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Bloodtyping and Twin Zygosity 
Reassessment and Extension 
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The determination of twin zygosity by bloodtyping is reconsidered, and the model for the 
individual case is reformulated. The crucial diagnostic question may be phrased as follows: 
Given the particular array of bloodgroup phenotypes that the twins display and are con­
cordant for, how might this array have been obtained by a pair of dizygotic twins, and how 
might the array have been obtained by a monozygotic pair? The solution yields a differen­
tial probability value that is uniquely tailored to the actual phenotype array shown. The 
procedure offers a coherent and more direct method for arriving at the needed probability 
figures, and it is recommended to supersede previous methods. Some similarities and dif­
ferences between the methods are discussed. 
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INTRODUCTION 

The use of bloodtyping to establish the zygosity of twins has a very active history, begin­
ning with the widely cited papers of Smith and Penrose [2] and Sutton et al [3] , and it 
has recently received another extensive treatment by Lykken [1]. The advantages of blood­
typing are well known and need be only briefly summarized: 1) Bloodtyping furnishes an 
objective measure of concordance for biological markers that are genetically determined 
and invariant; and 2) the details concerning gene frequencies, dominant vs recessive alleles, 
the mechanisms of transmission via different mating combinations, and the expected dis­
tribution of phenotypes among offspring are known in sufficient detail to allow a statistical 
estimate of concordance among twins. 

In a prior paper [4] the method for computing the expected number of concordant and 
discordant dizygotic (DZ) twins in the population was illustrated in detail for each pheno­
type among the eight major red-cell bloodgroups. The same paper showed a consistent fit 
between the expected values and the actual distribution of concordant/discordant pairs for 
each bloodgroup in a large sample of over 300 same-sex DZ pairs. The results were taken as 
confirming the basic genetic assumptions and methods of calculation for determining the 
distribution of bloodgroups among two-zygote pairs, which is the critical first step in zy­
gosity analysis. 
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The major problem in zygosity diagnosis, however, has been the translation of popula­
tion statistics into a format appropriate for the individual case, since this is where the cru­
cial diagnostic decisions must be made. The problem derives in part from the unusual nature 
of the question asked — what is the likelihood of a twin pair being concordant on all major 
bloodgroups and actually being DZ rather than monozygotic (MZ)? The problem also de­
rives from the complexity of the calculations involved and from some cryptic and recondite 
formulations of the differential probability estimates that bear on the likelihood of a con­
cordant twin pair being MZ or DZ. These formulations have led to some confusing transitions 
from probabilities to odds and back again, and in a manner that tends to defeat any under­
standing of how the requisite values were obtained. 

The present article addresses specifically the question of computing the correct proba­
bility for each concordant twin pair that the twins may be MZ or DZ. The reader is referred 
to an earlier article for an extensive detailing of the calculations and results for the entire 
bloodtyped sample [4]. The final section of that article, however, dealing with prediction 
for the individual case (p 48 ff), is superseded by the present article. 

The original formulation drew on the method of letting the first twin define the refer­
ence phenotype, and then setting the probability of concordance as being equal to the likeli­
hood of drawing another single zygote from the capable matings that Would display the 
designated phenotype. As will be shown below, however, this single zygote p-value needs 
to be supplemented by the p-value for drawing two concordant zygotes in order to obtain 
the final probability estimate. Therefore, the phenotype values in Table 18 of the 1970 
paper are not sufficient by themselves to yield the likelihood of being DZ when concordant, 
but must be incorporated with the additional two-zygote probabilities to be presented here­
in. The logic of the procedure will become apparent as the exact nature of the prediction 
problem is fully defined.1 

MODEL FOR INDIVIDUAL CASE 

In developing the model for the individual case, it becomes imperative to state the exact 
conditions under which the bloodtyping data will be examined to establish the zygosity of 
the twins. These conditions may be briefly enumerated. 
1) Only same-sex pairs are bloodtyped for zygosity purposes, since opposite-sex pairs are 
automatically known to be DZ on the basis of the sex difference. Any p-value used to 
represent the proportion of DZ twins in the bloodtyped sample must be based on the es­
timated proportion of DZ twins among same-sex pairs. 
2) Discordance for any of the bloodtyping tests automatically classifies the pair as DZ, since 
it demonstrates a genetic difference at one or more loci. 
3) The question of differential diagnosis arises only for those pairs that are concordant for 
all bloodgroups tested. All MZ pairs will be concordant, and a few DZ pairs will also be 
concordant. The needed figure for each pair is the likelihood that the twins could be DZ 
rather than MZ. 

'Incidentally, readers familiar with Lykken's article may recall his allegation of error in my treatment 
of drawing concordant twins from the capable matings for each phenotype. Lykken's allegation is in­
correct and appears to reflect a misunderstanding about how the capable-mating probabilities are 
computed and used. The calculations are illustrated in full in Appendix 2. As indicated in the text, the 
original values in the 1970 paper continue to be correct for the single-zygote case, but are now em­
ployed with the two-zygote values to be presented later. 
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4) Although the diagnostic question arises for each concordant pair, no matter what the 
actual phenotypes are, it is a fact that some phenotypes are much more frequent than 
others — the 0 phenotype, for example, in comparison to A]B. These differences have a 
significant influence on the likelihood of drawing two concordant zygotes, and therefore 
the overall probability of being DZ must accurately reflect the p-value for the specific ar­
ray of phenotypes displayed by the twins. 
5) Typically, bloodtyping data are not available for the parents, so the appropriate proba­
bilities must be cast in terms of drawing a pair of concordant twins from all the mating 
combinations capable of producing the observed phenotypes. 

CONCORDANCE ESTIMATES FOR DIZYGOTIC TWINS 

As a prologue to the individual case, it will be useful to review the proportion of DZ twins 
expected to be concordant for each of the major bloodgroups, since these figures are ulti­
mately combined to yield the small number of DZ pairs that will be concordant at all eight 
loci. The values are shown in Table 1, and they represent the total proportion of concordant 
DZ twins for all the phenotypes within each bloodgroup [from Wilson: 4]. 

