
Compositio Math. 143 (2007) 1545–1557
doi:10.1112/S0010437X07003090

Counterexamples to Okounkov’s log-concavity

conjecture

Calin Chindris, Harm Derksen and Jerzy Weyman

Abstract

We give counterexamples to Okounkov’s log-concavity conjecture for Littlewood–
Richardson coefficients.

1. Introduction

Motivated by physical considerations, Okounkov [Oko03, Conjecture 1] has conjectured that the
Littlewood–Richardson coefficients cλ

µ,ν are log-concave in (λ, µ, ν). A particular version of this
conjecture would be (see also [Ful00, pp. 239]) as follows.

Conjecture 1.1 (Okounkov’s log-concavity conjecture). Let λ, µ, ν be three partitions. Then

c
(N+1)λ
(N+1)µ,(N+1)ν · c(N−1)λ

(N−1)µ,(N−1)ν � (cNλ
Nµ,Nν)2,

for every integer N � 1.

Important implications of this conjecture are also discussed in [Oko03]. It is easy to see that
Conjecture 1.1, if true, would immediately imply a conjecture of Fulton on Littlewood–Richardson
coefficients (see [Bel05] or [KTW04]). Moreover, the log-concavity of the Littlewood–
Richardson coefficients as a function of highest weights would imply the saturation conjecture for
Littlewood–Richardson coefficients (see [DW00] or [KT99]) and the Schur-log-concavity conjecture
for skew-Schur functions (see [LPP05]). We should also point out that the results in [TZ04] give
some evidence for the log-concavity conjecture. However, the conjecture turns out to be false in
general.

In this paper, we construct infinite families of counterexamples to Conjecture 1.1 (and hence to
Okounkov’s original conjecture), as follows.

Theorem 1.2. Let n � 1 be an integer and let λ(n), µ(n) be two partitions defined by

λ(n) = (4n, 32n, 2n) and µ(n) = (3n, 2n, 1n).

Then

c
λ(n)
µ(n),µ(n) =

(
n + 2

2

)
and c

2λ(n)
2µ(n),2µ(n) =

(
n + 5

5

)
.

Consequently, when n � 21, Conjecture 1.1 fails for λ = λ(n), µ = ν = µ(n), and N = 1.

The details of our notation can be found in the notation paragraph at the end of this section. We
would like to point out that Conjecture 1.1 is true asymptotically. This fact was proved by Okounkov
in [Oko03, § 3.5]. A different proof can be found herein § 3.4 (Remark 3.5 and Example 3.6).
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The layout of this paper is as follows. In § 2, we give a direct proof of Theorem 1.2 by using
the Littlewood–Richardson rule. A different approach to Okounkov’s conjecture is based on quiver
theory. In § 3, we review some tools from quiver invariant theory and explain why the log-concavity
conjecture is bound to fail (see § 3.4). In § 4, we give another proof of Theorem 1.2 and present
more counterexamples. In particular, Proposition 4.4 provides counterexamples to the log-concavity
conjecture [Kir04, Conjecture 6.17] for parabolic Kostka numbers.

Notation. A partition is a sequence λ = (λ1, . . . , λr) of integers such that λ1 � · · · � λr � 0. The
length of a partition is defined to be the number of its non-zero parts. If λ is a partition, we define
|λ| to be the sum of its parts. The Young diagram of a partition λ = (λ1, . . . , λr) is a collection
of boxes, arranged in left-justified rows with λi boxes in row i. For a partition λ, we denote by λ′

the partition conjugate to λ, i.e., the Young diagram of λ′ is the Young diagram of λ reflected with
respect to its main diagonal.

If λ = (λ1, . . . , λr) is a partition then we define Nλ by Nλ = (Nλ1, . . . , Nλr). By λ =
(λm1

1 , . . . , λmk
k ), we denote the partition that has mi parts equal to λi, 1 � i � k. For a par-

tition λ of length at most r, Sλ(V ) denotes the irreducible polynomial representation of GL(V )
with highest weight λ, where V is an r-dimensional complex vector space. Let λ, µ, ν be three par-
titions of length at most r. Then we define the Littlewood–Richardson coefficient cλ

µ,ν to be the
multiplicity of Sλ(V ) in Sµ(V ) ⊗ Sν(V ), i.e.,

cλ
µ,ν = dimC(Sλ(V )∗ ⊗ Sµ(V ) ⊗ Sν(V ))GL(V ),

where Sλ(V )∗ is the dual representation. More generally, if γ, λ(1), . . . , λ(m) are partitions of length
at most r, we define

cγ
λ(1),...,λ(m) = dimC(Sγ(V )∗ ⊗ Sλ(1)(V ) ⊗ · · · ⊗ Sλ(m)(V ))GL(V ).

