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Abstract

Objective: The Amsterdam Instrumental Activities of Daily Living Questionnaire (A-IADL-Q) is well validated and commonly used to assess
difficulties in everyday functioning regarding dementia. To facilitate interpretation and clinical implementation across different European
countries, we aim to provide normative data and a diagnostic cutoff for dementia.Methods: Cross-sectional data from Dutch Brain Research
Registry (N = 1,064; mean (M) age = 62 ± 11 year; 69.5% female), European Medial Information Framework-Alzheimer’s Disease 90 þ
(N = 63; Mage = 92 ± 2 year; 52.4% female), and European Prevention of Alzheimer’s Dementia Longitudinal Cohort Study (N = 247;
Mage = 63 ± 7 year; 72.1% female) were used. The generalized additive models for location, scale, and shape framework were used to obtain
normative values (Z-scores). The beta distribution was applied, and combinations of age, sex, and educational attainment were modeled.
The optimal cutoff for dementia was calculated using area under receiver operating curves (AUC-ROC) and Youden Index, using data from
Amsterdam Dementia Cohort (N = 2,511, Mage = 64 ± 8 year, 44.4% female). Results: The best normative model accounted for a cubic-like
decrease of IADL performance with age that was more pronounced in low compared to medium/high educational attainment. The cutoff for
dementia was 1.85 standard deviation below the population mean (AUC = 0.97; 95% CI [0.97–0.98]). Conclusion: We provide regression-
based norms for A-IADL-Q and a diagnostic cutoff for dementia, which help improve clinical assessment of IADL performance across
European countries.

Keywords: A-IADL-Q; everyday functioning; dementia; norm scores; clinical implementation; results interpretation

(Received 4 July 2023; final revision 21 November 2023; accepted 2 January 2024)

Introduction

Difficulties in performing cognitively complex everyday activities,
so-called “instrumental activities of daily living” (IADL), are a
diagnostic criterion for dementia. One way to measure IADL
functioning is by means of the Amsterdam Instrumental Activities of
Daily LivingQuestionnaire (A-IADL-Q), an extensively validated study
partner-reported instrument (see e.g. [Dubbelman et al., 2020; Jutten
et al., 2017; Koster et al., 2015; Sikkes et al., 2013; Sikkes et al., 2013]). To
interpret A-IADL-Q scores on an individual level and to successfully
implement IADL in clinical practice, normative data are imperative.

Norm scores typically reflect the standardized difference
between an individual’s observed and expected outcome measure,

as based on a cognitively healthy reference population. Hence they
are imperative for results interpretation, which is particularly
useful in clinical practice. Nevertheless, researchers can also benefit
from the availability of norm scores, as they allow additional
research opportunities, like splitting clinical cohorts based on
individual deviations from normal functioning, which encourages
personalized treatments (Marquand et al., 2016). Clinical use of the
A-IADL-Q can be further facilitated by a norm-based diagnostic
cutoff value, which aids in the diagnostic process and subsequent
communication of results.

Traditional norming has the important limitation that it treats
all demographic variables as discrete values (Voncken et al., 2019).
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As a result, this approach has been widely replaced by continuous
norming, including standard polynomial regression and general-
ized additive models for location, scale, and shape (GAMLSS). The
first allows for varying means, while the latter additionally allows
for varying scale (σ, approximate coefficient of variation),
skewness (ν, transformation to symmetry), and kurtosis (τ, power
exponential parameter) (Voncken et al., 2019). Due to this
flexibility, and because it is efficient, regression-based norming
using GAMLSS has become a highly popular approach to estimate
norm scores for psychological tests (Timmerman et al., 2021).

Here, we aimed to establish demographically adjusted norm
scores for the A-IADL-Q using GAMLSS. Several combinations of
age, sex and/or education were fitted to find the best normative
model. Additionally, we aimed to provide the optimal cutoff value
to distinguish cognitively normal (CN) from dementia, along with
its diagnostic accuracies for other diagnostic contrasts, including
subjective cognitive decline (SCD) and mild cognitive impairment
(MCI) diagnoses.

