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1. Introduction. Let q be a power of a prime p, and let Sq be the set of
permutations of {0, 1, . . . , q - 1}. As Sq is isomorphic to the group of permutations of
Fq, the field of q elements, each element of 5, can be regarded as a polynomial over Fq.
Various authors (e.g. [1], [2], [3]) have considered functions/(x) such that

f(x)eSq> and (f(x) + Ax) e 5,

for some A e Fq. When A = 1, /(x) is a complete mapping polynomial ([3]).
Here, we consider the/(x) for which there are several A. For q prime, such functions

arose in (unpublished) work of M. J. Tomkinson on group theory.

DEFINITION. For f(x) e Fp[x],

Wf = {keFq:(f(x) + kx)eSq),
and

wf = \Wf\.

Observe that, if /(x) e Sq, then 0 e Wf, so that wf s= 1. Also, / is a complete mapping
polynomial if and only if 0, 1 e Wf. On the other hand, if (f(x) + Ax) e Sq, then we must
have

/(0) + A0 # / ( l ) + Al,

A # / ( 0 ) - / ( l ) .

Thus Wf^q — 1.
If we take f(x) = ax + P, then

f(x) + Ax = (or + X)x + ft,

so A e Wf except when A = - a. We have proved

PROPOSITION 1. If f is a linear or constant polynomial over Fq, then wf = q — \.

Tomkinson asked how large ny could be for non-linear f. We shall establish an upper
bound, and discuss the/which attain the bound.

DEFINITION. A polynomial /(x) over Fq is reduced if the degree of/is less than q.

DEFINITION. If/ e Fq[x], then we write rq(f) for the unique reduced polynomial equal
to / (as a function), and dq(f) for the degree of rq(f).

PROPOSITION 2. / / / , g e Fq[x] and dq(f) + dq(g) <p, then

and
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Proof. This follows at once from the uniqueness of the reduced polynomial.

We use (and then generalize) the following result from [1].

LEMMA. A polynomial f e Fq[x] belongs to Sq if and only if

(1) f has a unique root in Fq,
and

{2)forl*n*q-2,dqif
n)*q-2.

2. The case q prime.

THEOREM 1. / / / e Sp and 1 =£ m =£ My, then

dp(n^p-2 + m-Wf. (1)

Proof. From the Lemma, for 0 < t <p — 1,

'P(/'«)= £2 «,,*'•
;=0

Then, for 0< t <p - 1, the coefficient of xp~x in rp((f{x) + ax)') is

asa(l_sKp_1_s). (2)
s = l \S/

This is a polynomial in a of degree at most t — 1, so, if non-zero, has at most t — 1 roots in
Fp. Thus, if t =£ wf, it must be the zero polynomial, i.e. for s «£ t« wf,

Put m = t-s. Then, for m «£f =s wy,

am(p-i+m-t) = 0.

Since this holds for t =£ ny,

as required.

REMARKS, (i) Dickson's result (our "Lemma") and Theorem 1 of [3] give the result
for the cases m = 1, 2.

(ii) The proof fails for a prime to a power greater than one since some of the
binomial coefficients in (2) vanish in Fq; see §3.

In Proposition 1, we saw that if dp(f) =s 1 then wf=p-\. We now show that only
linear / have wf > (p - 3)/2.

THEOREM 2. / / / e Sp has wf>(p- 3)/2, then dp(f)« 1.

Proof. We may as well assume that/is reduced. It is easily checked that all/ e S2 are
linear, so we may assume that p > 2. Let D be the degree of/. We suppose that D > 2. By
the Lemma applied to f(p-lVD

t w e see that D \(p - 1), and hence that p s* 5.
Let m be the integer such that

(p-\)/m, (3)
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so 1 < m =£ (p - 3)/2. Then fm is reduced and dp(f
m) = mD^(p- 3)/2 + m, by Theorem

1. It now follows from (3) that

m. (4)

This implies that (m - l)(p - 3 - 2m) < 0, a contradiction.

In particular, this shows that, forp =£5, the only polynomials / with wf > 1 are linear.
Forp >5 , we can have non-linear examples, as we shall see later.

