ON TAILS OF PERPETUITIES

PAWEŁ HITCZENKO,* Drexel University

Abstract

We establish an upper bound on the tails of a random variable that arises as a solution of a stochastic difference equation. In the nonnegative case our bound is similar to a lower bound obtained in Goldie and Grübel (1996).

Keywords: Perpetuity; stochastic difference equation; tail behavior
2010 Mathematics Subject Classification: Primary 60E15
Secondary 60H25

1. Introduction

A random variable R satisfying the distributional identity

$$
\begin{equation*}
R \stackrel{\mathrm{D}}{=} M R+Q \tag{1}
\end{equation*}
$$

where (M, Q) are independent of R on the right-hand side and ' $=$, denotes equality in distribution, is referred to as perpetuity and plays an important role in applied probability. The main reason for this is that it appears as a limit in distribution of a sequence $\left(R_{n}\right)$ given by

$$
R_{n} \stackrel{\mathrm{D}}{=} M_{n} R_{n-1}+Q_{n}, \quad n \geq 1,
$$

provided that the limit exists. (Here, $\left(M_{n}, Q_{n}\right)$ is a sequence of independent and identically distributed (i.i.d.) random vectors distributed like (M, Q) and R_{0} could be an arbitrary random variable; for convenience, we will set $R_{0}=0$.) A systematic study of the properties of such sequences was initiated by Kesten [5], and such studies continue to this day. Once the convergence in distribution of $\left(R_{n}\right)$ is established, at the center of the investigation is the tail behavior of R. There are two distinctly different cases:

$$
\mathrm{P}(|M|>1)>0 \quad \text { and } \quad \mathrm{P}(|M| \leq 1)=1
$$

The first case results in R having a heavy tail distribution, that is,

$$
\mathrm{P}(|R|>x) \sim C x^{-\kappa}
$$

for a suitably chosen constant κ and some constant C (see the original paper of Kesten [5] or [2]), while in the second case the tails of R are no heavier than exponential. This was observed by Goldie and Grübel [3]. Some subsequent work is given in [4], but the full picture in this case is not complete. The purpose of this note is to shed some additional light on this case by establishing a universal upper bound on the tails of $|R|$. In a special, but important, situation when Q and M (and, thus, also R) are nonnegative our bound is comparable to a lower bound obtained by Goldie and Grübel [3].

[^0]
2. Bounds on the tails

For a random variable M such that $|M| \leq 1$ and $0<\delta<1$, define $p_{\delta}:=\mathrm{P}(1-\delta \leq|M| \leq 1)$. Then, as has been shown in [3] (see also Equation (2.2) of [4]), if $0 \leq M \leq 1$ and $Q \equiv q$ (q being a positive constant), then, for $0<c<1$ and $x>q$, we have

$$
\mathrm{P}(R>x) \geq \exp \left(\frac{\ln (1-c)}{\ln (1-c q / x)} \ln p_{c q / x}\right) .
$$

Since $\ln (1-c q / x) \leq-c q / x$ for any particular value of c, say $c=\frac{1}{2}$, this immediately gives

$$
\mathrm{P}(R>x) \geq \exp \left(-\frac{\ln (1-c)}{c q} x \ln \left(p_{c q / x)}\right)\right)=\exp \left(\frac{2 \ln 2}{q} x \ln p_{q /(2 x)}\right) .
$$

Our aim here is to supply an upper bound of a similar form. While our result does not give the asymptotics of $\mathrm{P}(R>x)$ as $x \rightarrow \infty$, it shows that it essentially behaves like $\exp \left(c_{1} x \ln \left(p_{c_{2} q / x}\right) / q\right)$ for some positive constants c_{1} and c_{2}. Specifically, we prove the following result.

Proposition 1. Assume that $|Q| \leq q$ and $|M| \leq 1$, and let R be given by (1). Then, for sufficiently large x,

$$
\mathrm{P}(|R|>x) \leq \exp \left(\frac{1}{4 q} x \ln p_{2 q / x}\right)
$$

Thus, if $Q \equiv q>0$ and $0 \leq M \leq 1$, then

$$
\exp \left(\frac{2 \ln 2}{q} x \ln p_{q /(2 x)}\right) \leq \mathrm{P}(R>x) \leq \exp \left(\frac{1}{4 q} x \ln p_{2 q / x}\right) .
$$

Proof. If $\mathrm{P}(|M|=1)>0$ then, as was proved in [3], R has tails bounded by those of an exponential variable, so we assume that $|M|$ has no atom at 1 . Fix $0<\delta<1$, and define a sequence $\left(T_{k}\right)$ as follows:

$$
T_{0}=0, \quad T_{m}=\inf \left\{k \geq 1:\left|M_{T_{m-1}+k}\right| \leq 1-\delta\right\}, \quad m \geq 1 .
$$

