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Periodicity in Rank 2 Graph Algebras

Kenneth R. Davidson and Dilian Yang

Abstract. Kumjian and Pask introduced an aperiodicity condition for higher rank graphs. We present

a detailed analysis of when this occurs in certain rank 2 graphs. When the algebra is aperiodic, we give

another proof of the simplicity of C∗(F
+
θ ). The periodic C∗-algebras are characterized, and it is shown

that C∗(F
+
θ ) ≃ C(T) ⊗ A where A is a simple C∗-algebra.

1 Introduction

In this paper, we continue our study of the representation theory of rank 2 graph al-

gebras developed in [3, 4]. Kumjian and Pask [7] introduced a family of C∗-algebras
associated with higher rank graphs. They describe a property called the aperiodicity

condition which implies the simplicity of the C∗-algebra. Our 2-graphs have a single

vertex and are particularly amenable to analysis while exhibiting a wealth of interest-
ing phenomena. Here we characterize when a 2-graph on one vertex is periodic, and

describe the associated C∗-algebra.
The C∗-algebras of higher rank graphs have been studied in a variety of papers

[5, 8, 11–13, 15]. See also [10]. The corresponding nonself-adjoint algebras were

introduced by Kribs and Power [6]. The particular 2-graphs with one vertex were
analyzed by Power [9], and the representation theory was developed by Power and us

[3, 4]. Our work in this paper makes use of both sides of the theory; but this paper

is really about the C∗-algebras. The higher rank graph algebras were inspired by the
paper of Robertson and Steger [14] on higher rank Cuntz–Kreiger algebras. They

also have a notion of aperiodicity that is a requirement in their case. These higher
rank Cuntz–Kreiger algebras have a similar flavour to our single vertex higher rank

graphs.

In the case under consideration, the 2-graph is a semigroup F
+
θ given by genera-

tors and relations. We interpret the aperiodicity condition in terms of the existence of

a special faithful irreducible representation of the associated C∗-algebra. The typical

situation is aperiodicity. Indeed we show that periodicity only occurs under very spe-
cial circumstances in which the commutation relations for words of certain lengths

are given by a flip operation. Unfortunately, examples show that this periodicity may
not exhibit itself except for rather long words, making a determination in specific

examples difficult. We develop an algorithm for doing the computations in a more

manageable way.
In the periodic case, there is also a special faithful representation. It is not irre-

ducible, but rather decomposes as a direct integral by the methods of [4]. The special
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structure in the periodic case allows us to provide a detailed analysis of this direct
integral and thereby exhibit the C∗-algebra as a tensor product of C(T) with a simple

C∗-algebra. An important tool is a faithful approximately inner expectation onto the
C∗-algebra generated by the gauge invariant AF-subalgebra and the centre.

2 Background

The 2-graphs on a single vertex are semigroups which are given concretely in terms

of a finite set of generators and relations of a special type. Let θ ∈ Sm×n be a permu-
tation of m × n, where m = {1, . . . ,m} and n = {1, . . . , n}. The semigroup F

+
θ is

generated by e1, . . . , em and f1, . . . , fn. The identity is denoted as ∅. There are no re-
lations among the e’s, so they generate a copy of the free semigroup on m letters, F

+
m;

and there are no relations on the f ’s, so they generate a copy of F
+
n . There are commu-

tation relations between the e’s and f ’s given by ei f j = f j ′ei ′ where θ(i, j) = (i ′, j ′).
A word w ∈ F

+
θ has a fixed number of e’s and f ’s regardless of the factorization,

and the degree of w is (k, l) if there are k e’s and l f ’s. The length of w is |w| = k + l.

The commutation relations allow any word w ∈ F
+
θ to be written with all e’s first or

with all f ’s first, say w = eu fv = fv ′eu ′ . Indeed, one can factor w with any prescribed

pattern of e’s and f ’s as long as the degree is (k, l). It is straightforward to see that
the factorization is uniquely determined by the pattern and that F

+
θ has the unique

factorization property. See also [7, 9].

A representation σ of F
+
θ as operators on a Hilbert space is row contractive if

[σ(e1) · · ·σ(em)] and [σ( f1) · · ·σ( fn)]

are contractions from H(m) (resp. H(n)) to H and row isometric if these row operators
are isometries. A row contractive representation is defect free if

m
∑

i=1

σ(ei)σ(ei)
∗

= I =

n
∑

j=1

σ( f j)σ( f j)
∗.