2. A direct proof by Littlewood–Richardson rule

Our main references for Young tableau and Littlewood–Richardson rule are [Ful97] and [Mac95]
(see also [Ful00]). If λ, µ, ν are three partitions, the Littlewood–Richardson coefficient cλ

µ,ν can be
described as the cardinality of the set LR(λ, µ, ν) of diagrams D of skew shape λ/µ, filled with ν1

1s, ν2 2s, etc., subject to the following conditions.

(1) Diagram D is a semistandard Young tableau, i.e., the entries in rows are weakly increasing
from left to right and the entries in columns are strictly increasing from top to bottom.

(2) Diagram D is a lattice permutation, i.e., when the entries are listed, from right to left in rows,
starting with the top row, the resulting word w(D) is a lattice permutation. This last condition
means that for any integer 1 � r � |ν|, and any positive integer i, the number of occurrences
of i in the first r entries of w(D) is no less than the number of occurrences of i + 1 in these
first r entries.

Example 2.1. For λ = (4, 2, 1), µ = (3, 1, 0), and ν = (2, 1, 0), there are only two diagrams D that
satisfy conditions (1) and (2) above, as given below.

1
1

2

1
2

1

Note that the diagram
2

1
1
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is not a lattice permutation. Reversing the roles of µ, ν, we get the diagrams given below.

1 1
1

2

1 1
2

1

Proof of Theorem 1.2. For our purposes it will be convenient to work with conjugate partitions.
This is always possible since the Littlewood–Richardson coefficients are invariant when passing to
conjugate partitions. First, we show that

c
λ(n)′
µ(n)′,µ(n)′ =

(
n + 2

2

)
,

where λ(n)′ = (4n, 4n, 3n, n) and µ(n)′ = (3n, 2n, n). We look at the cases n = 1, 2 and then
describe the general pattern. For n = 1, the multiplicity is 3 because the only three skew diagrams
satisfying the requirements of the Littlewood–Richardson rule are those below.

1
1 2

1 2
3

1
1 2

1 3
2

1
1 2

2 3
1

Let us call these tableaux S3, S2, S1 respectively, i.e., we label them by the content of the last
row.

For n = 2, we get the following six tableaux.

1 1
1 1 2 2

1 1 2 2
3 3

1 1
1 1 2 2

1 1 2 3
2 3

1 1
1 1 2 2

1 2 2 3
1 3

1 1
1 1 2 2

1 1 3 3
2 2

1 1
1 1 2 2

1 2 3 3
1 2

1 1
1 1 2 2

2 2 3 3
1 1

Looking at their last row, these clearly correspond to the monomials of degree 2 in S1, S2, S3.
So, for general n we define a bijection between the set of monomials

Sa := Sa1
1 Sa2

2 Sa3
3

of degree n and the set LR(λ(n)′, µ(n)′, µ(n)′) of tableaux of the shape λ(n)′/µ(n)′ satisfying the
conditions (1) and (2) above, whose cardinality is equal to c

λ(n)′
µ(n)′,µ(n)′ . To achieve this, we associate

to each monomial Sa a tableau E(a) from LR(λ(n)′, µ(n)′, µ(n)′) as follows. The first two rows
of each E(a) are the same; they contain in each column the number 1 for columns with numbers
2n + 1, . . . , 3n, and the numbers 1, 2 for columns with numbers 3n + 1, . . . , 4n.

The filling of the last row of E(a) is a tableau of shape (n) and we just define it to have a1 1s,
a2 2s and a3 3s. Now it is clear that the remaining third row of λ(n)′/µ(n)′ can be uniquely filled
by the remaining available numbers to get the tableau E(a) from LR(λ(n)′, µ(n)′, µ(n)′). Indeed,
the first (from left to right) n boxes in the third row have to be filled by the remaining 1s and
2s and the last n boxes by the remaining 2s and 3s, in weakly increasing order. This assures
semistandardness. The lattice permutation condition between 1s and 2s is satisfied because there
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are 2n 1s already in the columns 2n + 1, . . . , 4n. The lattice permutation condition between 2s and
3s is also satisfied because there are already n 2s in columns 3n + 1, . . . , 4n.