Then the T_{k} s are i.i.d. random variables, each having a geometric distribution with parameter $1-p_{\delta}$. Furthermore, $\left|M_{k}\right| \leq 1-\delta$ if $k=T_{1}+\cdots+T_{i}$ for some $i \geq 1$ and $\left|M_{k}\right| \leq 1$ otherwise. Therefore,

$$
\prod_{k=1}^{m}\left|M_{k}\right| \leq(1-\delta)^{j} \quad \text { for } T_{1}+\cdots+T_{j} \leq m<T_{1}+\cdots+T_{j}+T_{j+1}
$$

This in turn implies that

$$
\left|\sum_{k \geq 1} \prod_{j=1}^{k-1} M_{j}\right| \leq \sum_{k \geq 1} \prod_{j=1}^{k-1}\left|M_{j}\right| \leq T_{1}+(1-\delta) T_{2}+(1-\delta)^{2} T_{3}+\cdots=\sum_{k \geq 1}(1-\delta)^{k-1} T_{k}
$$

Therefore, if $|Q| \leq q$, we obtain

$$
\begin{equation*}
\mathrm{P}(|R|>x) \leq \mathrm{P}\left(\sum_{k \geq 1} \prod_{j=1}^{k-1}\left|M_{j}\right| \geq \frac{x}{q}\right) \leq \mathrm{P}\left(\sum_{k \geq 1} T_{k}(1-\delta)^{k-1} \geq \frac{x}{q}\right) \tag{2}
\end{equation*}
$$

To bound the latter probability, we use a widely known argument (our calculations follow [1, Proof of Proposition 2]). First, if T is a geometric variable with parameter $1-p$ then

$$
\mathrm{E}^{\lambda T}=\sum_{j=1}^{\infty} \mathrm{e}^{\lambda j} \mathrm{P}(T=j)=\sum_{j=1}^{\infty} \mathrm{e}^{\lambda j} p^{j-1}(1-p)=\frac{\mathrm{e}^{\lambda}(1-p)}{1-\mathrm{e}^{\lambda} p}=\frac{\mathrm{e}^{\lambda}}{1-p\left(\mathrm{e}^{\lambda}-1\right) /(1-p)},
$$

provided that $\mathrm{e}^{\lambda} p<1$. Thus, writing t in place of x / q on the right-hand side of (2), for $\lambda>0$, we have

$$
\begin{aligned}
\mathrm{P}\left(\sum_{k \geq 1}(1-\delta)^{k-1} T_{k} \geq t\right) & =\mathrm{P}\left(\exp \left(\lambda \sum_{k \geq 1}(1-\delta)^{k-1} T_{k}\right) \geq \mathrm{e}^{\lambda t}\right) \\
& \leq \mathrm{e}^{-\lambda t} \operatorname{Eexp}\left(\lambda \sum_{k \geq 1} T_{k}(1-\delta)^{k-1}\right) .
\end{aligned}
$$

If λ satisfies $\mathrm{e}^{\lambda} p<1$ then $p \mathrm{e}^{\lambda(1-\delta)^{k-1}}<1$ for every $k \geq 1$ as well, and, by the independence of (T_{k}), the expectation on the right-hand side is

$$
\begin{equation*}
\prod_{k=1}^{\infty} \frac{\mathrm{e}^{\lambda(1-\delta)^{k-1}}}{1-p\left(\mathrm{e}^{\lambda(1-\delta)^{k-1}}-1\right) /(1-p)}=\mathrm{e}^{\lambda / \delta} \prod_{k=1}^{\infty} \frac{1}{1-p\left(\mathrm{e}^{\lambda(1-\delta)^{k-1}}-1\right) /(1-p)} \tag{3}
\end{equation*}
$$

Now, choose $\lambda>0$ so that $p\left(\mathrm{e}^{\lambda}-1\right) /(1-p) \leq \frac{1}{2}$. Then, as $1 /(1-u) \leq \mathrm{e}^{2 u}$ for $0 \leq u \leq \frac{1}{2}$, for every $k \geq 1$, we obtain

$$
\frac{1}{1-p\left(\mathrm{e}^{\lambda(1-\delta)^{k-1}}-1\right) /(1-p)} \leq \exp \left(2 \frac{p}{1-p}\left(\mathrm{e}^{\lambda(1-\delta)^{k-1}}-1\right)\right)
$$

Therefore, the rightmost product in (3) is bounded by

$$
\exp \left(2 \frac{p}{1-p} \sum_{k \geq 1}\left(\mathrm{e}^{\lambda(1-\delta)^{k-1}}-1\right)\right)
$$