PROPOSITION 3. Suppose that f e Fp[x], and that a, p\ y e Fp, with a¥=0. Let g e Fp[x]
be defined by g(x) = af(x + /3) + y. Then

Wg = {ak:keWf}
and

wg=wf.

Proof. The second part follows at once from the first. To prove the first, we observe
that (g(x) + fix) e Sp if and only if it is injective. Now

g(x) + ux =g(y) + ny

if and only if

We choose A so that ju = ak. Then the latter becomes (adding arA/3 to each side)

crf(x + 0) + ak(x + P) = af(y + /3) + ak{y + /3).

Hence ueWge>keWf.

DEFINITION. For reduced f,geFpwe write fpg if there exist a, fi, y e Fp with a =£ 0
such that

g(x) = af(x + P) + y.

PROPOSITION 4. Each p-class of non-constant reduced polynomials in Fp[x\ contains a
unique member of the form

g(x) =xd + ad_2x"-2 + ... + or,*. (5)

If d = \, then the class has p(p — 1) members; otherwise it has p2(p — 1).

We leave the proof to the reader.

DEFINITION. We say that a polynomial of the form (5) is normalized.

THEOREM 3. For p>5, f eSp has wf = (p — 3)/2 if and only if f is p-equivalent to

for some a eFp.

Proof. We may as well assume/is reduced. Let D be the degree off. By Theorem 1,

D « ( p - 2) - (p - 3)/2 + 1 = (p + l)/2.
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Suppose that D <(p + l)/2. Arguing as in Theorem 2 (but with vty = (p — 3)/2), we
must have p > 7 and, for some m with 2 s£ m =£ (p — 5)/2,

(m - l)(p - 3 - 2m) < m + 1.

Since p — 3 — 2m 5*2, this gives a contradiction unless m = 2 . But then, as p > 7 ,
p — 3 - 2 m = p — 73=4, so we get a contradiction here also. Hence we must have

Now let g be the normalised polynomial p-equivalent to /. Then g has degree
(p + l)/2 and

g(jt) = ^(P+1>/2 + ax* + terms of lower degree,

where k^(p-3)12. We note that (JC(P+1) /2)2 reduces tox2. Thus

rp(g
2(.*)) = (2ox*+(p+1)/2 + . . . ) + *2.

From Theorem 1, we have

dp(g
2(x))^(p-2)-(p-3)/2 + 2

= (p+3)/2.

If a =£ 0, then we must have k + (p + l)/2 =s (p + 3)/2, so that k =£ 1. As g is normalised
(so has no constant term),

g(x) = x(p+m + ax. (5)

To complete the proof, we must show that each g of the form (5) has wg = (p - 3)/2.
We recall that JC(P~1)/2 = (x/p) (the Legendre symbol) (modulop) so that

0 if x = 0,
+ he = \ (a + A + 1)JC if JC is a quadratic residue modulo p,

(a + A — 1)JC otherwise.

Since for all residues (resp. non-residues) x, (a + A + 1)* (resp. (a + A - I)*) will have the
same quadratic character, (g(x) + Ax) e Sp if and only if (a + A + 1) and (a + A - 1) have
same quadratic character, i.e. for some a # 0 ,

(a + A + 1) = (^{a + A - 1)
i.e.

, a-2 + l

Since there are (p -3 ) / 2 distinct squares modulo p, other than 0 and 1, there are
(p - 3)/2 valid A, as required.

COROLLARY 1. For p>5, there are p3(p - 1 ) non-linear functions f with wf =
( p - 3 ) / 2 .

Proof. From the proof above, there are p normalised functions g, and (by
Proposition 4), each corresponds t o p \ p - 1) functions/.
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REMARK. It is probably neater to re-cast the description of "g" in Theorem 3 as

0 if x = 0,

*(*) = Ax if x is a quadratic residue modulo p, (6)
Bx otherwise,

where A and B are distinct modulo p, but of the same quadratic character. This form
would have helped to simplify the discussion of [2].

COROLLARY 2 (c.f. Theorem 8 of [3]). For p>5 there exist non-linear complete
polynomial mappings of Fp.

