LONGEST GYCLES IN 2-CONNECTED GRAPHS WITH PRESGRIBED MAXIMUM DEGREE

J. A. BONDY AND R. C. ENTRINGER

1. Introduction. The relationship between the lengths of cycles in a graph and the degrees of its vertices was first studied in a general context by G. A. Dirac. In [5], he proved that every 2 -connected simple graph on n vertices with minimum degree d contains a cycle of length at least $\min \{2 d, n\}$. Dirac's theorem was subsequently strengthened in various directions in $[7],[6],[13],[12],[2],[1],[11],[8],[14],[15]$ and $[16]$.

Our aim here is to investigate another aspect of this relationship, namely how the lengths of the cycles in a 2 -connected graph depend on the maximum degree. Let us denote by $f(n, d)$ the largest integer k such that every 2 -connected simple graph on n vertices with maximum degree d contains a cycle of length at least k. We prove in Section 2 that, for $d \geqq 3$ and $n \geqq d+2$,
(1) $4 \log _{d-1} n-4 \log _{d-1} \log _{d-1} n-20<f(n, d)<4 \log _{d-1} n+4$.

Thus, for every $d \geqq 3$,

$$
\lim _{n \rightarrow x} \frac{f(n, d)}{\log _{d-1} n}=4
$$

In Section 3, we examine the special case of regular graphs. If $g(n, d)$ denotes the largest integer k such that every 2 -connected d-regular simple graph on n vertices contains a cycle of length at least k, then it follows from (1) and the above-mentioned theorem of Dirac that, for $d \geqq 3$ and $n \geqq 2 d$,
(2) $g(n, d) \geqq \max \left\{2 d, 4 \log _{d-1} n-4 \log _{d-1} \log _{d-1} n-20\right\}$.

We establish upper bounds on $g(n, d)$ by means of appropriate constructions. In particular, we prove that, for $d \geqq 3$ and $n \geqq \frac{1}{2}(d-1)\left(d^{2}+\right.$ $3 d+1$),
(3) $g(n, d) \leqq 4\left\{\log _{d-1} n\right\}+2 d$.

The bounds in (2) and (3) are fairly close to one another both for small

[^0]values of $d(d=O(1))$ and for large values of $d\left(d=O\left(n^{c}\right)\right.$, where $0<c \leqq \frac{1}{3}$). However, they are markedly different at intermediate values of d, and the lower bound (2) could, no doubt, be improved in this range. The bound (2) is also rather weak for very large values of $d(d=O(n))$. For example, Jackson [9] has proved that, for $d \geqq n / 3$,
$$
g(n, d)=n
$$
and it has been conjectured (see [3]) that, for $d \geqq n / k$, where $k \geqq 3$ and n is sufficiently large,
$$
g(n, d) \geqq 2 n /(k-1) .
$$

We conclude the paper with a discussion of some related problems and results.
2. Graphs with prescribed maximum degree. The lower bound in (1) is established by means of a construction based on the following lemma. We first have a definition. If G is a graph whose block-cutvertex tree is a path, and if x and y are two vertices of G belonging to the blocks which correspond to the ends of this path, then G is referred to as an (x, y)-block-path.

Lemma 1. Let T be a tree with s vertices $u_{1}, u_{2}, \ldots, u_{s}$ of degree one, where $s \geqq 2$. Let T^{\prime} be a tree isomorphic to T with corresponding vertices $u_{1}{ }^{\prime}, u_{2}{ }^{\prime}, \ldots, u_{s}{ }^{\prime}$ of degree one and, for $1 \leqq i \leqq s$, let G_{i} be a $\left(v_{i}, v_{i}{ }^{\prime}\right)$-blockpath, where $T, T^{\prime}, G_{1}, G_{2}, \ldots, G_{s}$ are pairwise disjoint. Denote by G the graph obtained on identifying u_{i} with v_{i} and $u_{i}{ }^{\prime}$ with $v_{i}{ }^{\prime}$ for all $i, 1 \leqq i \leqq s$. Then G is 2-connected and any cycle in G includes vertices of at most two of the graphs G_{i}.