A row isometric defect free representation is called a ∗-representation of F
+
θ . The

universal C∗-algebra for the family of ∗-representations is denoted by C∗(F
+
θ ). A

faithful representation of C∗(F
+
θ ) will be denoted as πu.

The left regular representation λ of F
+
θ is defined on ℓ2(F

+
θ ) with orthonormal basis

{ξx : x ∈ F
+
θ } by λ(w)ξx = ξwx. This is row isometric but is not defect free. The norm

closed unital operator algebra generated by these operators is denoted by Aθ.

2.1 Gauge Automorphisms

The universal property of C∗(F
+
θ ) yields a family of gauge automorphisms γα,β for

α, β ∈ T determined by γα,β(πu(ei)) = απu(ei) and γα,β(πu( f j)) = βπu( f j). Inte-

gration around the 2-torus yields a faithful expectation

Φ(X) =

∫

T2

γα,β(X) dαdβ.
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It is easy to check on monomials that the range is spanned by words of degree (0, 0)
(where e∗i and f ∗j count as degree (−1, 0) and (0,−1), respectively).

Kumjian and Pask identify this range as an AF C∗-algebra. The first observation is
that any monomial in e’s, f ’s and their adjoints can be written with all of the adjoints

on the right. Clearly the isometric condition means that πu( f ∗i f j) = δi j = πu(e∗i e j).

To handle e∗i f j, observe that if f jek = ek ′ f jk
for 1 ≤ k ≤ m, then

πu(e∗i f j) = πu

(

e∗i f j

∑

k

eke∗k

)

=

∑

k

πu(e∗i ek ′ f jk
e∗k ) =

∑

k

δik ′πu( f jk
e∗k ).

So every word in C∗(F
+
θ ) can be expressed as a sum of words of the form xy∗ for

x, y ∈ F
+
θ .

Next, they observe that for each integer k ≥ 1, the set of words Sk in F
+
θ of degree

(k, k) determine a family of degree (0, 0) words {πu(xy∗) : x, y ∈ Sk}. It is clear that

πu(x1 y∗1 )πu(x2 y∗2 ) = δy1,x2
πu(x1 y∗2 ).

Thus these operators form a family of matrix units that generate a unital copy Fk

of the full matrix algebra M(mn)k . Moreover, these algebras are nested because the

identity

πu(xy∗) = πu(x)
∑

i

πu(eie
∗
i )

∑

j

πu( f j f ∗j )πu(y∗)

allows one to write elements of Fk in terms of the basis for Fk+1. Therefore the range

of the expectation Φ is the (mn)∞-UHF algebra F =
⋃

k≥1 Fk. This is a simple

C∗-algebra.

2.2 Type 3a Representations

An important family of ∗-representations was introduced in [3]. The name refers to

the classification obtained in [4].
Start with an arbitrary tail of F

+
θ , an infinite word of the form τ = ei0

f j0
ei1

f j1
· · · .

Any infinite word τ with infinitely many e’s and infinitely many f ’s may be put into

this standard form. It may also be factored with any pattern of e’s and f ’s, provided
there are infinitely many of each. These alternate factorizations will be used later.

Let Gs = G := F
+
θ , for s ≥ 0, viewed as a discrete set on which the generators of

F
+
θ act as injective maps by right multiplication, namely, ρ(w)g = gw for all g ∈ G.

Consider ρs = ρ(eis
f js

) as a map from Gs into Gs+1. Define Gτ to be the injective limit

set Gτ = lim
−→

(Gs, ρs), and let ιs denote the injections of Gs into Gτ . Thus Gτ may be
viewed as the union of G0,G1, . . . with respect to these inclusions.

The left regular action λ of F
+
θ on itself induces corresponding maps on Gs by

λs(w)g = wg. Observe that ρsλs(w) = λs+1(w)ρs . The injective limit of these actions
is an action λτ of F

+
θ on Gτ . Let λτ also denote the corresponding representation of

F
+
θ on ℓ2(Gτ ). Let {ξg : g ∈ Gτ} denote the basis. A moment’s reflection shows that

this provides a defect-free, isometric representation of F
+
θ , i.e., it is a ∗-representation.