This gives us an injection from the set of monomials Sa to the set of tableaux LR(λ(n)′, µ(n)′,
µ(n)′). It is clearly surjective because to each diagram E from the set LR(λ(n)′, µ(n)′, µ(n)′) we
can associate the monomial Su1

1 Su2
2 Su3

3 of degree n by taking ui to be the number of occurrences of
i in the last row of E. This shows that

c
λ(n)′
µ(n)′,µ(n)′ =

(
n + 2

2

)
.

Let us turn to the second statement. We need to show that

c
ρ(n)
σ(n),σ(n) =

(
n + 5

5

)
,

where ρ(n) = (2λ(n))′ = (4n, 4n, 4n, 4n, 3n, 3n, n, n) and σ(n) = (2µ(n))′ = (3n, 3n, 2n, 2n, n, n).
Let us exhibit the case n = 1 below.

1
2

1 3
2 4

1 3
2 4

5
6

1
2

1 3
2 4

1 3
2 5

4
6

1
2

1 3
2 4

1 5
2 6

3
4

1
2

1 3
2 4

1 3
4 5

2
6

1
2

1 3
2 4

1 5
3 6

2
4

1
2

1 3
2 4

3 5
4 6

1
2

Let us label these tableaux by the content of the first column, i.e., T5,6, T4,6, T3,4, T2,6, T2,4,
and T1,2, respectively. We also order them by a total order respecting the lexicographic order of the
indices, i.e.,

T1,2 < T2,4 < T2,6 < T3,4 < T4,6 < T5,6.

We define a bijection between the set of monomials

T a := T
a1,2

1,2 T
a2,4

2,4 T
a2,6

2,6 T
a3,4

3,4 T
a4,6

4,6 T
a5,6

5,6

of degree n and the set LR(ρ(n), σ(n), σ(n)) of tableaux of the shape ρ(n)/σ(n) satisfying the
conditions (1) and (2) above, whose cardinality is equal to c

ρ(n)
σ(n),σ(n). To achieve this, we associate

to each monomial T a a tableau D(a) from LR(ρ(n), σ(n), σ(n)) as follows. The first four rows of
each D(a) are the same; they contain in each column the numbers 1, 2 for columns with numbers
2n + 1, . . . , 3n, and the numbers 1, 2, 3, 4 for columns with numbers 3n + 1, . . . , 4n.
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The filling of the last two rows of D(a) form a tableau of shape (n2). We start with a tableau
having ai,j columns of type

i

j

We order them according to the order on Ti,j, so columns

1
2

are the first ones and columns
5
6

are the last ones. The only problem is that the columns

3
4

and
2
6

cannot be standard in any order. So, every occurrence of the columns

3
4

and
2
6

has to be replaced by
2 3
4 6

This defines the filling of the last two rows of D(a). Now, we claim that the remaining fifth and sixth
rows of ρ(n)/σ(n) can be uniquely filled by the remaining available numbers to get the tableau D(a)
from LR(ρ(n), σ(n), σ(n)). The point is that 1s have to appear in the fifth row at the beginning, and
2s cannot appear in that row after 1s because the lattice permutation condition would be violated.
Similarly, 6s have to appear at the end of the sixth row, but there has to be a 5 above each 6,
otherwise the lattice permutation condition is violated. The rest of the 5s have to appear before
the 6s. The remaining part of the diagram can be uniquely filled with 3s and 4s to complete it
to a standard diagram. Indeed, the number 4 cannot appear in the fifth row, because the lattice
permutation condition would be violated (the number of 3s and 4s in the first four rows is the same).
Semistandardness and the lattice permutation condition easily follow. This gives us an injection from
the set of monomials T a to the set LR(ρ(n), σ(n), σ(n)). This is enough for the counterexample,
because we showed that the coefficient c

ρ(n)
σ(n),σ(n) is at least

(n+5
5

)
. The fact that the defined map is

surjective is not difficult to prove, so we leave it to the reader.