TABLE 1. Expected Proportion of Concordant DZ Pairs for Each Major Blood Group 

Bloodgroup Proportion concordant 

ABO 0.626 
Rhesus 0.434 
MNSs 0.442 
P 0.774 
Kell 0.919 
Kidd 0.783 
Duffy 0.737 
Lewis3 0.792 

It is evident that a substantial number of DZ pairs are expected to be concordant — over 
50% for all groups except Rh and MNSs. Since the genes for each bloodgroup segregate in­
dependently, the proportion of DZ pairs expected to be concordant across all eight blood-
groups is given by the cumulative multiplication of the eight p-values: 

Proportion concordant when DZ = (0.626)(0.434) . . . (0.792) = 0.039 (1) 

In a sample composed solely of DZ pairs, the proportion of pairs expected to be con­
cordant at all eight loci is 0.039. When this is considered in terms of the individual pair 
rather than the sample, the likelihood of any randomly drawn DZ pair being concordant 
at all loci is also 0.039. Note that this makes no reference to the particular phenotypes be­
ing displayed — simply that in a large sample of DZ twins, the expected proportion that 
will be concordant is 0.039, without restriction as to phenotype. 

This value leads in turn to the solution for a mixed sample containing both MZ and DZ 
pairs. The number of concordant pairs in the mixed sample will include all the MZ pairs, 
who are by definition concordant at every loci, plus 0.039 of the DZ pairs. Depending on 
the ratio of MZ twins to DZ same-sex twins in the sample, these values then determine the 
likelihood that a concordant pair will be DZ. 
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For example,in the large bloodtypedsample reported previously [4], it was found that 
45.8% of the same-sex pairs were DZ, and 54.2% were MZ. Employing these proportions 
with the figures above, the total proportion of pairs expected to be concordant is given by 

Proportion concordant pairs = pDZ (p concordant when DZ) + pMZ (p concordant 
when MZ) 

= (0.458)(0.039) + (0.542)(1.000) 
= 0.560 (2) 

When we consider the concordant pairs in terms of zygosity diagnosis, the expected 
proportion of concordant pairs that will be DZ is given by 

,v x- rw i x • PDZ (p concordant when DZ) 
Proportion DZ among concordant pairs = „ . : : — 

Total proportion concordant pairs 
_ (0.458)(0.039) 

0.560 
= 0.032 (3) 

The corresponding proportion for MZ twins is given by 
„ .̂ , , „ , ^ pMZ (p concordant when MZ) 
Proportion MZ among concordant pairs = _ •.—— : : — 

Total proportion concordant pairs 

= (0.542)(1 -000) 
0.560 

= 0.968 (4) 

Given these values, this means that a pair drawn strictly at random from the concordant 
pool has a probability of p = 0.032 for being DZ. Note again that the phenotypes for the 
random pair are unspecified - the probability of 0.032 is an aggregate value representing 
the average for all possible arrays of concordant phenotypes that the twins might display 
on a chance basis. 

As such, the aggregate value is not exact for any given pair of twins. Furthermore, we 
are rarely interested in the random-draw case, since the zygosity question must be faced for 
each concordant pair. But the main significance of this aggregate value is that it defines the 
central value around which the individual probabilities will be distributed. 

CALCULATIONS FOR EACH CONCORDANT PAIR 

With these considerations in mind, we turn to the method of calculation for the individual 
case. The bloodtyping results identify a specific array of phenotypes for which the twins 
are concordant. Since the eight major bloodgroups segregate independently, the eight phe­
notypes actually displayed by the twins represent a chance combination of eight independent 
events. The likelihood of getting this exact array of phenotypes is thus a composite p-value, 
obtained by cumulatively multiplying the probabilities for the eight phenotypes involved. 

The primary question to be asked for each concordant pair is this: Given the specific ar­
ray of phenotypes displayed by the twins, how might this array have been obtained by a 
pair of DZ twins, and how might the array have been obtained by a pair of MZ twins? The 
phrasing of the question is crucial, since the final solution must reflect the differential likeli­
hood of this particular array being obtained by either DZ or MZ twins. 

DZ Origin. For DZ twins, it would require drawing two independent zygotes from the 
capable matings, both of whom were concordant for the first reference phenotype (eg, At 
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of the ABO bloodgroup). The same requirement would be in effect for each of the remain­
ing bloodgroups and would be expressed as the probability of drawing two independent 
matching zygotes for each phenotype from the capable matings. Thus, if the likelihood of 
drawing one zygote of a given phenotype were p = 0.25, the likelihood of drawing two in­
dependent matching zygotes would be (0.25)(0.25) = 0.0625. These resultant p-values, ap­
propriately weighted for each mating combination,2 would then be cumulatively multi­
plied to yield the composite probability that a DZ pair would display and be concordant 
for this particular array of phenotypes. 

MZ Origin. For MZ twins, it would require drawing one zygote from the capable matings 
that would display the first reference phenotype (eg, At). This zygote, however, has sub­
sequently created an exact replica of itself, so the likelihood of the second twin matching 
the first on the reference phenotype is 1.00. Thus, the likelihood of an MZ pair displaying 
the reference phenotype Ai is given by the probability of drawing a single At zygote from 
the capable matings, which is then multiplied by 1.00 for concordance in the second twin. 

The same requirement would apply for each of the remaining bloodgroups, and would 
yield a value equal to the probability of drawing one zygote from the capable matings that 
would display the reference phenotype. Each phenotype value is multiplied by 1.00 for 
second-twin concordance — a redundancy worth emphasizing here to demonstrate the 
equivalence with the DZ twin calculations — and the resultant values are then cumulatively 
multiplied for the eight phenotypes. Thus, the likelihood of an MZ pair displaying and be­
ing concordant for this particular array of phenotypes is given by the composite p-value of 
obtaining a single zygote from the capable matings that would display this exact array. 

For each concordant pair in the sample, two p-values are now generated that are uniquely 
tailored to the particular array of phenotypes displayed by the pair. These are the crucial 
values needed, and it is important to note that they both incorporate a measure of how 
probable (or improbable) this particular array of phenotypes would be. Since it is the array 
actually obtained, the decisive question concerns the relative likelihood of obtaining this 
array for twins derived from a single zygote versus obtaining the array for twins represent­
ing two zygotes. 

ILLUSTRATIVE CASES 

For example, suppose the bloodtyping data for a particular pair of twins showed them to 
be concordant on the following phenotypes: O, CDe/cde, Ms/Ns, P+, K—, Jka+, Fya+, and 
Lea—. The likelihood of drawing each phenotype from the capable matings is shown in 
Table 2 for both conditions. 