Proof. G is clearly 2 -connected. Let C be a cycle in G. We may suppose that no G_{i} entirely contains C. Then, since both T and T^{\prime} are trees, C must include some (u_{i}, u_{j})-path of T. But if C includes an edge e of T, it also includes the corresponding edge e^{\prime} of T^{\prime}, because $\left\{e, e^{\prime}\right\}$ is an edge cut of G. Therefore C also includes the $\left(u_{i}{ }^{\prime}, u_{j}{ }^{\prime}\right)$-path of T^{\prime}. It follows that C consists of these two paths together with a ($\left.v_{i}, v_{i}{ }^{\prime}\right)$-path in G_{i} and a $\left(v_{j}, v_{j}^{\prime}\right)$-path in G_{j}.

Construction. Let n and d be positive integers with $d \geqq 3$ and $n \geqq d+2$. Set

$$
s=d(d-1)^{t}
$$

where

$$
t=\left[\log _{d-1}\left((n(d-2)+4) / d^{2}\right)\right]
$$

and let $\left(a_{1}, a_{2}, \ldots, a_{s}\right)$ be a sequence of integers, as equal as possible, such that

$$
\sum_{i=1}^{s} a_{i}=\frac{n(d-2)+4-d^{2}(d-1)^{t}}{d-2}
$$

In order to apply Lemma 1 , we now define a tree T and graphs G_{i}, $1 \leqq i \leqq s$, as follows.

Let T be a tree in which every vertex of degree greater than one has degree d and every vertex of degree one is at distance $t+1$ from the centre. Observe that T has s vertices of degree one and that, if d_{i} is the number of vertices of T at distance i from the centre,

$$
\nu(T)=\sum_{i=0}^{t+1} d_{i}=1+\sum_{i=1}^{t+1} d(d-1)^{i-1}=\frac{d(d-1)^{t+1}-2}{d-2}
$$

where $\nu(T)$ denotes the number of vertices of T.
For $1 \leqq i \leqq s$, let

$$
G_{i}= \begin{cases}K_{1} & \text { if } a_{i}=0 \\ K_{2} & \text { if } a_{i}=1 \\ K_{2, a i-1} & \text { if } a_{i} \geqq 2\end{cases}
$$

We denote the ends of T by $u_{1}, u_{2}, \ldots, u_{s}$. If $a_{i}=0$, we label the vertex of G_{i} with v_{i} and $v_{i}{ }^{\prime}$; if $a_{i}=1$, we label one vertex of G_{i} with v_{i} and the other with $v_{i}{ }^{\prime}$; if $a_{i} \geqq 2$, we label one vertex of degree $a_{i}-1$ in G_{i} with v_{i} and the other with $v_{i}{ }^{\prime}$.

On identifying vertices as in Lemma 1, we obtain a 2-connected graph $G_{n, d}$ with maximum degree d. Now

$$
\begin{aligned}
& \nu\left(G_{n \cdot d}\right)=2 \nu(T)+\sum_{i=1}^{s}\left(\nu\left(G_{i}\right)-2\right) \\
&=\frac{2 d(d-1)^{t+1}-4}{d-2}+\sum_{i=1}^{s} a_{i}-s=n
\end{aligned}
$$

and, by Lemma 1, a longest cycle in $G_{n, d}$ has length at most $4 t+8$. Therefore

$$
f(n, d) \leqq 4 \log _{d-1}(n(d-2)+4) / d^{2}+8<4 \log _{d-1} n+4
$$

Our proof of the lower bound in (1) makes use of the following lemma.
Lemma 2. Let G be a 2-connected graph on n vertices with maximum degree d. Then each edge of G lies on a cycle of length at least $2 h(n, d)-1$, where

$$
h(n, d)=\log _{d-1}(n(d-2)+2) / 2 .
$$

Proof. Let $e=u v$ be any edge of G, and let G^{\prime} be the graph obtained from G by deleting e, inserting a new vertex x, and joining x to both u
and v. Then G^{\prime} is also 2 -connected and has maximum degree d. In G^{\prime}, let d_{i} be the number of vertices at distance i from x. Then $d_{1}=2$ and, because G^{\prime} has maximum degree $d, d_{i} \leqq 2(d-1)^{i-1}$ for all $i>1$. Suppose that $d_{r+1}=0$. Then

