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In recent years, the idea of using iteration algorithms [1,2] to retrieve the exit wave from a coherent
diffraction pattern of a small object has regained attention. A series of experimental success has
been made in both X-ray and electron diffraction [3].  The most popular explanation for this
technique, often quoted as diffractive imaging or oversampling method, is based on the
oversampling argument by Sayre [4]. In this paper, we give a more intuitive explanation on how
the phase is encoded into the diffraction pattern based on the principle of Ptychography. An
alternative algorithm is designed to illustrate this idea. It explains that the “twin image” problem
associated with holography shows in a different form for diffractive imaging.

For a crystalline specimen, Ptychography, developed by Hoppe[5], involves modifying the electron
beams to generate interferences among the Bragg orders. Hoppe planned to apply this technique to
TEM, however, only its application to CBED patterns in STEM was well recognized and
systematically studied [6]. Under kinematical assumption, the intensity distribution of a CBED
pattern can be approximated as : I(K) = [F(K)®H(K)[*, where F(K) being the structure factors
associated with a series of discrete Bragg reflections, and H(K) is the aperture function including
the beam aberration. Each diffraction disk is the convolution product of a Bragg spot with an
aperture function. If the neighboring diffraction disks overlap (interfere) with each other, one or
more paths can be built among all of the diffraction disks and the phase information of the structure
factor can be determined. This concept is illustrated in Fig.1. If the diffraction disks do not
overlap, the phase information of the structure factors is lost in a kinematical approximation.

Figure 2 shows the experimental setup for diffractive imaging -- a parallel and coherent beam
illumination on an object. For simplicity, we only consider a small crystalline specimen that can be
treated as a small part of an infinite crystal whose phase grating effect is defined as f(x). The shape
of the specimen is defined by a top hat function, g(x), which has values 1 or 0. Thus, the exit wave
is expressed as f(x)-g(x). Assuming that the Ewald sphere is flat, the diffraction pattern at the far
field can also be expressed as the square of a convolution product, I(K)= [F(K)®G(K)|>.  For a
small crystalline sample, each Bragg peak is broadened through the convolution with G(K). Ideally,
the function G(K) has a complex shape extending to infinity. For the discrete case and under
practical experimental conditions, G(K) is spatially limited and can be described by a finite number
of pixels. If the broadened Bragg peaks do not overlap, or the signal to noise ratio is too low in the
overlapped region, the phase information is lost in the diffraction pattern and infinite numbers of
solution exist for the iteration algorithm. Similar to the Ptychography, the overlapping of the Bragg
peaks encoded the phase into the diffraction pattern, as shown in Fig.3. The diffraction intensity of
a non-periodic object doesn’t include Bragg peaks, instead it is assumed to be continuous in the
reciprocal space. Thus, an infinite hypothetical crystal could be assumed to be f(x), whose
diffraction pattern is discontinuous. Convolution of this discontinuous function with the Fourier
transform of the shape function caused extensive interference, which generates a continuous
diffraction pattern. Based on this argument, we designed an alternative iteration algorithm. Instead
of retrieving the exit wave f(x)-g(x), this algorithm is designed to find f(x). Numerical simulation
using this algorithm is successful, as shown in Fig.4. As a pre-requisite, this algorithm requires f(x)
to be periodic. This is consistent with the oversampling argument.

For two waves interfering with each other, the intensity in the interference region records the phase
difference in the form of a cosine operation. Since cosine is an even function, an ambiguity is
introduced when the sign of the phase needs to be determined. This is the origin of the twin image
problem in holography. According to this explanation, this problem shows in a different form in
diffractive imaging. If G(K), the Fourier transform of the shape function, is real, the interference of

https://doi.org/10.1017/51431927605508407 Published online by Cambridge University Press


https://doi.org/10.1017/S1431927605508407

Microsc Microanal 11(Suppl 2), 2005 591

two Bragg peaks G(K)®F(K;) with G(K)®F(K;) only records the absolute value of the phase
difference between F(K;) and F(K,). So, for a specimen having a center symmetric shape, both the
true wave and its complex conjugate are the right answer to the iteration algorithm. A simple
extension of this explanation can be applied on the through focal series technique in HRTEM.
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Fig.2. Principle of diffractive imaging : --a parallel wave
illuminating a small object. Function g(x) describes the
Fig.1. A simulated CBED pattern shape of the object. Exit wave: f(x).g(x)

showing overlapping of the diffraction
disks encoded the phase information.

Fig.3. Overlapping of the broadened Bragg peaks
encodes the phase for diffractive imaging. Small solid

/ circles represent Bragg positions
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Fig.4 (a) Power spectrum of a testing “non-periodic” object; (b) Numerical reconstruction of the
testing object using the power spectrum shown in (a). An alternative algorithm was used. The
testing object (not shown here) includes letters which is similar to the contents in the white box.
The ellipse and rectangle shown in the white box are used as the shape function.
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