by MaxEnt software. In terms of variable importance,
the jackknife test indicated that without the effects of other vari-
ables (without variables), the contributions from the aspect, iso-
thermality (Bio3) and slopes (Table 1) were the lowest (Fig. 2).
However, individually, annual mean temperature and elevation
had the maximum test gain (a MaxEnt output evaluation lan-
guage denoting contribution) when used in isolation. This was
followed by precipitation of the warmest quarter (Bio18), precipi-
tation of the driest month (Bio14) and annual precipitation
(Bio1), thus showing that rice distribution model is determined
mostly by the temperature, precipitation and altitude gradients.
The models depicted that rice suitability across different locations
in Bhutan is influenced mainly by temperature gradient and
annual precipitation, including precipitation of the driest month
as well as the warmest quarter. These climatic variables were, in
turn, largely dictated by elevation, which has been considered as
one of the most limiting factors in rice production in the country.

This is true because altitude has a marked influence on tempera-
ture and precipitation regimes due to orographic mass airflow
dynamics, especially in the mountainous regions, such as
Bhutan. Further analysis of the model through the AUC showed
a mean value of 0.888 (Fig. 3). This AUC value confirms that the
predicting variables used in the study were effective at projecting
distribution of rice based on climatic suitability and terrain infor-
mation (slope, aspects and elevation). Additionally, the specificity
(proportion of species presence which are correctly predicted)
and sensitivity (the proportion of species absence which are cor-
rectly predicted) of the curve showed a fractional predictive
threshold in the range of 0.3–0.4 with higher sensitivity, thus indi-
cating a balanced trade-off between commission and omission
errors. Thus, the auto-generated MaxEnt outputs indicate good
predictability of the model.

The traditional ROC approach is currently considered to be the
standard method to assess the accuracy of predictive distribution
models. It is simple and not subjective, that allows easy threshold
selection, especially for those requiring conversion of continuous
probability derived scores to a binary presence–absence variable.

Fig. 2. Jackknife of test gain indicating the best fit rice
distribution model as contributions of different biocli-
matic and bio-physical variables used in the modelling
process. ‘Without variable’ refers to without that par-
ticular variable and other variables remaining the
same; ‘With only variable’ means considering only
that variable and ‘With all variables’ means the aver-
age cumulative contributions of all in generating the
rice suitability-based distribution model.

Fig. 3. (Colour online) Sensitivity and specificity of dif-
ferent variables in predicting distribution model for O.
sativa L.
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Distribution changes and projections

Based on the species presence-only data, bioclimatic and environ-
mental variables used, MaxEnt generated rice suitability models
which could be referred to as the future rice distribution models
for Bhutan. The models indicated large changes in the distribution
of rice across the rice ecosystems due to changes in its climatic suit-
ability (Fig. 4). A comparison of projected rice distribution changes
under three different anthropogenic forcing scenarios showed that
rice area is projected to decrease by about 8–30% in moderately
and highly suitable regions (Table 3). It was projected that under
the current scenario, ecological niche for rice distribution is 11
512.16 km2 which roughly translates to 30% of the total environ-
mentally suitable area. Under the future projected climate of

2060, this ecological space of rice changes to 11 908.96 km2 in
RCP2.6, to 8843.32 km2 in RCP4.5 and 8754.52 km2 in RCP8.5.
A comparison of different predicted rice distribution models,
under the three RCPs of IPCC indicates that there is a large likeli-
hood of maximum changes under RCP8.5 (worst scenario) and less
changes under RCP2.6. Under RCP4.5 (medium range), suitability
change is about 30%, with the maximum being in the mid- and
low-altitude regions of the country. The three future projection
models indicate both horizontal and vertical changes in the envir-
onmental and climatic suitability of rice in the near future.
Generally, the crop suitability changes under the future projections
indicate large variability in rice distribution across the country.
Under RCP4.5 and RCP8.5, some gain in suitability is indicated

Fig. 4. Predicted rice distribution model for Bhutan
under three different emission scenarios: RCP2.6,
RCP4.5 and RCP8.5 for 2041–2060.
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in the marginal zone which has been categorized as non-rice-grow-
ing area. Among the rice distribution classes, low, medium and
high categories will likely see suitability loss in the range of 8.17–
43.12%. These changes thus predict spatial distribution changes
of rice across the rice-growing zones (Figs 4 and 5).