$$
n=\sum_{i=1}^{r} d_{i} \leqq \frac{2\left((d-1)^{r}-1\right)}{d-2}
$$

so

$$
r \geqq h(n, d)
$$

It follows that there is a vertex y in G^{\prime} whose distance from x is at least $h(n, d)$. Since G^{\prime} is 2-connected, there are two internally-disjoint (x, y)-paths in G^{\prime}. Thus x lies on a cycle of length at least $2 h(n, d)$ in G^{\prime}, and e lies on a cycle of length at least $2 h(n, d)-1$ in G.

Let G be a 2 -connected graph and let C be a cycle of G. For each component G_{i} of $G-C$, let A_{i} be the set of vertices of C which are adjacent, in G, to at least one vertex of G_{i}, and let B_{i} be the subgraph of G consisting of A_{i}, G_{i} and all the edges of G with one end in A_{i} and the other in G_{i}. Then the subgraphs B_{i} are called the proper bridges of G (relative to C). The sets A_{i} are the sets of vertices of attachment of the bridges B_{i}.

Theorem.

$$
f(n, d)>4 \log _{d-1} n-4 \log _{d-1} \log _{d-1} n-20
$$

Proof. Let G be a 2 -connected graph on n vertices with maximum degree d and let C be a longest cycle, of length l, in G. Let G_{i}, B_{i} and A_{i}, $1 \leqq i \leqq r$, be the components of $G-C$, the corresponding proper bridges of G and their sets of vertices of attachment, respectively. For $1 \leqq i \leqq r$, set

$$
\nu\left(G_{i}\right)=n_{i} \text { and }\left|A_{i}\right|=a_{i} .
$$

Then
(4) $\sum_{i=1}^{r} n_{i}=n-l$
and
(5) $\quad \sum_{i=1}^{r} a_{i} \leqq l(d-2)$.

Denote by T_{i} the block-cutvertex tree of G_{i}, and let G^{\prime} be the graph one obtains from G on replacing G_{i} by $T_{i}, 1 \leqq i \leqq r$. Let \mathscr{P}_{i} denote the set of all paths of length at least two in G^{\prime} having their ends in A_{i} and their internal vertices in T_{i}. Since each such path is determined by its two terminal edges,
(6) $\left|\mathscr{P}_{i}\right| \leqq\binom{ a_{i}}{2}(d-2)^{2}$.

Now each vertex of T_{i} lies on at least $a_{i}-1$ of these paths. Thus, if we define the weight $w(P)$ of a path $P \in \mathscr{P}_{i}$ to be the total number of vertices in the block path of G_{i} corresponding to the interior of P, we have
(7) $\sum_{P \in \mathscr{P}_{i}} \mathfrak{w}^{(P)} \geqq\left(a_{i}-1\right) n_{i}$.

It follows from (6) and (7) that there is a path $P_{i} \in \mathscr{P}_{i}$ with
(8) $w\left(P_{i}\right) \geqq 2 n_{i} / a_{i}(d-2)^{2}$.

Let $m=\max _{i} n_{i} / a_{i}$. Then $m a_{i} \geqq n_{i}$ for all i, so

$$
m \sum_{i=1}^{r} a_{i} \geqq \sum_{i=1}^{r} n_{i} .
$$

Using (4) and (5), we obtain

$$
m \geqq(n-l) / l(d-2) .
$$

We now deduce from (8) the existence of a path $P \in \cup_{i} \mathscr{P}_{i}$ such that

$$
w(P) \geqq 2(n-l) / l(d-2)^{3} .
$$

Suppose that $P \in \mathscr{P}_{j}$, and that the ends of P are u and v. Then the subgraph H of B_{j} corresponding to P, together with the edge $u v$, is 2 -connected and

$$
\nu(H) \geqq \frac{2(n-l)}{l(d-2)^{3}}+2 .
$$

By Lemma 2, $u v$ lies in a cycle of length at least $2 h-1$, where $h=h(\nu(H), d)$. Therefore B_{j} contains a (u, v)-path of length at least $2 h-2$. Since C is a longest cycle in G, it follows that $l \geqq 4 h-4$. Thus

$$
l \geqq 4 \log _{d-1}\left(\frac{n-l}{\bar{l}\left(\frac{l}{d-2}\right)^{2}}+d-1\right)-4>4 \log _{d-1} n-4 \log _{d-1} l-12 .
$$

But this implies that

$$
f(n, d)>4 \log _{d-1} n-4 \log _{d-1} \log _{d-1} n-20 .
$$

3. Regular graphs. Here, we describe constructions which yield fairly good upper bounds on $g(n, d)$. The first makes use of Lemma 1.