The composite p-value at the bottom of each column shows that a DZ pair would have 
a much smaller probability of displaying and being matched for this exact array than would 
an MZ pair. 

These two composite p-values furnish the essential figures needed for the final zygosity 
equation. The final step in computing the desired probability is to weight each of the above 
p-values in accordance with the estimated proportion of same-sex DZ and MZ twins in the 
sample. The proportions may either be inferred from population values or directly esti­
mated from a bloodtyped sample. As indicated earlier, the proportions found in the Louis­
ville Twin Study for 708 same-sex pairs were 45.8% DZ and 54.2% MZ. 

2The calculations are cumbersome since they require the complete enumeration of all possible mating 
combinations and all possible pairs of offspring within each bloodgroup. The procedure is illustrated 
for the P system in Appendix 1, and generalizes to all other systems. The adjustment for the capable 
matings is given for all phenotypes in Appendix 2. 
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TABLE 2. Likelihood of Obtaining Reference Phenotypes for Concordant DZ Twins and MZ Twins 

Bloodgroup 

ABO 
Rhesus 
MNSs 
P 
Kell 
Kidd 
Duffy 
Lewis 

Reference 

0 
CDe/cde 
Ms/Ns 
P+ 
K -
Jka+ 
Fya+ 
L e a -

Composite 

phenotype 

P = 

p if DZ twins 

0.415 
0.228 
0.202 
0.670 
0.875 
0.686 
0.574 
0.704 

0.003112 

p if MZ twins 

0.582 
0.472 
0.411 
0.791 
0.916 
0.802 
0.727 
0.813 

0.038777 

Note: Individual p-values represent the likelihood of obtaining each reference phenotype 
from the capable matings. 

These proportions are then employed with the above p-values to compute the final de­
sired probability; namely, that a pair concordant for this specific array of phenotypes 
would be DZ. The equation is the same as the one previously used with the population 
values but now modified to be appropriate for the individual case where the phenotype ar­
ray is fully specified. Thus, 

pDZ when concordant = 
(pDZ)(p obtaining this concordant array if DZ) 

[(Above) + (pMZ)(p obtaining this concordant array if MZ)] 

(5) 

Note that the numerator represents the weighted likelihood of drawing a DZ pair con­
cordant on this array, while the denominator represents the total proportion of pairs in the 
sample expected to be concordant for this array (DZ plus MZ inclusive). The final figure 
to be computed, then, is the likelihood of the concordant pair being DZ in relation to all 
concordant pairs for this array. 

Substituting the appropriate figures, 

pDZ when concordant for this array = 
(0.458)(0.003112) 

(0.458)(0.003112) + (0.542)(0.038777) 

,0.001425 
~ 0.022442 

pDZ . . . = 0.063 (6) 

The corresponding likelihood of being MZ is computed by substituting the appropriate 
MZ values in the numerator: 

pMZ when concordant for this array = 
(pMZ)(p obtaining this concordant array if MZ) 

[pDZ(p this array if DZ) + pMZ(p this array if MZ)] 

_ (0.542X0.038777) 
(0.022442) 

pMZ . . . = 0.937 (7) 
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TABLE 3. Probability of Obtaining Reference Phenotypes from Capable Matings for Concordant 
DZ Twins and MZ Twins 

System 

ABO 

Rhesus 

P 

Phenotype 

O 
A, 
A2 

B 
A,B 
A2B 
cde/cde 
CDe/cde 
CDe/CDe 
CDe/cDE 
cDE/cde 
cDE/cDE 
cDe/cde 
Cde/cde 
cdE/cde 
P, or P+ 
P, or P -

p i fDZ 

0.415 
0.338 
0.202 
0.217 
0.092 
0.077 
0.191 
0.228 
0.177 
0.140 
0.152 
0.096 
0.113 
0.112 
0.123 
0.670 
0.259 

pif MZ 

0.582 
0:548 
0.420 
0.435 
0.287 
0.269 
0.391 
0.472 
0.395 
0.356 
0.396 
0.304 
0.351 
0.411 
0.791 
0.791 
0.453 

System 

MNSs 

Kell 

Kidd 

Duffy 

Lewis 

Phenotype 

MS/MS 
MS/Ms 
Ms/Ms 
MS/NS 
MS/Ns 
Ms/Ns 
NS/NS 
NS/Ns 
Ns/Ns 
K+ 
K -
Jka+ 
J k a -
Fya+ 
F y a -
Lea+ 
L e a -

pif DZ 

0.158 
0.150 
0.148 
0.112 
0.166 
0.202 
0.087 
0.132 
0.191 
0.282 
0.875 
0.686 
0.248 
0.574 
0.338 
0.236 
0.704 

pifMZ 

0.365 
0.353 
0.348 
0.311 
0.381 
0.411 
0.280 
0.335 
0.390 
0.523 
0.916 
0.802 
0.443 
0.727 
0.520 
0.432 
0.813 

These are the desired probabilities that a twin pair, concordant for this specific array of 
phenotypes, will be either DZ or MZ. Incidentally, the selected phenotypes were the ones 
with the highest probability of being concordant if DZ in each blood group, and so the 
composite p-value represents the maximum likelihood that a concordant pair might be DZ. 
Other pairs with different arrays will have smaller probabilities of being DZ — ie, p < 0.06. 

The procedure outlined above generalizes to every other possible array that might be 
obtained from twins. The necessary phenotype values may be found in Table 3, which 
gives both the two-zygote value and the one-zygote value for each individual phenotype.3 

When a concordant pair is examined, the appropriate values are selected from Table 3 for 
the actual phenotypes observed, and these values are subsequently combined to yield the 
two needed composite p-values. The latter are then processed through equations (5) and 
(7), with an adjustment in the MZ/DZ proportions if necessary. 

For illustration, two other arrays of phenotypes have been analyzed, one including 
some medium-frequency phenotypes in ABO, MNSs, and Rh; the other including mainly 
low-frequency phenotypes, which should yield a much smaller probability that the con­
cordant pair would be DZ. The calculations are summarized in Table 4. 