Methods

Ethical considerations and consent

This study made use of European data from multiple studies, all of
which were approved by ethical review boards local to each study
site. All participants provided written informed consent to store,
share, and use their data for research purposes. The research was
completed in accordance with Helsinki Declaration.

Participant selection criteria

See Supplementary Methods for information. Figure S1 shows a
flowchart of our exclusion criteria.

Sample characteristics

Cognitively normal sample
Cross-sectional data from Dutch Brain Research Registry (Zwan
et al., 2021), European Medical Information Framework –
Alzheimer’s Disease (EMIF-AD) 90 þ study (Legdeur et al.,
2018), and European Prevention of Alzheimer’s Dementia
Longitudinal Cohort Study (EPAD-LCS) (Ritchie et al., 2016)
were combined into one large, European normative sample of
1,374 participants with a wide age range (mean age = 63.3 ± 11.9
years [min = 18, max= 97years], 69.2% female, 69.8% highly
educated). See Supplementary Methods for details per dataset.

Memory clinic sample
In order to compute the optimal cutoff value to distinguish normal
functioning from dementia, the CN sample was combined with a
memory clinic sample from the Amsterdam Dementia Cohort
(ADC) (van der Flier & Scheltens, 2018), comprising 2,155
individuals recruited from the Alzheimer Center Amsterdam
between 2013 and 2022 (mean age = 64 ± 8years [min = 32,
max = 86 years], 44.4% female, 42.0% highly educated).

Measures

A-IADL-Q
The A-IADL-Q is a well-validated, study partner-reported
questionnaire, measuring impairments in everyday functioning
in the context of dementia (Dubbelman et al., 2020; Jutten et al.,
2017; Koster et al., 2015; Sikkes et al., 2013; Sikkes et al., 2013). The
shortened version counts 30 items, each of which is scored

according to a 5-point Likert scale (ranging from no difficulty to
unable to perform a certain task). Total scores were calculated using
item response theory (IRT), resulting in T-scores that are normally
distributed in a memory clinic population around amean of 50 with
a standard deviation of 10, where higher scores indicate better IADL
functioning (Jutten et al., 2017). For the purpose of fitting a
GAMLSS with a beta distribution, the T-scores were divided by 100,
such that the values fell within the beta interval [0,1].

Other measures
Education of participants was either measured in years or classified
according to the Dutch ‘Verhage’ system, and dichotomized to
low/medium (i.e., < 13 years of education, or Verhage scales 1–5;
up to high school education) and high education (i.e., ≥13 years of
education, or Verhage scales 6-7; college level degree).

Statistical analyses

All analyses were performed in R version 4.2.1. The R packages
gamlss (Rigby & Stasinopoulos, 2005) and cutpointr (Thiele &
Hirschfeld, 2021) were used for fitting GAMLSS and establishing
the optimal diagnostic cutoff value, respectively.

The normative model
To determine the appropriate distribution family for our
normative sample, a histogram plot of the A-IADL-Q T-scores
was visually inspected. The beta distribution was found appro-
priate (see results), and accordingly used for fitting GAMLSS with
various combinations of age (years), sex (0=male, 1= female) and
educational attainment (0 = low, 1 = medium/high), including
interaction effects and a cubic smoothing spline function for age.
Stepwise model selection using a Generalized Akaike Information
Criterion (GAIC) was used to determine the optimal model, i.e. the
model with the lowest GAIC value. A Worm plot (i.e., de-trended
Q-Q plot) of the optimalmodel was visually inspected to determine
model fit, and term plots were created to display the cubic
smoothing spline functions that were fitted.

Generalizability of the normative model was tested using
k-folds cross validation, and norm scores (i.e., Z-scores, or
normalized quantile residuals) were obtained for each individual in
the joint study sample (see Supplementary Methods for details).

The optimal diagnostic cutoff value and corresponding
diagnostic accuracies
The optimal cutoff value to distinguish CN individuals from those
with dementia was derived from a bootstrap average estimate on
the Youden Index, i.e., a metric of accuracy, whereby the highest
value represents the optimal balance between sensitivity and
specificity. Bootstraps were run with 500 repeats, to optimize this
metric. The diagnostic accuracy was determined by means of Area
Under Received Operating Curves (AUC-ROC).