Discussion

The MaxEnt modelling in the current study, which used species
occurrence-only data, with environmental layers as MaxEnt
inputs (bioclimatic and bio-physical variables) predicted future
distribution of rice in the country. The projected distribution
area for the species is basically the probability of habitat suitability
niches, or the niche models generated by using MaxEnt software
(Phillips et al., 2006; Elith and Leathwick, 2009), which could be
potentially used for forecasting distribution pattern of agricultural
crops. Similar studies have been reported for invasive species
(Lamsal et al., 2018), rare trees (Deb et al., 2017; Qin et al.,
2017) and cereal crops (Ojara et al., 2017). In the current study,
the MaxEnt models indicated large changes in climatic suitability
across the agro-ecological zones, which is a crucial factor for the
adaptability and distribution of crops. Therefore, monitoring crop
habitat suitability dynamics is important in assessing their distri-
bution path for sustainable production and future planning
(Ojara et al., 2017; Sharma et al., 2018). In the current research,
the models under all the three anthropogenic forcing of IPCC
showed large variations, in terms of magnitude and space. The
models clearly show both gain and loss in area, thus indicating
ecological niche shift. This is consistent with the findings of
Chhogyel et al. (2018) and Parker et al. (2017) who modelled dis-
tribution of rice and other major crops in Bhutan based on eco-
crop parameters. With shift in climatic suitability, crop plants will
adapt and thrive in new environment. Plants were reported to
show remarkable capacity of acclimation under a changing cli-
matic condition (Hamann et al., 2018). These are some of the evi-
dences that could be correlated with the likely changes in future
distribution of rice in Bhutan, due to environmental and climatic
factors. Based on the projection of RCP4.5, the 2871.2 km2

decrease in suitable area means increased climatic stress in large
parts of rice areas which are mostly located towards the drier
and temperate zones where cultivation is limited by topographic
features, temperature requirement and altitudinal gradients. Rice
in Bhutan is limited mainly by cold stress in the higher elevation
(>1800 m above msl), especially during the seedling (spring) and
grain-filling stages in late autumn (Ghimiray et al., 2008;
Chhogyel et al., 2016). In most temperate rice-growing regions
of the world, crop yields are reported to be affected largely by
cold temperature stress during various stages of the plants (Kim
et al., 2013; Espe et al., 2017). Field issues as these will be further

exacerbated by large swings in precipitation patterns
(Auffhammer et al., 2012) and heat stress (Auffhammer et al.,
2012; Deryng et al., 2014), under the impact of climate change
through the 21st century. The lower subtropical zones are mostly
rainfed, thus indicating that the erratic precipitation under the
impacts of future climate is likely to hit large tracts of rice belts
in the country. It has been reported that climate change has farm-
ers in Bhutan had started experiencing erratic pattern of rains and
extended drought, thus affecting their crop production (Chhogyel
et al., 2020b). Moreover, rice production is likely to bear the brunt
of the impacts of climate change as crop production is highly
monsoon dependent requiring higher water supply than any
other crops (GRriSP, 2013). This is also true in most parts of
neighbouring Asian countries where monsoon rains form the
main part of the cropping season (Loo et al., 2015). These only
show that the country’s rice industry is likely to experience
increasing challenges, thus affecting production and food security.
Small reduction in its area and production due to climatic suit-
ability will have large consequences on the livelihood of the peo-
ple. Contraction and gain in suitability of environmental space
would have dramatic effect on the future distribution, production
and productivity of rice in Bhutan. According to the results of
analysis, suitability change of 30–40% was indicated for high
and moderately distributed rice-growing areas of Bhutan. This
would directly contribute to reduction in yield and production
potential of rice in different parts of the country. Even under
the very conservative emission scenario of RCP2.6, the models
show about 1–7% decrease in crop suitability which will lead to
contraction in rice area.