3. Quiver theory

In this section we review the main tools from quiver invariant theory that will be used to study
Littlewood–Richardson coefficients.

3.1 Generalities
A quiver Q = (Q0, Q1, t, h) consists of a finite set of vertices Q0, a finite set of arrows Q1 and
two functions t, h : Q1 → Q0 that assign to each arrow a its tail ta and its head ha, respectively.
We write ta

a−→ha for each arrow a ∈ Q1.
For simplicity, we will be working over the field of complex numbers C. A representation V

of Q over C is a family of finite dimensional C-vector spaces {V (x) | x ∈ Q0} together with a
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family {V (a) : V (ta) → V (ha) | a ∈ Q1} of C-linear maps. If V is a representation of Q, we define
its dimension vector dV by dV (x) = dimC V (x) for every x ∈ Q0. Thus the dimension vectors of
representations of Q lie in Γ = ZQ0, the set of all integer-valued functions on Q0. For every vertex x,
we denote by ex the simple dimension vector corresponding to x, i.e. ex(y) = δx,y, for all y ∈ Q0,
where δx,y is the Kronecker symbol.

Given two representations V and W of Q, we define a morphism φ : V → W to be a collection
of linear maps {φ(x) : V (x) → W (x) | x ∈ Q0} such that, for every arrow a ∈ Q1, we have
φ(ha)V (a) = W (a)φ(ta). We denote by HomQ(V,W ) the C-vector space of all morphisms from V
to W . In this way, we obtain the abelian category Rep(Q) of all quiver representations of Q. Let V
and W be two representations of Q. We say that V is a subrepresentation of W if V (x) is a subspace
of W (x) for all vertices x ∈ Q0 and V (a) is the restriction of W (a) to V (ta) for all arrows a ∈ Q1.

If α, β are two elements of Γ, we define the Euler inner product

〈α, β〉 =
∑

x∈Q0

α(x)β(x) −
∑
a∈Q1

α(ta)β(ha). (1)

From now on, we will assume that our quivers are without oriented cycles.

3.2 Semi-invariants for quivers
Let β be a dimension vector of Q. The representation space of β-dimensional representations of Q
is defined by

Rep(Q,β) =
⊕
a∈Q1

Hom(Cβ(ta),Cβ(ha)).

If GL(β) =
∏

x∈Q0
GL(β(x)) then GL(β) acts algebraically on Rep(Q,β) by simultaneous conjuga-

tion, i.e., for g = (g(x))x∈Q0 ∈ GL(β) and V = {V (a)}a∈Q1 ∈ Rep(Q,β), we define g · V by

(g · V )(a) = g(ha)V (a)g(ta)−1 for each a ∈ Q1.

In this way, Rep(Q,β) is a rational representation of the linearly reductive group GL(β) and
the GL(β)-orbits in Rep(Q,β) are in one-to-one correspondence with the isomorphism classes of
β-dimensional representations of Q. As Q is a quiver without oriented cycles, one can show that
there is only one closed GL(β)-orbit in Rep(Q,β) and hence the invariant ring I(Q,β) =
C[Rep(Q,β)]GL(β) is exactly the base field C.

Now, consider the subgroup SL(β) ⊆ GL(β) defined by

SL(β) =
∏

x∈Q0

SL(β(x)).

Although there are only constant GL(β)-invariant polynomial functions on Rep(Q,β), the action
of SL(β) on Rep(Q,β) provides us with a highly non-trivial ring of semi-invariants. Note that any
σ ∈ ZQ0 defines a rational character of GL(β) by

{g(x) | x ∈ Q0} ∈ GL(β) �→
∏

x∈Q0

(det g(x))σ(x).

In this way, we can identify Γ = ZQ0 with the group X�(GL(β)) of rational characters of GL(β),
assuming that β is a sincere dimension vector (i.e., β(x) > 0 for all vertices x ∈ Q0). We also refer
to the rational characters of GL(β) as weights.

Let SI(Q,β) = C[Rep(Q,β)]SL(β) be the ring of semi-invariants. As SL(β) is the commutator
subgroup of GL(β) and GL(β) is linearly reductive, we have

SI(Q,β) =
⊕

σ∈X�(GL(β))

SI(Q,β)σ ,
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where

SI(Q,β)σ = {f ∈ C[Rep(Q,β)] | gf = σ(g)f for all g ∈ GL(β)}
is the space of semi-invariants of weight σ. If α ∈ Γ, we define σ = 〈α, ·〉 by

σ(x) = 〈α, ex〉, for all x ∈ Q0.