The diagnostic accuracy of the optimal cutoff value for (1) CN
vs dementia (CNvsDem) was also calculated for other diagnostic
groups: (2) CN vsMCI (CNvsMCI), (3) SCD vsMCI (SCDvsMCI),
(4) SCD vs dementia (SCDvsDem), and (5) MCI vs dementia
(MCIvsDem).

Results

Sample characteristics

Our CN sample comprised 1,374 individuals, and the memory
clinic sample comprised 1,725 individuals. Table 1 displays
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descriptive information about the two study samples, as well as the
total study sample. Individuals from the memory clinic sample
were older (t(2179)=−2.47, p= 0.01), lower educated (χ2(1)=
247.35, p< 0.001), more often male (χ2(1)= 227.85, p< 0.001) and
performed significantly worse on the A-IADL-Q (t(3271)= 59.39,
p< 0.001) compared to the CN sample. Table S1 shows the
participant count per cohort across different age categories.

The normative model

Visual inspection of the histogram plot of the A-IADL-Q T-scores
in the normative sample showed a left skew of the data (Figure S2),
resembling a beta distribution with alpha = 2 and beta = 8
parameters. Hence, the beta distribution was used for fitting
GAMLSS.

We found that a GAMLSS with an interaction effect between
education and a cubic spline for age was the best model for our
normative sample (GAIC=−4946.624, log(σ)=−2.38) (Table S2).
Figure S3 shows the relationships between IADL functioning, age,
and educational attainment. Our results show that A-IADL-Q
performance generally decreases with age (albeit in a cubic-fashion).
The interaction effect with educational attainment indicates that the
effect of age on A-IADL-Q is dependent on it. Indeed, older
participants with low educational attainment had lower A-IADL-Q
scores compared to older participants with medium/high educa-
tional attainment. Furthermore, educational attainment is positively
associated with A-IADL-Q, meaning that participants with
medium/high educational attainment perform better on the
A-IADL-Q than those with low educational attainment (Table S2,
Figure S3).

The smooth functions used for fitting the cubic spline for age
are displayed in the term plots (Figure S4). Figure S5 shows the
Worm plot of the residuals, which indicates that the beta
distribution does not adequately fit the data.

Cross-validation

The generalizability of the normative model was tested by
comparing its global deviance (i.e., a goodness of fit measure, equal
to −2*LogLikelihood) with the global deviance after k= 10-fold
cross-validation. The difference was only 0.48% (global deviance
=−4960.623, cross-validated global deviance=−4936.66),

indicating that our normative model is highly generalizable to the
general population.

The optimal cutoff value for CN versus dementia

For the demographically adjusted A-IADL-Q norm scores, we
estimated the optimal cutoff value to distinguish CN from
dementia, based on the highest Youden index. We found this
cutoff to be -1.85 SD from the population mean (AUC= 0.97;
95%CI [0.96, 0.98]; sensitivity= 90.43%; specificity = 93.89%)
(Table S3, Figure S7).

Figure S6 demonstrates the density distribution of the
demographically adjusted norm scores in the CN reference
population, as well as in the SCD, MCI and dementia groups.
The high accuracy of the optimal cutoff to distinguish between CN
and dementia is supported by the fact that 94.25% of CN
individuals had demographically adjusted norm scores above this
cutoff (indicating good performance), compared to only 7.59% of
individuals with dementia. The percentage of MCI individuals
scoring above the optimal cutoff was 30.55%, and for SCD this
was 50.70%.