In the first case, the probability of being DZ was p = 0.045, and in the second case the 
probability was much smaller, pDZ = 0.003. Clearly, the precision of diagnosis depends 
upon the particular array of phenotypes displayed by the twins, and it can be shown that 
the pDZ-values for all possible arrays will fall in the range between 0.002 and 0.063, with 
a skew towards the average value of 0.032. An investigator can expect that the probability 
of being DZ for all concordant pairs will fall within this range (assuming MZ/DZ propor­
tions and gene frequencies comparable to the present sample). 

This procedure may be employed with fewer than eight blood groups, and it may 
also be expanded to handle additional systems (eg, serum proteins, red cell enzymes), 
provided the data are available in appropriate form for inclusion in the phenotype array. 

3The derivation of the values in Table 3 is described in Appendix 2. 
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TABLE 4. Computing the Probability of Being DZ When Concordant for Two Pairs With Different 
Phenotype Arrays 

Bloodgroup 

ABO 
Rhesus 
MNSs 
P 
Kell 
Kidd 
Duffy 
Lewis 

pDZif 

this array 

P D Z . . . : 

pMZif 
concordant = 
this array 

pMZ 

"Typical" pair 

Reference 
phenotype 

A, 
CDe/CDe 
MS/Ms 
P+ 
K -
Jka+ 
Fya+ 
Lea-

Composite p = 

pif DZ 

0.338 
0.177 
0.150 
0.670 
0.875 
0.686 
0.574 
0.704 

0.001459 

(0.458)(0.001459) 

[(above) + (0.542)(0.026243 

0.000668 
0.014892 

= 0.045 

(0.542X0.026243) 
0.014892 

= 0.955 

pifMZ 

0.548 
0.395 
0.353 
0.791 
0.916 
0.802 
0.727 
0.813 

0.026243 

Pair with low-frequency phenotypes 

Reference 
phenotype 

A,B 
Cde/cde 
MS/NS 
P -
K + 
J k a -
F y a -
L e a -

Composite p = 

pDZif 
— concordant = 

' this array 

pDZ 

= 

pMZ if 
concordant = 
this array 

pMZ 

pif DZ 

0.092 
0.112 
0.112 
0.259 
0.282 
0.248 
0.338 
0.704 

0.000005 

pif MZ 

0.287 
0.411 
0.311 
0.453 
0.523 
0.443 
0.520 
0.813 

0.001628 

(0.458X0.000005) 
[(above) + (0.542)(0.001628)[ 

0.0000023 
0.0008847 

0.003 

(0.542X0.001628) 
0.0008847 

0.997 

The procedure translates immediately into the case where the parental genotypes are 
known (the capable matings are simply replaced by the single known mating), and it deals 
exclusively with probabilities and proportions in computing the needed figure for each 
phenotype array rather than switching back and forth between probabilities and odds. 

Equally important, it preserves the focus on the likelihood that the twins would both 
display and be concordant for this particular array, first on the hypothesis of DZ origin, 
then on that of MZ origin. On this basis, the procedure outlined herein is recommended as 
a simpler, more direct, and more comprehensible method for evaluating bloodtyping data 
from twins than prior methods. 

COMPARISON WITH OTHER METHODS 

Any researcher who is not a quantitative geneticist and who has attempted to digest the 
prior articles in this area will find him/herself struggling with a complicated and technically 
forbidding mass of material. Perhaps it might be useful to identify the common themes 
among the various approaches and how they coordinate with one another. As it turns out, 
there are translation equations that tie the methods together, although the definitions, 
interpretations, and methods of calculation vary widely. 
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Smith and Penrose [1955]. This classic paper is, unfortunately, both cryptic and inacces­
sible in terms of the basic logic and methods of calculation for DZ likelihood. Smith and 
Penrose originated the procedure of converting probability to odds, as follows: "In Eng­
land, the basic probability ratio that twins are dizygotic is 70:30 or 2.33:1. These ratios 
represent the odds in favour of the dizygotic contingency. We can call this the initial rela­
tive probability in favour of a dizygotic pair, p0D. These odds are modified as soon as in­
formation about any specific character in a given twin pair is ascertained" [2: p 273]. 

They then describe how information from bloodtyping data is incorporated into the 
calculation of odds, or relative probability, for each phenotype. The resultant odds figure 
may then be multiplicatively combined for any number of independent traits (eg, blood-
groups), leading to a total odds favoring the DZ contingency, pD. The latter is ultimately 
employed in the formula pD/(l + pD) to convert back to a true probability that the con­
cordant pair would be DZ. 

Smith and Penrose then provide detailed tables of random mating probabilities, parent-
offspring frequencies, and the distribution of two-zygote (sib-sib) pairings for a two-allele 
system (pp 275—276). The diagonal cells of their Table 5 represent the concordant pairs 
for each phenotype in the system; the off-diagonals represent the discordant pairs, and 
the marginal totals'represent the proportion of pairs for the entire sample in which one 
or both members display the phenotype in question. They remark, "The relative chance 
in favour of a dizygotic pair when twins have the same blood group is . . . obtained by 
dividing the number of children in the [diagonal] AA,AA cell, for example, by the total 
number of AA children" (p 276). 

It will perhaps not be evident how the method quoted in the preceding sentence quali­
fies as an appropriate way to compute the DZ odds. Smith and Penrose give no further 
explanation, but proceed abruptly into very detailed tables of genotype/phenotype fre­
quencies and sib-sib pairings for all major bloodgroups. Finally they return to two illus­
trations on pp 286—287, in which the relative chances or odds (computed as described 
above) are shown, along with the final conversion to the absolute probability of obtaining 
a DZ pair, pD/(l + pD). 

It is worth emphasizing that Smith and Penrose work from tables of sib-sib pairings in 
arriving at the DZ contingency figures, and although their description speaks of children 
rather than pairs, it is a fact that the proportion of children in the AA,AA cell is equal to 
the proportion of two-zygote pairs concordant for the AA phenotype. Similarly, the total 
proportion of children displaying the AA phenotype is equal to the one-zygote phenotype 
frequency in the population; and from the standpoint of pairs, it is also equal to the pro­
portion of two-zygote pairs in which the first member of the pair (as randomly designated) 
displays the AA phenotype. The latter thus includes all concordant pairs plus one-half of 
the discordant pairs for AA, as shown in the marginal totals of the Smith and Penrose 
tables. This particular definition later reappears in the index-case approach of Sutton et 
al [3] andLykken [1]. 