Similarly, one can define the weight τ = 〈·, α〉.
Lemma 3.1 (Reciprocity property [DW00, Corollary 1]). Let α and β be two dimension vectors.
Then

dim SI(Q,β)〈α,·〉 = dim SI(Q,α)−〈·,β〉.

Now, we can define (α ◦ β)Q by

(α ◦ β)Q = dim SI(Q,β)〈α,·〉 = dim SI(Q,α)−〈·,β〉.

(When no confusion arises, we shall drop the subscript Q.)

3.3 Exceptional sequences

A dimension vector β ∈ NQ0 is said to be a Schur root if there exists a β-dimensional representation
W ∈ Rep(Q,β) such that EndQ(W ) ∼= C.

Definition 3.2. A sequence of dimension vectors ε1, . . . , εr is called an exceptional sequence if:

(i) each εi is a real Schur root, i.e., εi is a Schur root and 〈εi, εi〉 = 1, for all 1 � i � r;

(ii) (εi ◦ εj)Q 
= 0, for all 1 � i < j � r.

The following theorem will be quite useful for us (for a more general version, see [DW06]).

Theorem 3.3 [DW06, Theorem 2.39]. Let ε1, ε2 be an exceptional sequence for a quiver Q without
oriented cycles. Assume that 〈ε2, ε1〉 = −l, where l is some non-negative integer. Define a new quiver
θ(l) with set of vertices θ(l)0 = {1, 2} and l arrows from vertex 2 to vertex 1. Consider the linear
transformation

I : Nθ(l)0 = N2 −→ NQ0

defined by

I(β1, β2) = β1ε1 + β2ε2,

for all dimension vectors β = (β1, β2) ∈ Nθ(l)0 .

If α, β ∈ Nθ(l)0 are such that (α ◦ β)θ(l) 
= 0 then

(α ◦ β)θ(l) = (I(α) ◦ I(β))Q.

The quiver θ(l) that appears in Theorem 3.3 is called the generalized Kronecker quiver. As we
will see in § 4, this particular quiver will be our main source of Littlewood–Richardson coefficients.
It has been proved in [DW06] that the map I in the theorem above allows one to ‘embed’ much of
the combinatorics of the ‘new quiver’ θ(l) into the combinatorics of the original quiver Q. For this
reason, we refer to Theorem 3.3 as the ‘embedding theorem’.

3.4 Polynomiality for semi-invariants and (non-)log-concavity

We are interested in how the dimensions Nα ◦ β = dimC SI(Q,β)N〈α,·〉 and α ◦ Nβ = dimC
SI(Q,α)−N〈·,β〉 vary as N ∈ Z�0 varies.
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Proposition 3.4 [DW02, Corollary 1]. Let α, β be two dimension vectors such that α ◦ β 
= 0.
There exist polynomials P,Q ∈ Q[X] (both depending on α and β) with P (0) = Q(0) = 1, and

Nα ◦ β = P (N), for all N � 0,

and

α ◦ Nβ = Q(N), for all N � 0.

Remark 3.5. Note that there is a sufficiently large integer N0 > 0 such that p(t) = P (t + 1)/P (t)
and q(t) = Q(t + 1)/Q(t) are weakly decreasing functions on [N0,∞). In other words, we have

((N + 1)α ◦ β) · ((N − 1)α ◦ β) � (Nα ◦ β)2, (2)

(α ◦ (N + 1)β) · (α ◦ (N − 1)β) � (α ◦ Nβ)2, (3)

for every N > N0.
Thus the dimensions of spaces of semi-invariants are asymptotically log-concave (in each

argument).

Example 3.6. For an integer r � 1, let Tr,r,r be the following triple flag quiver with arms of length r.

·

····

····

····

����������

����

������

����
��

��
��

����

Now, given a triple (λ, µ, ν) of partitions of length at most r, one can construct dimension vectors
α and β (see for example [DW00]) such that

Nα ◦ β = cNλ
Nµ,Nν ,

for all N � 1. This calculation together with inequality (2) shows that the Littlewood–Richardson
coefficients are asymptotically log-concave (compare with [Oko03, § 3.5]).