Let n and d be positive integers with $d \geqq 3$ and $n \geqq d^{2}+d+2$. Set

$$
s=t(d-2)+2
$$

where

$$
t=\left[\frac{n-2(d+1)}{d^{2}-d}\right]
$$

and let $\left(a_{1}, a_{2}, \ldots, a_{s}\right)$ be a sequence of integers, as equal as possible subject to the condition that each a_{i} be even if d is odd, and such that

$$
\sum_{i=1}^{s} a_{i}=n-2 t .
$$

Let T be a tree with s vertices $u_{1}, u_{2}, \ldots, u_{s}$ of degree one and t vertices of degree d. Choose T so that the maximum distance m from the centre of T to a vertex of degree one is as small as possible. Thus

$$
m=\left\{\log _{d-1}(s / d)\right\}+1 \leqq\left\{\log _{d-1} s\right\} .
$$

For $1 \leqq i \leqq s$, let G_{i} be a $\left(v_{i}, v_{i}^{\prime}\right)$-block-path on a_{i} vertices, where v_{i} and v_{i}^{\prime} have degree $d-1$ and the remaining vertices have degree d. On identifying vertices as in Lemma 1, we obtain a 2 -connected d-regular graph $H_{n, d}$. Now

$$
\nu\left(H_{n, 4}\right)=2 \nu(T)+\sum_{i=1}^{s}\left(\nu\left(G_{i}\right)-2\right)=2(s+t)+\sum_{i=1}^{s}\left(a_{i}-2\right)=n
$$

and, by Lemma 1, a longest cycle in $H_{n, d}$ has length at most
(9) $4 m+2 \max _{i} a_{i}-2$.

Since

$$
\max _{i} a_{i} \leqq\left\{\frac{n-2 t}{s}\right\}+1
$$

we obtain

$$
g(n, d) \leqq 4\left\{\log _{d-1} s\right\}+2\left\{\frac{n-2 t}{s}\right\} .
$$

This bound has the disadvantage that the roles of n and d are not expressed explicitly. However, it is amenable to some simplification when $n \geqq \frac{1}{2}(d-1)\left(d^{2}+3 d+1\right)$. In that case, using the fact that

$$
t \geqq\left(n-\left(d^{2}+d+1\right)\right) /\left(d^{2}-d\right)
$$

a routine computation yields

$$
\left\{\frac{n-2 t}{s}\right\} \leqq d+3
$$

and hence

$$
\max _{i} a_{i} \leqq d+3 .
$$

Also

$$
s=t(d-2)+2 \leqq(n(d-2)+4) / d(d-1)<n /(d-1) .
$$

Substituting these bounds into (9), we obtain

$$
g(n, d) \leqq 4\left\{\log _{d-1} n\right\}+2 d
$$

We now briefly describe a construction valid for $d \geqq 3$ and $d+2 \leqq$ $n \leqq d^{2}+d+2$. It is the natural extension of one due to Lang and Walther [10].