It will be convenient to associate a directed chromatic graph with any atomic rep-

resentation σ. We describe it for λτ . The vertices are associated with the points in
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Gτ . For each vertex x and each i ∈ m, draw a directed blue edge labelled ei from x to
y if λτ (ei)ξx = ξy . Likewise for each j ∈ n, draw a directed red edge labelled f j from

x to z if λτ ( f j)ξx = ξz . Observe that defect-free means that each vertex has one red
and one blue edge leading into the vertex. For representations as partial isometries,

row contractivity means that there is at most one edge of each colour leading into

any vertex. To be isometric, there must be m blue edges and n red edges leading out
of each vertex.

One of the main results of [3] is that C∗(F
+
θ ) is the C∗-envelope of Aθ, and that

every type 3a representation of F
+
θ yields a completely isometric representation of Aθ

and a faithful ∗-representation of C∗(F
+
θ ).

Therefore the gauge automorphisms are defined on C∗(λτ (F
+
θ )). It is shown in [3]

that γα,β is implemented on ℓ2(Gτ ) by the unitary operator

Uα,βξιs(eu fv) = α|u|−sβ|v|−sξιs(eu fv).

2.3 Coinvariant Subspaces

The other main result of [3] is that every defect-free representation of F
+
θ extends to

a completely contractive representation of Aθ, and therefore dilates to a ∗-dilation.

Moreover the minimal dilation is unique. Therefore it is possible to describe a ∗-re-
presentation completely by its compression to a coinvariant cyclic subspace, as it is

then the unique ∗-dilation.

We describe such a subspace for type 3a representations. Let H = λτ (F
+
θ )∗ξι0(∅).

This is coinvariant by construction. As it contains ξιs(∅) for all s ≥ 1, it is easily seen

to be cyclic. Let στ be the compression of λτ to H.

Since λτ is a ∗-representation, for each (s, t) ∈ (−N)2 there is a unique word eu fv

of degree (|s|, |t|) such that ξι0(∅) is in the range ofλτ (eu fv). Set ξs,t = λτ (eu fv)∗ξι0(∅).

It is not hard to see that this forms an orthonormal basis for H.

Thus, for each (s, t) ∈ (−N)2, there are unique integers is,t ∈ m and js,t ∈ n so

that

στ (eis,t )ξs−1,t = ξs,t for s ≤ 0 and t ≤ 0,

στ ( f js,t )ξs,t−1 = ξs,t for s ≤ 0 and t ≤ 0,

στ (ei)ξs,t = 0 if i 6= is+1,t or s = 0,

στ ( f j)ξs,t = 0 if j 6= js,t+1 or t = 0.

Note that we label the edges leading into each vertex, rather than leading out, because

in the ∗-dilation the blue (or red) edge leading into a vertex is unique, while there are

many leading out.

Consider how the tail τ = ei0
f j0

ei1
f j1

· · · determines these integers. It defines the

path down the diagonal, that is, is,s := i|s| and js−1,s := j|s| for s ≤ 0. This determines
the whole representation uniquely. Indeed, for any vertex ξs,t with s, t ≤ 0, take

T ≥ |s|, |t| and select a path from (−T,−T) to (0, 0) that passes through (s, t). The

word τT = ei0
f j0

· · · eiT−1
f jT−1

satisfies στ (τT)ξ−T,−T = ξ0,0. Factor it as τT = w1w2
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with d(w1) = (T − |s|,T − |t|) and d(w2) = (|s|, |t|), so that στ (w2)ξ−T,−T = ξs,t

and στ (w1)ξs,t = ξ0,0. Then w1 = eis,t w
′
= f js,t w

′ ′.

It is evident that each στ (ei) and στ ( f j) is a partial isometry. Moreover, each basis
vector is in the range of a unique στ (ei) and στ ( f j). So this is a defect-free, partially

isometric representation with unique minimal ∗-dilation λτ .

2.4 Symmetry and Periodicity

An important part of the analysis of these atomic representations is the recognition
of symmetry.

Definition 2.1 The tail τ determines the integer data Σ(τ) = {(is,t, js,t) : s, t ≤ 0}.

Two infinite words τ1 and τ2 with data Σ(τk) = {(i(k)
s,t , j(k)

s,t ) : s, t ≤ 0} are said to

be tail equivalent if the two sets of integer data eventually coincide, i.e., there is an

integer T so that
(i(1)

s,t , j(1)
s,t ) = (i(2)

s,t , j(2)
s,t ) for all s, t ≤ T.