Proof. Since p>3, we can choose A and B distinct quadratic residues, and define g
by (6). As (A/p) = (B/p) = l, 0eWg. Now wg = (p - 3)/2 5= 2 (as p>5), so we have
keWg, A=£0. Now apply Proposition 3 to fig (with juA = l (modulo/?) to see that
0,1 e W^g, i.e. that kg is of the required type.

The ideas above can be used to construct other non-linear / with 1< wf < (p — 3)/2
as follows.

CONSTRUCTION. If p > 5, choose h such that h \ (p - 1) and 2 < h < (p - l)/2. Let %h

denote the hth power residue symbol. Choose A, B distinct members of Fp and define
g(x) on Fp by

if x = 0,

if **(*) = !,
otherwise.

Much as before, A e Wg if and only if

(A + X) = ah(B + A)

for some non-zero a e Fp. Rearranging:

A = (A - Bo*) I (a* - 1).

Since of takes ((p — l)/h) — 1 distinct values other than 1, we have

We observe that, as a polynomial,

g(x) = x(A(xp-x - \)l(x(p-l)lh - 1) + B(xh -

so that

giving equality in Theorem 1.
We can, of course, modify the construction above to introduce A's for each residue

class. This gives greater flexibility, and allows us to prove that we need not have equality
in Theorem 1.

EXAMPLE. For p = 13, let f(x) = 6x(x4 + 6x2 + 4). It is a simple matter to check that
wf = {0, 1}, but dp(f) is only 5.
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This example arises from 6th power residues (hence the appearance of even powers
inside the brackets). There are, however, many / with 1< wf < (p - 3)/2 which do not
arise from our construction (these of necessity have wf = ((p - l)lh) - 1 for some h; for
example, there are 110 classes in Fu[x] with wf = 3).

3. The general case. As noted earlier, the proof of Theorem 1 fails for q =pr with
r > 1. We can prove a weaker version which shows that, except in special cases, a reduced
/ e Fq[x] with wf > 1 begins with powers xd, where p | d. The result is incomplete, so we
omit it. Based on our experimental evidence (see section 4) we are, however, prepared to
make the following conjecture.

CONJECTURE.// feFq[x] with wf>(p -3)/2, then f(x)=gp(x) + ax, where

We give an example to show that the situation is more complicated than that in §2.

EXAMPLE. Let/(*) =xq -ax. Then, calculating in Fqi, f(x) =f(y) if and only if

a = (** - y")/(x -y) = (x- y)"/(x - y).

Thus, f(x) fails to permute Fq2 if and only if a is a (q — l)th power, i.e. aq+1 = 1. Since
there are q + 1 elements with this property,

REMARK. The construction introduced in §2 works for prime powers, provided that
the value of h is prime to p. These seem to account for "large" values of wf. We have
proved this for q = 4, 8, 9, 16 and 25, verifying the experimental results in the first four
cases.

4. Experimental results. We have written a program which checks each permuta-
t i o n / ^ ) to see whether f(x) + x is also a permutation, and, if so, finds the A for which
f(x) + kx belongs to Sq. For each such/, it checks the degree of the reduced version of/.

These computations take a considerable time (hours of mainframe time), so it is
unlikely to be sensible to carry them much further.

We show below the total number, Cq, of complete mapping polynomials for small
values of q. Of course, the actual output was much more detailed. The results of the
calculations suggest that the permutations are not randomly spread amongst the
polynomials. Since there are q\ permutations and qq~l polynomials of degree at most
q -2, a random distribution would predict about (ql)2/qq~* polynomials f{x) with
f{x) + x also inSq.

5 20 25
7 133 216
8 384 775
9 2241 3059

11 37851 61431
13 1030367 1664334
16 244744192 379698995
17 1606008513 2599885897
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The figures in the last column are rounded to the nearest integer. We observe that, for
prime q, the ratio Cg/(q\)2qq~l is remarkably close to the golden section!

Acknowledgement. I should like to thank the referee for suggesting a better way of
presenting the argument in Theorems 2 and 3.
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