Next, we are going to show that the log-concavity property for semi-invariants fails in many
cases. For β ∈ NQ0 a dimension vector and σ ∈ ZQ0 a weight of Q, we define

σ(β) =
∑

x∈Q0

σ(x)β(x).

Definition 3.7 [Kin94, Proposition 3.1]. Let β be a dimension vector and σ be a weight such that
σ(β) = 0. A β-dimensional representation W ∈ Rep(Q,β) is said to be:

(i) σ-semi-stable if σ(dW ′) � 0 for every subrepresentation W ′ of W ;

(ii) σ-stable if σ(dW ′) < 0 for every proper subrepresentation 0 
= W ′ � W .

We say that a dimension vector β is σ-(semi-)stable if there exists a σ-(semi-)stable representa-
tion W ∈ Rep(Q,β).

Let β be a σ-semi-stable dimension vector. The set of σ-semi-stable representations in Rep(Q,β)
is denoted by Rep(Q,β)s.s.σ while the set of σ-stable representations in Rep(Q,β) is denoted by
Rep(Q,β)sσ . The one-dimensional torus

T = {(t Idβ(x))x∈Q0 | t ∈ C∗} ⊆ GL(β)

acts trivially on Rep(Q,β) and so there is a well-defined action of PGL(β) = GL(β)/T on Rep(Q,β).
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Using methods from geometric invariant theory, one can construct the following GIT-quotient of
Rep(Q,β):

M(Q,β)s.s.σ = Proj
(⊕

n�0

SI(Q,β)nσ

)
.

It was proved by King [Kin94] that M(Q,β)s.s.σ is a categorical quotient of Rep(Q,β)s.s.σ by PGL(β).
Note that M(Q,β)s.s.σ is an irreducible projective variety, called the moduli space of β-dimensional
σ-semi-stable representations (for more details, see [Kin94]).

For the remainder of this section, we assume that β is a σ-stable dimension vector. Then there
is a non-empty open subset M(Q,β)sσ ⊆ M(Q,β)s.s.σ which is a geometric quotient of Rep(Q,β)sσ
by PGL(β). Now, a σ-stable representation must be a Schur representation and so its stabilizer in
PGL(β) is zero-dimensional. It follows that

dimM(Q,β)s.s.σ = 1 − 〈β, β〉.

Let us further assume that 〈β, β〉 < 0 (that is to say, β is imaginary and non-isotropic). Then
it is known that mβ stays σ-stable (see for example [DW06, Proposition 3.16]) and hence

dimM(Q,mβ)s.s.σ = 1 − m2〈β, β〉,
for every integer m � 1. Now, write σ = 〈α, ·〉 for some dimension vector α. If we fix m then nα◦mβ
has degree 1 − m2〈β, β〉 as a polynomial in n. Therefore, when n > 0 is sufficiently large, we must
have

nα ◦ 2β > (nα ◦ β)2. (4)

Indeed, the left-hand side of the above inequality is a polynomial in n of degree 1 − 4〈β, β〉 while
the right-hand side is a polynomial of degree 2 − 2〈β, β〉 and 1 − 4〈β, β〉 > 2 − 2〈β, β〉.

Note that inequality (4) gives counterexamples to the log-concavity property for semi-invariants.

4. Counterexamples

In this section, we first give a different proof of Theorem 1.2 and then present more counterexamples.
In particular, we provide counterexamples to Kirillov’s q-log-concavity conjecture for parabolic
Kostka polynomials (see Proposition 4.4).

4.1 Littlewood–Richardson coefficients from star and generalized Kronecker quivers

It is well known that the Littlewood–Richardson coefficients can be viewed as dimensions of spaces
of semi-invariants of star quivers (see for example [Chi04, DW00]). Now, let us consider the star
quiver T4,3,4 with the orientation given below.

·

···

· ·

· · ·

����������

����

����

����
��

��
��

����

We are going to reduce the problem of computing semi-invariants of T4,3,4 to that of computing
semi-invariants of (rather small) generalized Kronecker quivers.

Let us recall that, for every integer n � 1, we define

λ(n) = (4n, 32n, 2n) and µ(n) = (3n, 2n, 1n).