Say that τ1 and τ2 are (p, q)-shift tail equivalent for some (p, q) ∈ Z
2 if there is an

integer T so that

(i(1)
s+p,t+q, j(1)

s+p,t+q) = (i(2)
s,t , j(2)

s,t ) for all s, t ≤ T.(∗)

Then τ1 and τ2 are shift tail equivalent if they are (p, q)-shift tail equivalent for some

(p, q) ∈ Z
2.

The symmetry group of τ is the subgroup of Z
2 given by

Hτ = {(p, q) ∈ Z
2 : τ is (p, q)-shift tail equivalent to itself}.

A sequence τ is called aperiodic if Hτ = {(0, 0)}.

The semigroup F
+
θ is said to satisfy the aperiodicity condition if there is an aperiodic

infinite word. Otherwise we say that F
+
θ is periodic.

We also say that τ is eventually (p, q)-periodic for (p, q) ∈ Hτ . If in fact it is fully

(p, q)-periodic (that is, (∗) holds whenever s, t, s + p, t + q ≤ 0), then we say that τ is
(p, q)-periodic.

In [4], the atomic ∗-representations are completely classified. One of the impor-
tant steps is defining a symmetry group for the more general representations which

occur. It turns out that the representation is irreducible precisely when the symmetry

group is trivial. So the aperiodicity condition is equivalent to saying that there is an
irreducible type 3a representation.

3 Characterization of Periodicity

Whether or not there is an irreducible type 3a representation of F
+
θ depends on the

semigroup. In this section, we obtain detailed information about periodic 2-graphs.

In particular, a non-trivial symmetry group can only have the form Z(a,−b), where

a, b are integers such that ma
= nb and the commutation relations are very special.
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Let ma denote the set of all a-tuples from the alphabet m; and likewise nb denotes
b-tuples in the alphabet n. We may suppose that m ≤ n. The case of 1 = m < n is of

limited interest, and m = n = 1 is not considered.

Theorem 3.1 If 2 ≤ m ≤ n, then the following are equivalent for F
+
θ and positive

integers a and b.

(i) Every tail of F
+
θ is eventually (a,−b) periodic.

(ii) Every tail of F
+
θ is (a,−b) periodic.

(iii) ma
= nb, and there is a bijection γ : ma → nb so that

eu fv = fγ(u)eγ−1(v) for all u ∈ ma and v ∈ nb.

If 1 = m < n, then F
+
θ is (0, b)-periodic, where b is the order of the permutation θ.

Proof Clearly, (ii) implies (i). We will show that (iii) implies (ii) and (i) implies (iii).

First consider m ≥ 2, and suppose that condition (iii) holds. Then we also have
fveu = eγ−1(v) fγ(u). Now consider a type 3a representation λτ . Fix any standard basis

vector ξs,t such that s ≤ −a. Pulling back from ξs,t yields a tail τ1, which we factor as

τ1 = fv1
eu1

fv2
eu2

· · · where |uk| = a and |vk| = b. We wish to compare this with the
tail τ2 obtained from ξs+a,t−b.

Note that starting at the vertex ξs+a,t , one gets to ξs,t by pulling back along a blue

path a steps using a word eu; while one obtains ξs+a,t−b by pulling back b steps along
the red path fv. Hence the infinite path beginning at ξs+a,t is τ0 = euτ1 = fvτ2.

Therefore

τ0 = eu fv1
eu1

fv2
eu2

fv3
· · ·

= fγ(u)eγ−1(v1) fγ(u1)eγ−1(v2) fγ(u2)eγ−1(v3) · · ·

= fvτ2.

Hence v = γ(u) and

τ2 = eγ−1(v1) fγ(u1)eγ−1(v2) fγ(u2)eγ−1(v3) · · ·

= fv1
eu1

fv2
eu2

fv3
· · ·

= τ1.

Therefore τ is (a,−b)-periodic.

Conversely, suppose that condition (iii) fails. We shall show that (i) also is false.
Condition (iii) may fail for three reasons relating to the identities eu fv = fv ′eu ′ :

(a) u ′ is not a function of v alone,
(b) v ′ is not a function of u alone, or

(c) there are functions α : ma → nb and β : nb → ma so that eu fv = fα(u)eβ(v) but

β 6= α−1.