Diagnostic accuracies corresponding to the optimal
cutoff value

We also studied the diagnostic accuracies of the CNvsDem cutoff
(which is −1.85SD from population mean, see above) for other
diagnostic contrasts (Table S3). This cutoff appeared just as
sensitive in distinguishing CN from dementia as in distinguishing
SCD and MCI from dementia (sensitivity = 90.43% for all three
diagnostic contrasts), although with lower specificity: 49.16% for
SCDvsDem, and 31.03% for MCIvsDem, compared to 93.81% for
CNvsDem. Moreover, using the −1.85SD cutoff to distinguish CN
and SCD individuals from those with MCI resulted in a lower
sensitivity (68.97% for both), as well as lower specificity for the
SCDvsMCI contrast (specificity= 49.16%). For CNvsMCI,
however, the specificity remained the same (specificity= 93.89%).
Figure S7 shows the corresponding ROC curves.

Normative data

Figure 1 illustrates our normative model. Individual deviations
from the norm are reflected by different percentile categories

Table 1. Participant characteristics

Total (N= 3,529)

Cognitively normal sample (N= 1,374) Memory clinic sample (N= 2,155)

Dutch Brain Research Registry EMIF-AD 90þ EPAD-LCS Total ADC

Age
Mean (SD) 63.3 (11.9) 61.8 (11.0) 92.1 (1.9) 62.5 (6.8) 63.3 (11.9) 64.2 (8.1)
Median (Range) 64 (18–97) 63 (18– 93) 91.8 (88–97) 62 (50–85) 63 (18–97) 65 (32–86)

Female, N (%) 951 (69.2%) 740 (69.5%) 33 (52.4%) 178 (72.1%) 951 (69.2%) 930 (43.2%)
High education, N (%) 959 (69.8%) 737 (69.3%) 27 (42.9%) 195 (78.9%) 959 (69.8%) 919 (42.6%)
A-IADL-Q score
Mean (SD) 66.5 (4.7) 66.5 (4.2) 57.3 (8.5) 68.8 (1.5) 66.5 (4.7) 51.6 (10.1)
Range 36.5–70.0 47.5–70.0 36.5–70.0 58.9–70.0 36.5–70.0 18.5–70.0

Diagnosis, N (%)
CN 1374 (39%) 1,064 (100%) 63 (100%) 247 (100%) 1374 (100%) –
SCD 592 (17%) – – – – 592 (27%)
MCI 319 (9%) – – – – 319 (15%)
Dementia (AD or non-AD) 1,244 (35%) – – – – 1,244 (58%)

CN= cognitively normal, SCD = subjective cognitive decline, MCI=mild cognitive impairment, AD= Alzheimer’s disease, EMIF-AD 90þ = European Medial Information Framework-Alzheimer’s
Disease 90þ study, EPAD-LCS= European Prevention of Alzheimer’s Dementia Longitudinal Cohort Study, ADC= Amsterdam Dementia Cohort.
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(indicated with different colors), which can be deduced from
reading the figure. Moreover, the cutoff for low vs medium/high
IADL functioning (indicated with different shapes) can be read.

Discussion

The current study aimed at establishing demographically adjusted
norm scores for the A-IADL-Q and providing a corresponding
cutoff for dementia, thereby easing results interpretation and
accordingly clinical use of the A-IADL-Q.

To our knowledge, this is the first study to establish norm scores
for an IADL instrument. For other IADL measures, like the
Functional Activities Questionnaire (FAQ) (Pfeffer et al., 1982),
Everyday Cognition (ECog) (Farias et al., 2008), and the
Alzheimer’s Disease Cooperative Study ADL scale (ADCS-ADL)
(Fish, 2011), normative values, as well as a norm-based diagnostic
cutoffs, have not yet been computed.

While cutoffs for different diagnostic contrasts can be of
interest, we only present a single cutoff value here, to avoid possible
confusion due to multiple cutoff values. Moreover, our cutoff for
dementia showed sufficient diagnostic accuracies for the other

diagnostic contrasts examined (all AUC> 0.6), such that one single
cutoff suffices.

Notably, a prior A-IADL-Q study has calculated the optimal
cutoff for dementia based on the raw A-IADL-Q T-scores (Sikkes
et al., 2013). This value (= 51.4), however, had 16% lower
sensitivity and 30% lower specificity compared to our norm-based
cutoff, and did not take into account age, sex or educational
attainment. Clinicians are therefore recommended to use the
norm-based cutoff we present here.