1553

https://doi.org/10.1112/S0010437X07003090 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003090


C. Chindris, H. Derksen and J. Weyman

Proposition 4.1. Let θ(3) be the generalized Kronecker quiver with three arrows and vertices
labelled 1, 2:

θ(3) : 1 2��� .

Then

dim SI(θ(3), (n, n))(−m,m) = c
mλ(n)
mµ(n),mµ(n),

for every m,n � 1.

Proof. Let us consider the exceptional sequence of T4,3,4 given by

ε1 =
1 2 3

0 3 4
1 2 3

and

ε2 =
0 0 0

1 0 0
0 0 0

.

Since 〈ε2, ε1〉 = −3, we know that the generalized Kronecker quiver θ(3) can be embedded in
T4,3,4 by Theorem 3.3. In particular, if α = (n, n) and β = (m, 2m) are dimension vectors for θ(3)
then

(α ◦ β)θ(3) = (I(α) ◦ I(β))T4,3,4 ,

where

I(α) =
n 2n 3n

n 3n 4n
n 2n 3n

and

I(β) =
m 2m 3m

2m 3m 4m
m 2m 3m

.

Next, computing with Schur functors (see [Chi04] or [DW00] for explicit computations) we obtain

I(α) ◦ I(β) = c
mλ(n)
mµ(n),mµ(n),

and so we are done.

Another proof of Theorem 1.2. By Proposition 4.1, we only need to compute the dimensions of
the spaces SI(θ(3), (n, n))(−m,m) when m = 1, 2. For this, we first decompose the affine coordinate
ring of Rep(θ(3), (n, n)) as a direct sum in which the summands are tensor products of irreducible
representations of the GL(n). For convenience, let us write V = Cn,W = Cn. Then we have

C[Rep(θ(3), (n, n))] = C[Hom(W,V ) ⊕ Hom(W,V ) ⊕ Hom(W,V )]
= S(W ⊗ V ∗) ⊗ S(W ⊗ V ∗) ⊗ S(W ⊗ V ∗).

Using Cauchy’s formula [Ful97, p. 121], we obtain that

S(W ⊗ V ∗) =
⊕

SµW ⊗ SµV ∗

as GL(V )×GL(W )-modules, where the sum is over all partitions µ with at most n non-zero parts.
Hence, we have

C[Rep(θ(3), (n, n))]SL(V )×SL(W )

=
⊕

(Sµ(1)V ∗ ⊗ Sµ(2)V ∗ ⊗ Sµ(3)V ∗)SL(V ) ⊗ (Sµ(1)W ⊗ Sµ(2)W ⊗ Sµ(3)W )SL(W ),
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where the sum is over all partitions µ(1), µ(2), µ(3) with at most n non-zero parts. Sorting out those
semi-invariants of weight (−m,m), it is easy to see that

SI(θ(3), (n, n))(−m,m) =
⊕(

detmV ⊗
3⊗

i=1

Sµ(i)V ∗
)GL(V )

⊗
(

det−m
W ⊗

3⊗
i=1

Sµ(i)W

)GL(W )

,

where the sum is over all partitions µ(1), µ(2), µ(3) with at most n non-zero parts. For our purposes
it is useful to work with conjugate partitions in the identity above. So, we can write

dimSI(θ(3), (n, n))(−m,m) =
∑

(c(nm)
λ(1),λ(2),λ(3))

2, (5)

where the sum is over all partitions λ(1), λ(2), λ(3) (with at most m non-zero parts).
Next, it is easy to see that

c
(nm)
λ(1),λ(2),λ(3) � 1, (6)

for m ∈ {1, 2}. Indeed, one can either check this directly with the Littlewood–Richardson rule or
view these coefficients as dimensions of spaces of semi-invariants for a quiver of type D4.

Therefore, dimSI(θ(3), (n, n))(−1,1) is simply the number of monomials in three (commuting)
variables of degree n, and so

c
λ(n)
µ(n),µ(n) =

(
n + 2

2

)
.

Now, let λ(i) = (λ1(i), λ2(i)), 1 � i � 3, be three partitions with at most two non-zero parts.
We claim that

|λ(1)| + |λ(2)| + |λ(3)| = 2n, (7)
n − λ1(i) − λ2(j) − λ2(k) � 0, where {i, j, k} = {1, 2, 3}, (8)

give a (minimal) list of necessary and sufficient Horn inequalities for the non-vanishing of the
Littlewood–Richardson coefficient c

(n2)
λ(1),λ(2),λ(3). This follows from [Ful00, Theorem 17]. Alterna-

tively, one can deduce this claim from the description of the so-called cone of effective weights for
a type D4 quiver.