Let $\left(a_{1}, a_{2}, \ldots, a_{r}\right)$ be a partition of $n-2$ into integers a_{i}, where $a_{i} \geqq d+1, a_{i}$ is even if d is odd, and $\max _{i} a_{i}$ is as small as possible subject to these conditions. For $1 \leqq i \leqq r$, let G_{i} be a d-regular 2-connected graph on a_{i} vertices (the graphs G_{i} being pairwise disjoint), and let $M=\left\{u_{j} v_{j} \mid 1 \leqq j \leqq d\right\}$ be a matching in $H=\cup G_{i}$ which intersects each G_{i}. Let G be the graph obtained from $H-M$ by adding two new vertices u and v and the edges $u u_{j}, v v_{j}, 1 \leqq j \leqq d$. Then G is a 2 -connected d-regular graph on n vertices with no cycle of length greater than $2 \max _{i} a_{i}+2$.
4. Graphs of higher connectivity. The transition from 2-connected graphs to graphs of higher connectivity has a striking effect on the problems treated above. Bondy and Simonovits [4] have proved, for example, that

$$
e^{c_{1} \sqrt{\log _{e} n}} \leqq f_{3}(n, 3) \leqq c_{2} n^{\log 8 / \log 9}
$$

where $f_{k}(n, d)$ is the analogue of $f(n, d)$ for k-connected graphs. They conjecture that

$$
f_{3}(n, 3)>n^{c}
$$

for some $c>0$. Another conjecture, due to R. Häggkvist (see [9]), concerns $g_{k}(n, d)$, the analogue of $g(n, d)$ for k-connected graphs, and asserts that, for $d \geqq k+2$ and $n \leqq d(k+1)$,

$$
g_{k}(n, d)=n
$$

It is perhaps worth pointing out here that Dirac's theorem cannot be improved by considering graphs of connectivity greater than two; if $n \geqq 2 d$, then $K_{d, n-d}$ is a d-connected graph, and yet has no cycle of length greater than $2 d$.

Added in Proof. Jackson [9] has announced that this conjecture is false.

References

1. J. C. Bermond, On Hamiltonian walks, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975). Congressus Numerantium, Utilitas Math. Winnipeg, Man. 15 (1976), 41-51.
2. J. A. Bondy, Large cycles in graphs, Discrete Math. 1.2 (1971), 121-132.
3. - Hamilton cycles in graphs and digraphs, Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory and Computing, Boca Raton, Florida (1978), Utilitas Math. 21 (1978), 3-28.
4. J. A. Bondy and M. Simonovits, Longest cycles in 3-connected 3-regular graphs, Can. J. Math., to appear.
5. G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
6. Paths and circuits in graphs: extreme cases, Acta Math. Acad. Sci. Hungar. 10 (1959), 357-362.
7. P. Erdös and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337-356.
8. M. Grötschel, Graphs with cycles containing given paths, Ann. of Discrete Math. 1 (1977), 233-245.
9. B. Jackson, Hamilton cycles in regular 2-connected graphs, J. Combinatorial Theory Ser. B. 29 (1980), 47-67.
10. R. Lang and H. Walther, Über längste Kreise in regulären Graphen, Beiträge zur Graphentheorie (Kolloquium, Manebach, 1967). Teubner, Leipzig (1968), 91-98.
11. N. Linial, A lower bound for the circumference of a graph, Discrete Math. 15.3 (1976), 297-300.
12. O. Ore, On a graph theorem by Dirac, J. Combinatorial Theory 2 (1967), 383-392.
13. L. Pósa, On the circuits of finite graphs, (Russian summary) Magyar Tud. Akad. Mat. Kutato Int. Közl. 8 (1963), 355-361.
14. H.-J. Voss, Maximal circuits and paths in graphs: extreme cases, Combinatorics (Proc. Conf. Keszthely, 1976), Colloq. Math. Soc. János Bolyai (North-Holland Publishing Company, New York) 18 (1978), 1099-1122.
15. ——Bridges of longest circuits and of longest paths in graphs, Beiträge zur Graphentheorie und deren Anwendungen (Intern. Kolloquium, Oberhof, 1977), 275-286.
16. H.-J. Voss and C. Zuluaga, Maximale gerade und ungerade Kreise in Graphen, I, Wiss. Z. Techn. Hochsch. IImenau 23.4 (1977), 57-70.

University of Waterloo,
Waterloo, Ontario;
University of New Mexico,
Albuquerque, New Mexico

[^0]: Received January 5, 1979. This paper was written while the first author was a Visiting Associate Professor at the University of New Mexico. He wishes to thank the Department of Mathematics and Statistics for arranging that appointment. The financial support of the Natural Sciences and Engineering Research Council of Canada is also gratefully acknowledged.