For each phenotype, then, the DZ odds computed by Smith and Penrose may also be 
obtained by dividing the proportion of concordant two-zygote pairs by the one-zygote 
phenotype frequency: pD = (p two concordant zygotes)/(p one zygote). The resultant 
quotient for each phenotype expresses the relative likelihood of obtaining a concordant 
DZ pair in relation to the one-zygote reference value, where the latter has effectively 
been set equal to 1.00 by the calculation. 
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It may be recognized that the above terms (p two concordant zygotes and p one zygote) 
correspond to the listed entries for each phenotype in Table 3 of the present paper, where 
they are designated as the "p if DZ twins" and "p if MZ twins," respectively. In fact, 
Table 3 was constructed from the detailed tables in Wilson [4], showing the expected pro­
portions of single zygotes and concordant two-zygote pairs for all phenotypes. 

The further step of division was not made separately for each phenotype, however, 
since the logic remains much clearer and more straightforward in dealing with the full 
phenotype array for each twin, first as it might be obtained on the hypothesis of DZ ori­
gin, then on that of MZ origin. Indeed, some of the most refractory problems in blood-
typing analysis have arisen from anomalous interpretations of this quotient and what it 
represents in terms of DZ concordance. In the present approach, the division is accom­
plished ultimately in the final predictor equation, which deals with the aggregate probabil­
ity of being DZ if same-sex and concordant for this particular array of phenotypes; and 
it makes superfluous the intermediate conversion from probabilities to odds and back to 
probabilities again. 

For illustration purposes, however, the values of (p two concordant zygotes)/(p one 
zygote) have been computed for all phenotypes in the present study,4 making use of the 
listed entries in Table 3. These values are presented in the first columnof Table 5, and 
for comparison the corresponding figures from the Smith and Penrose paper are listed in 
the second column. Given the differences in samples, there is surprisingly high congruence 
between the two sets of figures. 

Sutton, Clark, and Schull [1955]. These authors proceeded by a somewhat different 
route to obtain the necessary figures for computing the probability of a twin pair being 
MZ (or DZ) if concordant. Their ultimate predictor equation for MZ likelihood (#4 on 
p 181) corresponds to equations (4) and (7) of the present paper; and although they do 
not actually give a formal equation for the DZ likelihood, it is easily obtained and can be 
shown to correspond to equations (3) and (6) herein. For each zygosity group, their single 
equation differentiates into the two equations of the present paper, depending on whether 
a random pair or a particular pair with a designated phenotype array is being considered. 
Sutton et al also remained in probability format throughout; there was no mention of con­
version to odds. 

The distinctive feature of their approach was the set of formulas that they devised to 
obtain the likelihood of DZ concordance for each phenotype in the various bloodgroups. 
Initially, however, Sutton et al presented a single basic equation for estimating DZ con­
cordance from bloodtyping data, as described below. 

When there is no knowledge about parental genotypes and therefore all possible capable 
matings must be considered, the "probability of a dizygous twin of an offspring of pheno­
type 0x also being of phenotype 0x" (p 182) is given by their equation 9: 

2 [?(mi)[?(0T\m])\
2] 

P ( 0 T | 0 T ) = J ^ 
S [P(mj)P(0Tlmj)] 

4Since the capable mating p-value enters into both the two-zygote and one-zygote probabilities, it 
cancels out in the division, and consequently the same resultant figure is obtained for each phenotype 
whether using the population frequencies or the mating-adjusted p-values. 
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TABLE 5. Relative Likelihood of Two-Zygote Origin for Concordant Twins, as Computed in 
Three Studies 

Phenotype 

0 
A, 
A2 

B 
A,B 
A2B 
cde/cde 
CDe/cde 
CDe/CDe 
CDe/cDE 
cDE/cde 
cDE/cDE 
cDe/cde 
Cde/cde 
cdE/cde 
P+ 
P -

Wilson 

0.713 
0.617 
0.479 
0.499 
0.320 
0.286 
0.488 
0.483 
0.448 
0.394 
0.384 
0.315 
0.324 
0.269 
0.139 
0.847 
0.573 

Smith & 
Penrose 

0.689 
0.647 
0.482 
0.474 
0.324 
0.285 
0.482 
0.540 
0.502 
0.424 
0.418 
0.332 
0.368 
0.351 
0.352 
0.849 
0.570 

Lykken/ 
Sutton et al 

0.6T5 
0.639 
0.477 
0.487 
0.330 
0.290 
0.486 
0.540 
0.509 
0.424 
0.418 
0.341 
0.357 
0.350 
0.349 
0.875 
0.533 

Phenotype 

MS/MS 
MS/Ms 
Ms/Ms 
MS/NS 
MS/Ns 
Ms/Ns 
NS/NS 
NS/Ns 
Ns/Ns 
K+ 
K -
Jka+ 
! k a -
Fya+ 
F y a -
Lea+ 
L e a -

Wilson 

0.433 
0.426 
0.425 
0.359 
0.435 
0.490 
0.309 
0.393 
0.489 
0.539 
0.956 
0.856 
0.560 
0.789 
0.651 
0.547 
0.865 

Smith & 
Penrose 

0.389 
0.418 
0.412 
0.342 
0.456 
0.473 
0.292 
0.383 
0.483 
0.545 
0.948 
0.853 
0.568 
0.804 
0.632 
0.542 
0.868 

Lykken/ 
Sutton et al 

0.381 
0.425 
0.425 
0.336 
0.428 
0.482 
0.288 
0.376 
0.472 
0.540 
0.955 
a 
0.573 
a 
0.600 
0.575 
a 

aLykken does not give this value in a form comparable to the other two authors. 

where P(nij) is the probability, based solely on gene frequencies, of parental mating com­
bination mj, and P ( 0 T imj) is the probability of obtaining from mating combination rrij 
an offspring of phenotype 0j. When the above probability is computed for each concor­
dant phenotype, the final aggregate probability is obtained by multiplying together the 
f independent probabilities involved. 

In examining their equation 9, it becomes evident that the numerator represents the 
weighted probability of drawing two concordant zygotes for a particular phenotype from 
the capable matings, while the denominator represents the probability of drawing a single 
zygote. It thus becomes an identity with the previously described computation of Smith 
and Penrose, ie, (p two concordant zygotes)/(p one zygote), and to the equivalent com­
putation in the present paper, as illustrated in Table 5. The three approaches are therefore 
linked through this one common relationship. 

