J. Austral. Math. Soc. (Series A) 38 (1985), 138-142

ONE-POINT EXTENSIONS OF LOCALLY PARA-H-CLOSED SPACES

M. I. ZAHID and R. W. HEATH

(Received 23 May 1983)

Communicated by J. H. Rubinstein

Abstract

A space X is para-H-closed if every open cover of X has a locally-finite open refinement (not necessarily covering the space) whose union is dense in X. In this paper, we study one-point para-H-closed extensions of locally para-H-closed spaces.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 54 D 25; secondary 54 D 18, 54 D 99, 54 C 20.

Keywords and phrases: para-H-closed, locally para-H-closed, H-closed, one-point extension, projective maximum, projective minimum.

Introduction

Only Hausdorff topological spaces are considered.

DEFINITION 1. Let γ be an open cover of a topological space X. Then λ is *para-H-closed refinement* of γ if λ is a locally-finite collection of open subsets of X refining γ and such that U λ is dense in X.

DEFINITION 2. A space X is para-H-closed if every open cover of X has a para-H-closed refinement.

DEFINITION 3. A space X is locally para-H-closed if every point has a neighbourhood whose closure is para-H-closed.

^{© 1985} Australian Mathematical Society 0263-6115/85 \$A2.00 + 0.00

[2]

DEFINITION 4. A space (Y, σ) is said to be a *one-point extension* of a space (X, τ) if $X \subset Y, \tau = \{O \cap X : O \in \sigma\}, |Y \setminus X| = 1$ and $\operatorname{cl}_{\sigma}(X) = Y$.

DEFINITION 5. Let E(X) be the set of all one-point para-H-closed extensions of a locally para-H-closed but not para-H-closed space X. A space Y in E(X) is said to be a *projective maximum* in E(X) if, for any space Z in E(X), there exists a continuous function f from Y onto Z such that f(x) = x for all x in X. A space M in E(X) is said to be a *projective minimum* in E(X) if, for any Z in E(X), there exists a continuous function f from Z onto M such that f(x) = x for all x in X.

Para-H-closed spaces and locally para-H-closed spaces were defined and studied in [3]. We mention here some basic results about para-H-closed spaces.

THEOREM 1. A regular space is para-H-closed if and only if it is paracompact.

THEOREM 2. (i) Every domain of a para-H-closed space is para-H-closed. (ii) Every Lindelöf Hausdorff space is para-H-closed.

THEOREM 3. A space X is para-H-closed if and only if every open cover of X has a σ -locally-finite open refinement $\lambda = \bigcup_{n \in \omega} \lambda_n$ such that

 $\bigcup \{ \inf [\operatorname{cl}(\bigcup \lambda_n)] : n \in \omega \} = X.$

For locally-compact spaces, we know that there is only one one-point compactification. For locally-*H*-closed spaces, F. Obreano [1] and J. Porter [2] have shown that there may not be a unique one-point *H*-closed extension. Locally-*H*closed spaces, however, do possess a projective maximum and also a projective minimum one-point *H*-closed extensions. For locally para-*H*-closed spaces, we show that while there is a projective maximum in the set of all one-point para-*H*-closed extensions, there is no projective minimum in general.

The following notation will be fixed throughout the rest of the paper. Let (X, τ) be a locally para-*H*-closed space which is not para-*H*-closed. Let $\Phi = \{\gamma: \gamma \text{ is an open cover of } X \text{ without a para-$ *H* $-closed open refinement} \}.$

For each $\gamma \in \Phi$, let $\Omega_{\gamma} = \{\lambda : \lambda \text{ is a locally-finite collection of open sets in } X$ refining $\gamma\}$. For each $\gamma \in \Phi$, let $\Psi_{\gamma} = \{X \setminus cl(\cup \lambda) : \lambda \in \Omega_{\gamma}\}$. Note that for each $\gamma \in \Phi$, Ψ_{γ} has the finite intersection property.

Let ∇_{γ} be the open filter generated by Ψ_{γ} , and let ζ_{γ} be an open ultrafilter generated by Ψ_{γ} .

We shall let $\Lambda = \bigcap \{ \zeta_{\gamma} : \gamma \in \Phi \}$, and let $\Pi = \bigcap \{ \nabla_{\gamma} : \gamma \in \Phi \}$. It is easy to see that for each $\gamma \in \Phi$, ∇_{γ} and ζ_{γ} are free filters. LEMMA 1. Let Λ be as defined above. Then

 $\Lambda = \{ U \in \tau : X \setminus \operatorname{int}(\operatorname{cl}(U)) \text{ is para-H-closed } \}.$

PROOF. Let $U \in \tau$ be such that $X \setminus \operatorname{int}(\operatorname{cl}(U))$ is para-*H*-closed. Let $\gamma \in \Phi$. Consider ζ_{γ} . Suppose $U \notin \zeta_{\gamma}$. Then $X \setminus \operatorname{cl}(U) \in \zeta_{\gamma}$. Consider $\xi = \{O \cap (X \setminus \operatorname{int}(\operatorname{cl}(U))): O \in \gamma\}$, which is an open cover of $X \setminus \operatorname{int}(\operatorname{cl}(U))$. There is a para-*H*-closed refinement κ of ξ in $X \setminus \operatorname{int}(\operatorname{cl}(U))$ consisting of open subsets of $X \setminus \operatorname{int}(\operatorname{cl}(U))$.