We used GAMLSS – a regression-based parametric norming
method – for the computation of norm scores, which has two
benefits over other types of continuous norming (i.e., semi-
parametric and inferential norming): (1) it has readily available
statistical criteria for model selection and assessment and (2) it
does not require discretization of continuous norm predictors,
which possibly introduces imprecision (Timmerman et al., 2021).
A known downside of regression-based norming, however, is that
the shape of the data must be modeled with any of the available
distribution functions, which might not optimally model the shape
of the data. This is particularly problematic in the case of large floor
or ceiling effects, which cannot be captured well by parametric

Figure 1. Illustration of the normative model. This figure shows the A-IADL-Q T-score distribution in the normative sample across age, split by educational attainment. Left: < 13
years of education, or Dutch Verhage scales 1-5. Right: ≥13 years of education, or Dutch Verhage scales 6–7. The different colors indicate the different percentile categories
individuals can fall into, with lower percentile scores (yellow) reflecting better IADL functioning, as compared to the normal sample. The different shapes indicate the expected
level of IADL functioning (i.e., low [triangle], or medium/high [circle]), based on the optimal cutoff for dementia. Reading example: The top right shows a reading example for a 50-
year individual with medium/high education and an A-IADL-Q T-score of 68. The place where the two solid lines cross each other indicates the place where this person falls within
the normal sample. That is, within the third percentile category, meaning that 50%–75% of cognitively normal individuals score the same or better on the A-IADL-Q than this
person. The cutoff for this person (triangle) suggests medium/high IADL functioning.
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distributions (Lenhard et al., 2019). A floor or ceiling effect exists
when, respectively, less or more than 20% of the participants
have the maximum score on an instrument (Garin, 2014). While
our data showed a left skew, only 17% of individuals had a
T-score >= 69.5, supporting the absence of a ceiling effect, and
advocating for regression-based norming.

The best normative model comprised a cubic spline for age and
its interaction with educational attainment. Sex appeared not to be
a determinant of IADL functioning, in line with a prior study on
differential item functioning of the A-IADL-Q across eight
countries (Dubbelman et al., 2020). Nevertheless, sex differences
in IADL have been reported in Europe (Scheel-Hincke et al., 2020).
Those differences were significantly larger in Southern compared
to Northern Europe (Scheel-Hincke et al., 2020), which may
suggest that our normative sample more closely represents
Northern Europe. Indeed, most of our normative sample is from
the Netherlands, so some caution is warranted when the model is
applied to non-Northern Europeans.

To make our norm scores applicable to a broader, European
population, we have included European data from the EPAD-LCS
cohort, which is an important strength of our study, because it
increases generalizability of our results. Furthermore, we included
a cohort of cognitively healthy nonagenarians, which further adds
to the generalizability of results, by increasing applicability of our
normative sample to older individuals. Other strengths of this
study are the broad age range of our normative sample (18y–97y)
and its large sample size(n > 1,000).

One limitation of our study is that theWorm plot indicated bad
model fit. Be that as it may, these normative values are computed
using the highly flexible GAMLSS framework, which is in many
ways superior to the traditional(mean-based) standard polynomial
regression approach. Thus, even though our data did not fit
the beta distribution well, it is the best fit we could have
obtained without subjecting our data to complex transformations
(e.g., a square- or cube root), which come with their own
limitations. Another limitation is that our normative data are not
directly accessible. Hence, we are currently exploring the
implementation of an A-IADL-Q norm score calculator in existing
tools for research and clinical use, such as ADappt (van Maurik
et al., 2019). Finally, our normative data are limited to a European
population. Future studies should therefore include participants
from different continents, cultures, and socioeconomic back-
grounds, in order to facilitate world-wide use of the A-IADL-Q
norm data in the clinic.

Conclusion

To conclude, we present norm scores for the A-IADL-Q and
provide an optimal cutoff for dementia. Our data are key to
improving clinical assessment of IADL performance, as they allow
for easier interpretation of scores.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S1355617724000031.
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