While Sutton et al [3] mention that their equation 9 is general in the sense of applying 
to multiallele systems, various dominance relationships, etc, and can always be employed 
to compute the needed P ( 0 T I 0 T ) , by far the largest part of their paper is devoted to 
alternative methods of computing this value for various phenotypes. It is perhaps unfortun­
ate that the alternative methods comprise a variety of equations that employ only gene 
frequencies for their solution, and consequently the resultant answers seem detached and 
remote from the original terms entering into equation 9. 

Lykken f 1: p 439] describes the equations as "simple and elegant formulas for comput­
ing the probabilities of DZ concordance on Mendelizing traits;" but it is worth noting that, 
as represented in equation 9, the so-called probability of DZ concordance is not the same 
as the two-zygote concordance value, which is shown in the numerator. Rather, it is the 
relative likelihood of two-zygote concordance in relation to the one-zygote value (or the 
latter's equivalent, the proportion of two-zygote pairs in which the random prospectus 
displays the reference phenotype). 
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When this latter definition is employed, the probability of DZ concordance then be­
comes narrowly defined in terms of the index-case approach: If the sample is restricted 
solely to those pairs in which the randomly chosen prospectus twin displays the reference 
phenotype, and the prospectus is taken as the index case, what is the likelihood that the 
cotwin will match the prospectus for the reference phenotype? The resultant figure is 
neither the probability of drawing two concordant zygotes nor the probability of drawing 
a single independent zygote with a matching phenotype, but rather the ratio of the two. 
The distinction is sometimes blurred, however, as in Lykken's description of DZ con­
cordance: " . . . one can compute the aggregate probability (and hence the odds) that the 
parents who could have produced twin A (arbitrarily taken as the prospectus) might inde­
pendently produce another offspring with the same phenotype (such as a DZ cotwin of 
twin A)" [1: p 445; parentheses in original]. 

Lykken [1978]. Lykken merged features from both of the preceding papers in his analysis 
of twin zygosity. He adopted the DZ odds approach of Smith and Penrose to compute the 
initial and final probability figures, but he employed the equations of Sutton et al to ob­
tain the likelihood of concordance for DZ twins on each phenotype. Since the Sutton et al 
equations generate probabilities according to their definition, Lykken then divided the 
DZ p-value for each phenotype by 1.00, which he justified as representing the probability 
of concordance for MZ twins. Consequently, the entire set of probability values derived 
from the Sutton et al equations were converted into an exactly equivalent set of values 
called DZ odds. 

Before appraising Lykken's method, it will be instructive to compare the DZ concord­
ance values he obtained, since they furnish actual results from the Sutton et al equations, 
which had not been previously furnished by the authors. Lykken's bloodtyping data were 
drawn mainly from Minnesota whites of European origin, and the computed values are 
shown in the third column of Table 5 of the present paper (from Lykken [1 ]: Tables 6, 
7, 8, and 9). 

Inspection of Table 5 shows a high degree of similarity between all three sets of values — 
and this in the face of three different populations from which the underlying gene fre­
quencies were determined. Apparently the minor variations in gene frequencies among 
these white populations had only a limited effect on the computed concordance values 
for DZ twins. It is also evident that all three procedures can be made equivalent through 
this one computation of (p two concordant zygotes)/(p one zygote) for each phenotype. 

Returning to the interpretation of the computed values, Smith and Penrose treated 
these figures as DZ odds, without the further stratagem of dividing by 1.00, while Sutton 
et al treated them as probabilities throughout. Lykken, however, computed by the latter 
procedure but then redefined the same value in terms of the former DZ odds approach. 
One advantage of dividing by 1.00, of course, is that nothing changes, and consequently 
Lykken gets to the same final probability figure as the other approaches. But the transition 
back and forth from odds to probabilities provides ample room for conceptual slippage 
and ambiguity, and this has been perhaps the most difficult problem in clarifying the 
model for the individual case since the original paper of Smith and Penrose. 

Another difficulty lies in the very sketchy detailing of what the DZ figure as computed 
for each phenotype actually represents. As indicated earlier, it is something of a misnomer 
to call it the probability of DZ concordance, and perhaps another interpretation might be 
offered. 
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When the two terms of the basic ratio are defined as in the present paper — ie, (p if DZ 
twins)/(p if MZ twins) — then the resultant figure expresses how closely the likelihood of 
DZ origin for this concordant pair approaches the likelihood of MZ origin. In the limiting 
case as this figure approaches 1.00, it means that virtually all two-zygote pairs are con­
cordant for the phenotype, just as the MZ pairs are. Consequently, the fact of concordance 
provides no differential basis for making a zygosity decision. The Lutheran bloodgroup is 
a good case in point — practically all two-zygote pairs are concordant — and K- from the 
Kell bloodgroup is nearly as extreme, with a computed value of 0.956. Neither is useful 
for zygosity diagnosis. 

By contrast, the discrimination power improves as this value declines, since it reflects 
a smaller likelihood of drawing two independent zygotes that would match on the pheno­
type in question. The A2B phenotype is a good example, with a computed value of 0.286; 
a concordant pair is much less likely to represent two independent zygotes than a single 
zygote that replicated itself. 

From this perspective, it might be suggested that the computed values of Lykken/Sut­
ton et al, and Smith and Penrose, be thought of as DZ plausibility quotients. The larger 
the value, the more plausible it is that a concordant pair might be DZ in origin, until at 
the limit of 1.00 the DZ hypothesis is as plausible as the MZ hypothesis. 

But as the value declines, the plausibility of DZ origin also declines, and consequently 
the marker phenotypes become increasingly effective for establishing zygosity. In fact, 
these values qualify as the efficiency measures for the phenotypes; the smaller the value, 
the more efficient the phenotype in discriminating between MZ and DZ pairs. This measure 
of efficiency, incidentally, is more precise than the efficiency index of Lykken/Sutton et 
al, which depends only on the expected proportion of concordant two-zygote pairs. 