From (5)–(8), we obtain that dim SI(θ(3), (n, n))(−2,2) equals the cardinality of the set S of all
triples (λ(1), λ(2), λ(3)) of partitions with at most two non-zero parts satisfying the conditions (7)
and (8).

Note that every (λ(1), λ(2), λ(3)) ∈ S gives rise to a monomial Xn1
1 ·Xn2

2 ·Xn3
3 ·Xn4

4 ·Xn5
5 ·Xn6

6

of degree n, where

n1 = n − λ1(1) − λ2(2) − λ2(3), n2 = λ2(1),
n3 = n − λ1(2) − λ2(3) − λ2(1), n4 = λ2(2),
n5 = n − λ1(3) − λ2(1) − λ2(2), n6 = λ2(3).

It is clear that in this way we get a bijection from S to the set of all monomials in six (commuting)
variables of degree n. So, we have

dim SI(θ(3), (n, n))(−2,2) =
(

n + 5
5

)
,

and this finishes the proof.

Remark 4.2. It is worth pointing out that using the same ideas as above one can construct non-
log-concave Littlewood–Richardson coefficients for every star quiver Tp,q,r of wild representation
type.
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4.2 Non-log-concave parabolic Kostka numbers
In this section, we consider some rather special Littlewood–Richardson coefficients. Let λ be a
partition and let R = ((ml1

1 ), . . . , (mlk
k )) be a sequence of rectangular partitions. Then the parabolic

Kostka number Kλ,R associated to λ and R is defined by

Kλ,R = dimC(Sλ(V )∗ ⊗ S(m
l1
1 )(V ) ⊗ · · · ⊗ S(m

lk
k )(V ))GL(V ),

where V is a complex vector space of sufficiently large dimension. In general, it is well known that
Kλ,R is the value at q = 1 of the corresponding parabolic Kostka polynomial (see [Kir04, ch. 4] and
the reference therein).

If R = ((ml1
1 ), . . . , (mlk

k )) is a sequence of rectangles and N � 1 is an integer, we define NR to
be the sequence of rectangles NR = (((Nm1)l1), . . . , ((Nmk)lk)). The log-concavity conjecture for
parabolic Kostka numbers (compare with the more general version [Kir04, Conjecture 6.17]) is as
follows.

Conjecture 4.3. Let λ be a partition and R be a sequence of rectangular partitions. Then

K(N+1)λ,(N+1)R · K(N−1)λ,(N−1)R � (KNλ,NR)2,

for every integer N � 1.

Our next proposition shows that Conjecture 4.3 fails in general.

Proposition 4.4. For every n � 1, consider

λ(n) = (2n, 12n)

and

R(n) = ((1n), (1n), (1n), (1n)).

Then

Kλ(n),R(n) =
(

n + 2
2

)
and K2λ(n),2R(n) =

(
n + 5

5

)
.

Consequently, when n � 21, Conjecture 4.3 fails for λ = λ(n), R = R(n) and N = 1.

Proof. To obtain parabolic Kostka numbers, we work with the following star quiver Q.

· · ·

·
·

·
·

�� ��

����������
��������

��������

		�
��

��
��

�

Let ε1, ε2 be the exceptional sequence of Q shown below.

ε1 =

1
1

0 3 4
1
1

and ε2 =

0
0

1 0 0
0
0

Reasoning as in Proposition 4.1, we get

dim SI(θ(3), (n, n))(−m,m) = Kmλ(n),mR(n),

for every m,n � 1. The proof follows from that of Theorem 1.2.

1556

https://doi.org/10.1112/S0010437X07003090 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X07003090


Counterexamples to Okounkov’s log-concavity conjecture

Remark 4.5. Note that the parabolic Kostka numbers appearing in Proposition 4.4 can be written
as Littlewood–Richardson coefficients:

Kmλ(n),mR(n) = c
((4m)n ,(3m)n,(2m)n,mn)
((3m)n ,(2m)n,mn),((2m)n,m2n)

,

for every integer m � 1. Indeed, this follows immediately from [Zel99, Proposition 9].
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