Let $\lambda = \{K \cap (X \setminus \operatorname{cl}(U)): K \in \kappa\}$. Then λ is an open collection in X refining γ . Also λ is locally-finite in X and its union is dense in $X \setminus \operatorname{int}(\operatorname{cl}(U))$. Thus $\lambda \in \Omega_{\gamma}$, which implies that $X \setminus \operatorname{cl}(U\lambda) \in \zeta_{\gamma}$. But $X \setminus \operatorname{cl}(U\lambda) = \operatorname{int}(\operatorname{cl}(U))$. Therefore $\operatorname{int}(\operatorname{cl}(U)) \in \zeta_{\gamma}$ and $X \setminus \operatorname{cl}(U) \in \zeta_{\gamma}$, which is a contradiction. Therefore $U \in \zeta_{\gamma}$. Now let us suppose that $U \in \Lambda$ and show that $X \setminus \operatorname{int}(\operatorname{cl}(U))$ is para-H-closed. Let κ be an open cover of $X \setminus \operatorname{int}(\operatorname{cl}(U))$ without a para-H-closed open refinement. For each $K \in \kappa$, let K' be open in X such that $K' \cap X \setminus \operatorname{int}(\operatorname{cl}(U)) = K$, and let $K'' = K \cap (x \setminus \operatorname{cl}(U))$. Let $\kappa_1 = \{K': K \in \kappa\} \cup \{\operatorname{int}(\operatorname{cl}(U))\}$ and $\kappa_2 = \{K'': K \in \kappa\} \cup \{\operatorname{int}(\operatorname{cl}(U))\}$. Then κ_1 is an open cover of X and $\operatorname{cl}(U\kappa_1) = \operatorname{cl}(U\kappa_2) = X$. Suppose κ_1 has a para-H-closed open refinement in X, say η_1 . Then $\eta_2 = \{H \cap (X \setminus \operatorname{cl}(U)): H \in \eta_1\}$ is a para-H-closed open refinement of κ in $X \setminus \operatorname{int}(\operatorname{cl}(U))$, which is a contradiction. Thus $\kappa_1 \in \Phi$. Now $\operatorname{int}(\operatorname{cl}(U) \in \zeta_{\kappa_1}$. But $U \in \Lambda$ means $U \in \zeta_{\kappa_1}$, which leads us to the desired contradiction.

THEOREM 4. Suppose (X, τ) is a locally para-H-closed space which is not para-H-closed. Let Λ be as defined above. Let $X^* = X \cup \{p\}$ be such that $p \notin X$. Then

(a) $\tau^* = \tau \cup \{\{p\} \cup G: G \in \Lambda\}$ is a Hausdorff topology on X^* ,

(b) The space (X^*, τ^*) is a one-point para-H-closed extension of (X, τ) ,

(c) The space (X^*, τ^*) is a projective maximum in the set of all one-point para-H-closed extensions of (X, τ) .

PROOF. (a) Since Λ is a free open filter on X, it is easy to see that τ^* is a topology on X^{*}. Let us show that it is Hausdorff. Let $x \neq p$. Then there exists an open set U_x in X such that $x \in U_x$ and \overline{U}_x is para-H-closed. By Lemma 1, $X \setminus \overline{U}_x \in \Lambda$. This is true because $X \setminus \overline{U}_x$ is an open domain. Thus $x \in U_x \varepsilon \tau^*$ and $\{p\} \cup (X \setminus \overline{U}_x) \in \tau^*$, so there are disjoint τ^* -open neighbourhoods of x and p.

(b) Let μ be a τ^* -open cover of X^* by basic open sets. Then there exists G in Λ such that $\{p\} \cup G \in \mu$. Let $\mu' = \mu \setminus \{\{p\} \cup G\}$. Let $\xi = \{E \cap X: E \in \mu'\} \cup \{G\}$. Then ξ is a τ -open cover of X. Also since $G \in \Lambda$, $X \setminus \overline{G}^\circ$ is para-H-closed in

X. Now $\xi_1 = \{E \cap X: E \in \mu'\}$ is an open cover of $X \setminus \overline{G}^\circ$. So there is a para-H-closed open refinement λ of ξ_1 in $X \setminus \overline{G}^\circ$. Let $\lambda_1 = \{V \cap (X \setminus \overline{G}): V \in \lambda\}$, and let $\beta = \lambda_1 \cup \{\{p\} \cup G\}$. Then β is the required para-H-closed open refinement of μ in X^{*}. Therefore X^{*} is para-H-closed.