By way of final coordination among methods, it may be noted that the predictor equa­
tion in the present paper for DZ probability (Eq 5) may be made equal to the Smith and 
Penrose absolute DZ probability equation by dividing each term in equation (5) by the 
last complete term in the denominator. Similarly, the predictor equation for MZ probabil­
ity (Eq 7) may be made equal to the Smith and Penrose MZ equation by dividing each 
term in equation (7) by the last complete term in the denominator. The same conversion 
holds for the Lykken equations. For Sutton et al, their equation for MZ probability may 
be obtained from the present MZ equation (Eq 7) by dividing the aggregate value of "p ob­
taining this concordant array if MZ" into each term of equation (7). They do not give a 
formal DZ probability equation as such. 

FINAL COMMENT 

Few areas represent as much of a challenge to comprehension for the nongeneticist as the 
twin bloodtyping model for the individual case. The present analysis shows that, if cor­
rectly employed, the various procedures will all ultimately yield the same probability of 
being DZ or MZ for a given concordant pair. There are some significant differences in logic 
and application, however, and the method outlined in this paper is recommended as the 
simplest and most direct for obtaining the desired probabilities. Readers are invited to 
consult the other papers to make their own comparison. 
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APPENDIX 1 

The basic method of computing the probability of concordance for DZ twins may be illustrated for one 
bloodgroup, since the method generalizes to all other bloodgroups, whether two-allele or multiallele 
systems. 

For illustration, the P bloodgroup is used - it is a two-allele system with Pj (or P+) dominant.5 The 
phenotype P, is therefore obtained for the homozygous genotype p, :p, and the heterozygous genotype 
p,:p2 (or p2

:Pi), whereas the phenotype P2 is obtained only for the homozygous genotype p2:p2. 
Drawing from the previous report [4], the gene frequency in the twin population for p, was 0.486, 

and the gene frequency for p2 was 0.514. Each individual in the population carries one of the three 
possible genotype combinations of p, and p2 , and the expected proportion of each genotype combina­
tion is given by the product of the gene frequencies involved: 

p,:p, (0.486X0.486) = 0.2362 
. P l : p 2 (0.486X0.514) , 

< or K = 0.4996 
I p2:p, (0.514)(0.486) J 

p2:p2 (0.514)(0.514) = 0.2642 
1.0000 

In terms of phenotypes, the expected proportion of P, phenotypes in the population is given by 
0.2362 plus 0.4996 = 0.7358, whereas the proportion of P2 phenotypes is 0.2642. 

When parental mating combinations are formed, the genotype combinations for mother and father 
reflect the expected distribution that would arise from random mating. Thus a table of all possible 
mating combinations is generated, and the likelihood of each combination is given by the joint prob­
ability of the two genotypes involved. For example, if the mother were p, :p, , and the father p t :p2 

(or p2:p,), then the likelihood of this mating combination occurring in the population is given by 
(p^PiXPrPa or p2:pj) = (0.2362)(0.4996) = 0.1180. The probabilities for all possible genotype mating 
combination within the P system are later shown in Table A-l. . 

The offspring from each mating combination will reflect the possible sets of genes that may be ob­
tained from the parents. There are four possible outcomes: a) the allele in locus 1 for the father com­
bines with the allele in locus 1 for the mother; b) locus 1 father with locus 2 mother; c) locus 2 father 
with locus 1 mother; and d) locus 2 father with locus 2 mother. 

When this is completely enumerated for all mating combinations, it specifies the possible genotypes 
for the offspring of each mating and the proportion of offspring expected to possess each genotype. 
For example, in the first cell of Table A-l, with both parents having p, at both loci, the four combina­
tions of alleles will all yield p t :p1 for all offspring, so the proportion of offspring with p,:p, genotypes 
will be 1.00. 

5For clarity, the phenotype of each zygote is designated by a single capital letter, and the two-allele 
genotype is designated by two lowercase letters. 
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TABLE A-l. Genotype Mating Probabilities and Proportion of Offspring 
Showing Reference Phenotype from Each Mating Combination 

Father genotype 

PrPi 

p, :p2or p2:p, 

p2:p2 

Mother genotype 

Pi:Pi Pi:P2 orp 2 :p . 

a 
P, = 1.00 
(0.0558) 

d 
P, = 1.00 

(0.1180) 

g 
P, = 1.00 

(0.0624) 

b 
P, = 1.00 
(0.1180) 

e 
P, = 0.75 
P2 = 0.25 
(0.2496) 

h 
P, = 0.50 
P2 = 0.50 
(0.1320) 

P2=PJ 

c 
P, = 1.00 
(0.0624) 

f 
P, =0.50 
P2 = 0.50 
(0.1320) 

k 
P2 = 1.00 

(0.0698) 

By contrast, the parents for cell e each have p,:p2 genotypes, and the four combinations of alleles 
would give p^p , offspring 25% of the time, p,:p2 offspring 50% of the time, and p2:p2 offspring 25% 
of the time. The last genotype would yield a P2 phenotype, whereas the prior combinations would all 
yield offspring with P, phenotypes, so the expected proportion of Pl offspring would be 0.75 from 
this mating combination. 

The offspring possibilities from each mating combination are summarized in Table A-l, where the 
offspring phenotypes are given, along with the proportion expected to show the phenotypes. The 
mating probability for each combination is also included. 

The expected proportion of P, offspring from all matings is given by the cumulative product of 
each mating probability times the proportion of P, offspring expected from that mating. For cells a 
through h, respectively, this would yield (0.0558)(1.00) + (0.1180)(1.00).. .+ (0.1320)(0.50) = 0.7358, 
which corresponds to the proportion of P, phenotypes in the population. 

Similarly, the cumulative product of the mating probabilities times the proportion of P2 offspring 
in cells e, f, h, and k gives the proportion of P2 phenotypes in the population: (0.2496)(0.25) + 
(0.1320X0.50) + (0.1320X0.50) + (0.0698)(1.00) = 0.2642. 

Since for DZ twins the desired information deals with pairs of zygotes from each mating combina­
tion, the next step is to enumerate the possible pairings of phenotypes and the likelihood of obtaining 
each pairing. Each zygote represents an independent and random draw from the possible phenotypes 
that the parents can produce, so the expected probability for the pair is the joint product of the proba­
bilities for the two phenotypes involved. 