Under sub-optimal conditions of the environment, plants show
reduction in yield due to its effects on physiological processes
(Condon et al., 2004; Guilioni et al., 2008). This is because crop
productivity is a function of environmental conditions during vari-
ous growth and development phases of the plants (Tardieu, 2013).
Therefore, changing climatic suitability from high to low under
future climate should be construed as exposing of crops to various
adverse environmental conditions, thereby decreasing yield poten-
tial of the crop. In this context, considering 15 year’s average of rice
area (22 126.98 ha), and assuming it to remain the same until 2070,
the yield reduction at 7–30% (due to suitability loss) amounts to a
large production decline (from about 64 000 to 34 000 t). An
example of modest decrease by a magnitude of 7–30% shows
large implications on the future production and yield of rice as
highlighted in Table 4. This estimation heralds a bleak future for
the rice industry that is striving to enhance production to raise
food self-sufficiency. Studies in other countries within the region
have already reported empirical evidence of negative impacts of cli-
mate change on rice and other crops (Birthal et al., 2014; Amin
et al., 2015). Environmental suitability of crops and plants could

Table 3. Ecological niche for the distribution of rice under the current (1970–2000) and future climate (2041–2060)

Distribution classes

Area (km2) % changes from the current (1970–2000)

Current RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

Marginal 27 303.57 26 906.77 28 932.40 30 061.21 −1.45 5.97 10.10

Low 5048.07 5068.07 2871.24 3940.85 0.40 −43.12 −21.93

Moderate 4917.67 5266.47 4182.46 3393.65 7.09 −14.95 −30.99

High 1546.42 1574.42 1389.62 1420.02 1.81 −10.14 −8.17
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Fig. 5. Spatial magnitude of likely distribution
changes across the country (Bhutan) under three
different RCPs for 2041–2060 future climate scenarios.

Table 4. An example of projected production due to suitability loss and changes in distribution pattern

Current status

Projected implications due to suitability loss

7% 10% 20% 30%

Yield (t/ha) 3.11 2.89 2.80 2.24 1.57

Production (t) 68 726.67 64 071.68 62 004.85 49 603.88 34 722.72

Area (ha)a 22 126.98 22 126.98 22 126.98 22 126.98 22 126.98

aRice area assumed to remain same.
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be considered as an important indicator of their production poten-
tial. It is known that plants responds well to environmental cues.
Though there is no such research being conducted in Bhutan, a
typical example was reported by Zhang et al. (2015) in China
who showed that rice exhibited phenotypic plasticity in the form
of yield-related traits when exposed to different environmental
conditions. Under unsuitable environmental conditions, rice yield
would show drastic reduction. Although gain in suitability is likely
to enhance rice distribution area in some places, higher degree of
reduction in environmental space across the low elevation rice eco-
systems might nullify the gains due to area loss. In fact, the gains
were lower than the losses, as higher magnitudes of changes are
indicated in major rice-growing districts, such as Wangdue,
Punakha, Tsirang, Dagana, Trashigang, Lhuntse, Paro and
Samtse. The projected suitability models under 2070 future climate
corresponding to RCP2.6, RCP4.5 and RCP8.5 successfully high-
light the areas of focus, as major changes were observed in the eco-
logically important rice-growing hotspots in the lower- and
mid-altitude agro-ecological zones (Fig. 1). This means that the
impact of climate change on rice is likely to be more severely
felt, as the downward trend in the rice area will continue into
the foreseeable future with the impacts of climate change. The situ-
ation is likely to exacerbate throughout the millennium with more
evidence of global warming and climate change being reported by
IPCC (2013). This highlights the need for climate smart suitable
policies in agriculture development. It has been reported that the
rice sector in Bhutan is already experiencing challenges of massive
land fallowing due to various reasons, including climate change
impacts (DoA, 2016; Chhogyel and Kumar, 2018).