(c) Let (Y, σ) be a one-point para-*H*-closed extension of (X, τ) . We must show that there exists a continuous function f from (X^*, τ^*) onto (Y, σ) which leaves Xpointwise fixed. Let $Y = X \cup \{r\}$. Define f(x) = x for each x in X, and define f(p) = r. Let U be a σ -open neighbourhood of r. For each x in X, there exists a σ -open set U_x in Y such that x belongs to U_x and $r \notin cl_{\sigma}(U_x)$. Now $\gamma = \{U_x: x \in X\} \cup \{U\}$ is a σ -open cover of Y. So there is a para-*H*-closed open refinement $\lambda = \{V_x: x \in X\} \cup \{V\}$ of γ in (Y, σ) such that $V_x \subset U_x$ for each xin X and $V \subset U$. Let $W = \bigcup \{V_x: x \in X\}$. Then

$$r \notin \bigcup \{ \operatorname{cl}_{\sigma} V_{x} \colon x \in X \} = \operatorname{cl}_{\sigma} [\bigcup \{ V_{x} \colon x \in X \}] = \operatorname{cl}_{\sigma} (W).$$

Observe that $r \in cl_{\sigma}(V)$. In fact $r \in int_{\sigma}[cl_{\sigma}(V)]$. Since Y is para-H-closed, $cl_{\sigma}(W)$ is also para-H-closed. But $W \subset X$, and $cl_{\sigma}(W) = cl_{\tau}(W)$. Thus \overline{W} is para-H-closed in X. Let $G = V \cap X$. Then $cl_{\sigma}(G) = cl_{\sigma}(V)$, and $int_{\sigma}[cl_{\sigma}(V)] =$ $int_{\tau}[cl_{\tau}(G)] \cup \{r\}$. Also $Y \setminus int_{\sigma}[cl_{\sigma}(V)] = X \setminus int_{\tau}[cl_{\tau}(G)] \subset cl_{\tau}(W)$, which is para-H-closed. This implies that $X \setminus int_{\tau}[cl_{\tau}(G)]$ is para-H-closed. Thus by Lemma 1, $G \in \Lambda$. So $G \cup \{p\} = (V \cap X) \cup \{p\}$ is a τ^* -open neighborhood of p, and $f(G \cup \{p\}) = V \subset U$. Therefore f is continuous at p. But f is continuous at each x in X, too. This completes the proof of (c).

THEOREM 5. Let (X, τ) be a locally paracompact, non-locally-H-closed, non-para-H-closed space. Then (X, τ) does not have a projective minimum in the set of all of its one-point para-H-closed extensions.

PROOF. Let p be a point not in X and $Y = X \cup \{p\}$. Let (Y, σ) be any para-H-closed extension of (X, τ) . Let $q \in X$ be such that there exists $U_q \in \tau$ with the following properties:

(i) $q \in U_q$.

(ii) $\operatorname{cl}_{\tau}(U_a)$ is not *H*-closed.

(iii)
$$p \notin \operatorname{cl}_{\sigma}(U_{\alpha})$$
.

Let Γ be a free filter-base of open subsets of $\operatorname{cl}_{\sigma}(U_q)$ such that, for every $F \in \Gamma$, there exists $F' \in \Gamma$ with $\operatorname{cl}(F') \subset F$.

Define a coarser topology σ' on Y by enlarging the neighbourhoods at p. Let the new neighbourhoods at p be of the type $O \cup \operatorname{int}_{\tau}(F)$, where O is any open neighbourhood of p in (Y, σ) and $F \in \Gamma$. Then (Y, σ') is a Hausdorff extension of (X, τ) and is strictly coarser than (Y, σ) . We claim that (Y, σ') is para-H-closed. Let γ be an open cover of (y, σ') . There exist an open neighbourhood O_0 of p in (Y, σ) and $F_0 \in \Gamma$ such that $O_0 \cup F_0 \subset U_0$ for some $U_0 \in \gamma$. There exists $F_1 \in \Gamma$

142

such that $cl(F_1) \subset F_0$. Let λ be a para-*H*-closed refinement of γ in (Y, σ) . Let $\xi = \{V \setminus (cl_{\tau}(F_1) \cup \{p\}): V \in \lambda\} \cup \{O_0 \cup F_0\}$. Then ξ is the required refinement of γ in (Y, σ') . Hence (Y, σ') is para-*H*-closed.

THEOREM 6. Let (X, τ) be a locally H-closed space which is not para-H-closed. Then (X, τ) has a projective minimum in the set of all of its one-point para-H-closed extensions.

PROOF. Let (X^*, τ^*) be the projective minimum of (X, τ) in the set of all one-point *H*-closed extensions of (X, τ) . (See [2]). Then (X^*, τ^*) is also a projective minimum in the set of all one-point para-*H*-closed extensions of *X*.

References

- F. Obreanu, 'Spatii local absolut inchise', An Acad. Repub. Pop. Romine Sect. Sti. Mat. Fiz. Chim. Ser. A 3 (1950), 375-394.
- [2] J. R. Porter, 'On locally H-closed spaces', Proc. London Math. Soc. (3) 20 (1970), 193-204.
- [3] M. I. Zahid, Para-H-closed spaces, locally para-H-closed spaces and their minimal topologies, Ph.D. Dissertation, 1981.

University of Pittsburgh at Bradford Bradford, Pennsylvania 16701 USA Mathematics Department University of Pittsburgh Pittsburgh, Pennsylvania 15260 USA