This may be computed from the preceding table by pairing the possible phenotypes in each cell 
and computing the probability for each pairing. In cell a, for example, all offspring will be P,, so the 
likelihood of drawing two zygotes with the P, phenotype is (1.00)(1.00) = 1.00. By contrast, in cell e 
the likelihood of drawing two P, zygotes is (0.75)(0.75) = 0.5625, while the likelihood of drawing a 
P, zygote and a P2 zygote is 2(0.75)(0.25) = 0.3750, and the likelihood of drawing two P2 zygotes is 
(0.25)(0.25) = 0.0625. 

The probabilities for the pairs of zygotes available from each mating combination are summarized 
in Table A-2. 

The final step in computing the expected number of DZ pairs that will show each combination of 
phenotypes is to multiply the mating probability in each cell times the proportion of pairs from that 
mating that will display the desired phenotypes, and then sum across all cells. In effect, this combines 
Table A-2 with the mating probability table, and the results are summarized in Table A-3, below. 
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TABLE A-2. Probabilities of Two Zygotes Displaying the Reference Phenotypes for Each 
Mating Combination 

Father genotype 

PrPi 

P rP 2 or p2:p, 

P2:P2 

Mother genotype 

Pi'-Pi 

a 
P, andP, = 1.00 

d 
P, and P, = 1.00 

g 
P, and P, = 1.00 

Pi=P. orp 2 :p , 

b 
Pi andP, = 1.00 

e 
P, and P, = 0.5625 
P, and P2 = 0.3750 
P2 and P2 = 0.0625 

h 
P, and P, = 0.25 
P! and P2 = 0.50 
P2 and P2 = 0.25 

P2:P2 

c 
Pi and Pi = 1.00 

f 
P, andP, = 0.25 
P, andP2 = 0.50 
P2 and P2 = 0.25 

k 
P2 and P2 = 1.00 

TABLE A-3. Phenotype Combinations and Associated Probabilities for Pairs of Zygotes in P 
Bloodgroup 

P, an 

Cell 

a 
b 
c 
d 
e 
f 

g 
h 

d P , 

Mating 
probability 

0.0558 
0.1180 
0.0624 
0.1180 
0.2496 
0.1320 
0.0624 
0.1320 

X 
X 
X 
X 
X 
X 
X 
X 

Likelihood 
of 
P, and P, 

1.0000 
1.0000 
1.0000 
1.0000 
0.5625 
0.2500 
1.0000 
0.2500 

P, andP2 

Mating 
Cell probability 

e 
f 
h 

0.2496 X 
0.1320 X 
0.1320 X 

Composite p = 

Likelihood 
of 
P, and P2 

0.3750 
0.5000 
0.0500 

= 0.2256 

P2 and P2 

Mating 
Cell probability 

e 
f 
h 
k 

0.2496 X 
0.1320 X 
0.1320 X 
0.0698 X 

Composite p = 

Likelihood 
of 
P2 and P2 

0.0625 
0.2500 
0.2500 
1.0000 
0.1514 

Composite p = 0.6230 

Therefore, proportion of two- Proportion of two-zygote 
zygote pairs, both P, = 0.6230 pairs, Pt and P2 = 0.2256 

Proportion of two-zygote 
pairs, both P2 =0.1514 

So in a large sample of DZ twins, the expectation is that the bloodtyping results for the P system 
will conform to the above values: about 0.6230 of the pairs will be concordant for P, , about 0.1514 
of the pairs will be concordant for P2, and the remainder of the pairs (0.2256) will be discordant, dis­
playing Pj and P2. When these values were compared with the actual distribution of DZ pairs, the fit 
was found to be very close indeed [4: p 39]. Thus, the basic derivations and calculations were con­
firmed by an empirical test; and this was also true when extended to the other seven bloodgroups. 
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APPENDIX 2 

When a twin pair is found to be concordant on a particular phenotype, it immediately limits the paren­
tal mating combinations to those actually capable of producing the phenotype in question. For example, 
if the twins are concordant on P2, the possible matings that could be involved are those capable of 
producing P2 offspring. The previous tables show that the capable matings for P2 are associated with 
cells e, f, h, and k. 

These mating combinations now become the complete population of matings from which P2 off­
spring may be drawn. Therefore, the likelihood of each capable mating combination is no longer its 
value in the full table of matings, but rather is adjusted to represent its likelihood among the limited 
set of P2-capable matings. This is accomplished by setting the proportion of P2-capable matings equal 
to 1.00; then each mating within this limited group is proportionally increased to yield the total of 1.00. 

For example, the P2-capable matings involved for cells e, f, h, and k are shown below in terms of 
the original mating probabilities and the adjusted probabilities. 

Cell 

e 
f 
h 
k 

Population mating 
p-value 

0.2496 
0.1320 
0.1320 
0.0698 
0.5834 

Adjusted mating 
p-value 

0.4278 
0.2263 
0.2263 
0.1196 
1.0000 

X 
X 

X 

X 

Likelihood of P2 

and P2 pair (DZ) 

0.0625 
0.2500 
0.2500 
1.00 

Joint probability 
of drawing con­
cordant P2 pair 
(DZ) from capable 
matings 

0.0267 
0.0566 
0.0566 
0.1196 
0.2595 

Given the possible matings that can produce P2 zygotes and the expected offspring pairings from 
each, the combined probability of drawing DZ twins that are concordant on P2 is 0.2595. By similar 
calculations, the likelihood of two zygotes drawn from the P,-capable matings actually being concordant 
for P, is 0.6699. 

From the standpoint of determining zygosity for a set of twins who are concordant on the pheno­
type in question (P, or P2), these values represent the probability of drawing two matching zygotes 
from the matings that can produce the reference phenotype. Consequently, they are essential for com­
puting the appropriate DZ values. 

The calculations have been performed for all phenotypes in the major bloodgroups, and the results 
are summarized in Table A-4. The first column gives the likelihood of obtaining one zygote with the 
reference phenotype, and the second column gives the likelihood of obtaining two zygotes matched on 
the reference phenotype, based on the complete population values. The latter is equivalent to the pro­
portion of DZ pairs in the population that are expected to be concordant for the reference phenotype. 

The third column represents the proportion of matings in the population that are capable of pro­
ducing the reference phenotype. As described above, this value is used to adjust the one-zygote and 
two-zygote probabilities, so that they reflect the likelihood of drawing the reference phenotype from 
the capable matings. The adjusted values are shown in the final two columns of Table A 4 (also previ­
ously in text Table 3), and they are to be used in calculating the two composite p-values that enter 
into the final zygosity equation. 
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