Even from the biodiversity point of view, rice ecosystems are
one of the most important ecological entities that provide eco-
logical services through nutrient cycling and support to large agro-
biodiversity (Settele et al., 2018). The probability of large changes
in distribution under moderate and worst emission scenarios
(RCP4.5 and RCP8.5) indicate the need for both medium- and
long-term climate change mitigation and adaptive measures.
Based on the findings of the current study, one of the best strategies
should be targeted production support and climate resilient infra-
structure development in specific locations to mitigate and adapt to
the impacts of climate change. Additionally, the models so gener-
ated in the current study can also be used to categorize rice areas
into high, medium and low climatic risk areas for informed deci-
sion and planning. For long-term sustainable rice production,
there is definitely a need to make robust investments backed up
by continuity in rice research and development to overcome the
negative impacts. However, Bocsi et al. (2016) reported that the
use of climate data and SDM are poor predictors of potential dis-
tribution of plant species. It has been argued that such models
under-estimate climatic tolerance of plant species. Nevertheless,
our crop suitability-based models conform to the existing literature
and knowledge on the distribution pattern of rice. Thus, the mod-
els provide indications of likely changes in species range and could
be used as a guide in future development plans. The MaxEnt algo-
rithm compares location of species presence to that of the back-
ground locations based on the entropy, thus establishing MaxEnt
probability of the distribution (Phillips et al., 2006). This optimizes
the MaxEnt distribution for modelling under differing sets of bio-
climatic variables. The gains and losses of crop suitability should be
a strong indicator of future distribution areas, thus requiring special
attention. Such information could be highly useful not only for
projections of future development plans, but also for resource
mobilization and effective use of funds.

Limitation of this study

This study brings out comprehensive analysis of the current and pro-
jected future distribution of rice based on the climatic suitability and
rice presence-only data. However, the study has certain limitations,
such as (1) the use of global climate data with coarse pixel size
(∼1 km2), and (2) the absence of soil data which is a very important
factor for any agricultural crops. Given the small geographical size of
the country, the 30 arcsec bioclimatic variables downloaded from the
globally available website seems to be a bit coarse but, the study also
used relevant local data (elevation, aspect and slope). Such biocli-
matic data are not available at fin scales for Bhutan.With these para-
meters, it attempts to forecast the future probability of rice
distribution based on the current area and IPCC scenarios.
Although most MaxEnt modelling work had used global rice occur-
rence geographic points, there have also been studies which reported
better results with the use of locally available species presence datasets
(Yang et al., 2013; Kariyawasam et al., 2019; Li et al., 2019). Also, the
study could have been much better if soil data were used as an add-
itional input layer for the modelling work. One of the biggest draw-
backs of studies in the developing world is the unavailability of
baseline data, such as good resolution soil maps.

Furthermore, irrigation data for the study area were not avail-
able, but as major rice-growing areas are located in the river valleys
with abundant water resource, irrigation parameter may not be an
issue for the current modelling exercise. About 60% of the rice area
in the country is irrigated and the rest (40%) is rainfed. The rainfed
rice areas are higher up in the mountain slope and in most of the
cases, the crop totally depends on monsoon rains. The bioclimatic
variables used in the study could take care of the irrigation data
because climate change-induced monsoonal patterns could have
a large influence on the availability of water for the crop.
Therefore, even without the use of irrigation as a separate param-
eter, the current study has a potential to be used as a comprehensive
reference document for the country which lacks published data. It
is hoped that this paper will be of use for a country that is consid-
ered to have one of the highest per capita availability of fresh water
in the world (ADB and NEC, 2016).

Conclusion

The rice distribution models under the IPCC’s radiative forcing of
RCP2.6, RCP4.5 and RCP8.5 projected large spatial variabilities of
rice suitability in the study area. A large decrease in environmen-
tal niches in the range of 14–43% was projected in the high and
moderately distributed rice areas under RCP4.5 and RCP8.5.
This indicate that rice productions in all major rice-growing
areas of Paro, Wangdue, Punakha, Tsirang, Dagana, Trashigang,
Trashi Yangtse and Samtse are likely to shrink in the projected
future climate. Therefore, the models generated in the current
study portray that crop suitability-based distribution changes
are imminent and would require utmost attention and further
studies for planning climate change adaptation and mitigation
strategies. This is of utmost importance given that projected
crop production losses resulting from the changes in distribution
were analysed to be 4654.99 to 23 903.95 t, annually.
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