We bound the sum in the exponent as follows:

$$
\begin{aligned}
\sum_{k \geq 1} \sum_{j \geq 1} \frac{\lambda^{j}(1-\delta)^{(k-1) j}}{j!} & =\sum_{j \geq 1} \frac{\lambda^{j}}{j!} \sum_{k \geq 1}(1-\delta)^{j(k-1)} \\
& =\sum_{j \geq 1} \frac{\lambda^{j}}{j!} \frac{1}{1-(1-\delta)^{j}} \\
& \leq \frac{1}{\delta} \sum_{j \geq 1} \frac{\lambda^{j}}{j!} \\
& =\frac{\mathrm{e}^{\lambda}-1}{\delta}
\end{aligned}
$$

Combining the above estimates we obtain

$$
\begin{equation*}
\mathrm{P}(|R|>q t) \leq \exp \left(-t \lambda+\frac{\lambda}{\delta}+\frac{2 p}{1-p} \frac{\mathrm{e}^{\lambda}-1}{\delta}\right) \tag{4}
\end{equation*}
$$

provided that λ satisfies the required conditions, that is,

$$
\mathrm{e}^{\lambda} p<1 \quad \text { and } \quad \frac{p}{1-p}\left(\mathrm{e}^{\lambda}-1\right) \leq \frac{1}{2}
$$

Clearly, both are satisfied when $\mathrm{e}^{\lambda} p \leq \frac{1}{2}$.
We complete the proof by making a suitable choice of λ. Since we are assuming that $|M|$ has no atom at 1 and we are interested in large x, we may assume that δ is small enough so that $p_{\delta}<\frac{1}{3}$. This condition implies that $2 p_{\delta} /\left(1-p_{\delta}\right)<3 p_{\delta}$, so that the last term in the exponent of (4) is bounded by $3 p_{\delta}\left(\mathrm{e}^{\lambda}-1\right) / \delta$. Now let $t=2 / \delta$. Then (4) becomes

$$
\mathrm{P}(|R|>q t) \leq \exp \left(-\lambda \frac{2}{\delta}+\frac{\lambda}{\delta}+\frac{2 p_{\delta}}{1-p_{\delta}} \frac{\mathrm{e}^{\lambda}-1}{\delta}\right) \leq \exp \left(-\frac{1}{\delta}\left(\lambda-3 p_{\delta}\left(\mathrm{e}^{\lambda}-1\right)\right)\right)
$$

Set $\lambda=\ln \left(1 / 3 p_{\delta}\right)$ so that $\mathrm{e}^{\lambda} p_{\delta}=\frac{1}{3}$. This choice of λ is within the constraints and maximizes the value of $\lambda-3 p_{\delta}\left(\mathrm{e}^{\lambda}-1\right)$, this maximal value being

$$
\ln \left(\frac{1}{3 p_{\delta}}\right)-3 p_{\delta}\left(\frac{1}{3 p_{\delta}}-1\right)=\ln \left(\frac{1}{p_{\delta}}\right)-(1+\ln 3)+3 p_{\delta} \geq \frac{1}{2} \ln \left(\frac{1}{p_{\delta}}\right)
$$

with the inequality valid for sufficiently small p_{δ} (less than $\mathrm{e}^{-2} / 9$ for example). Thus, using $t=2 / \delta$, we finally obtain

$$
\mathrm{P}(|R|>q t) \leq \exp \left(-\frac{1}{2 \delta} \ln \left(\frac{1}{p_{\delta}}\right)\right)=\exp \left(\frac{t}{4} \ln p_{2 / t}\right)
$$

or, in terms of x,

$$
\mathrm{P}(|R|>x) \leq \exp \left(\frac{x}{4 q} \ln p_{2 q / x}\right)
$$

References

[1] Goh, W. M. Y. and Hitczenko, P. (2008). Random partitions with restricted part sizes. Random Structures Algorithms 32, 440-462.
[2] Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Prob. 1, 126-166.
[3] Goldie, C. M. and Grübel, R. (1996). Perpetuities with thin tails. Adv. Appl. Prob. 28, 463-480.
[4] Hitczenko, P. and WesoŁowski, J. (2009). Perpetuities with thin tails revisited. Ann. Appl. Prob. 19, 20802101. (Corrected (2010) version available at http://arxiv.org/abs/0912.1694v3.)
[5] Kesten, H. (1973). Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207-248.

[^0]: Received 3 June 2010; revision received 31 August 2010.

 * Postal address: Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA.

 Email address: phitczenko@math.drexel.edu
 Supported in part by the NSA grant \#H98230-09-1-0062.