Consider (a) and select any v ∈ nb so that there are two words ui satisfying eui
fv =

fv ′

i
eu ′

i
where u ′

1 6= u ′
2. Take an arbitrary word u ∈ ma and compute fveu = eu ′ fv ′ .
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Pick one of the ui ’s so that u ′
i 6= u ′. Without loss of generality, this is u1. Now

consider a word eu1
fveu occurring as a segment of the tail τ , say τ = xeu1

fveuτ
′. In

the 3a representation λτ , there is a vertex ξs,t at which the tail is τ0 = eu1
fveuτ

′
=

fv ′

1
eu ′

1
euτ

′. Moving to ξs−a,t yields a vector with tail τ1 = fveuτ
′
= eu ′ fv ′τ ′. Similarly,

moving from ξs,t to ξs,t−b yields the tail τ2 = eu ′

1
euτ

′. Since u ′
1 6= u ′, these two words

do not coincide.
Hence any tail τ which contains the word eu1

fveu infinitely often is not eventually

(a,−b) periodic.

Case (b) is handled in the same manner.
In case (c), note that this forces α and β to be injections. For α(u1) = α(u2) = v0

implies that eu1
fv = fv0

eβ(v) = eu2
fv; whence eu1

= eu2
by cancellation. Similarly for

β. Hence ma
= nb, and α and β are bijections.

Since β 6= α−1, select v ∈ nb so that β(v) 6= α−1(v). Consider the tail τ =

xeu1
fveu2

τ ′. Again there is a vertex ξs,t at which the tail is

τ0 = eu1
fveu2

τ ′
= fα(u1)eβ(v)eu2

τ ′.

Moving to ξs−a,t yields a vector with tail τ1 = fveu2
τ ′

= eα−1(v) fβ−1(u2)τ
′. Similarly,

moving from ξs,t to ξs,t−b yields the word τ2 = eβ(v)eu2
τ ′. Since β(v) 6= α−1(v), these

two words do not coincide. The proof is finished as before.

Now consider the case m = 1. Then θ ∈ Sn and the commutation relations have
the form e f j = fθ( j)e for 1 ≤ j ≤ n. So ek f j = fθk( j)e. In particular, if b is the order

of θ in Sn, then it is the smallest positive integer so that e commutes with all fv for

v ∈ nb.
In this case, a type 3a representation is determined by the infinite sequence j0,t for

t ≤ 0. Indeed, a simple calculation shows that js,t = θ−s( j0,t ) for all s ≤ 0. Therefore
every tail τ exhibits (0, b) symmetry. Select the sequence ( j0,t : t ≤ 0) to be aperiodic

(as a sequence in one variable) and to contain all n values infinitely often. It is easy to

see that the data Σ(τ) exhibits only (0, b)-periodicity.

Corollary 3.2 If log m
log n

is irrational, then F
+
θ is aperiodic for all θ in Sm×n.

Proof ma
= nb if and only if

log m
log n

=
b
a
.

Example 3.3 Consider the following example with m = 2, n = 4, and with two
3-cycles (and two fixed points):

(

(1, 2), (2, 1), (1, 3)
)

and
(

(2, 2), (2, 3), (1, 4)
)

.

These relations are:

e1 f1 = f1e1, e1 f2 = f1e2, e1 f3 = f2e1, e1 f4 = f2e2,

e2 f1 = f3e1, e2 f2 = f3e2, e2 f3 = f4e1, e2 f4 = f4e2.

A calculation shows that the relation between e-words of length 2 and the f ’s has this

special symmetry. Setting

γ(11) = 1, γ(12) = 2, γ(21) = 3, γ(22) = 4

yields the relations ei j fk = fγ(i j)eγ−1(k). So this semigroup has (2,−1)-periodicity.

https://doi.org/10.4153/CJM-2009-058-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-058-0


1246 K. R. Davidson and D. Yang

Theorem 3.1 leads to the following theorem. It is somewhat unsatisfactory be-
cause one needs to check potentially infinitely many higher commutation relations

(see Example 4.8). We pose the question of whether there is a combinatorial con-
dition on the original permutation θ which is equivalent to periodicity. A partial

answer to this problem is given later in this section.

Theorem 3.4 Suppose that m, n ≥ 2. Then F
+
θ satisfies the aperiodicity condition if

and only if the technical condition (iii) of Theorem 3.1 does not hold for any (a, b) for

which ma
= nb.

Proof List all non-zero words (p, q) ∈ Z
2 in a list {(pk, qk) : k ≥ 1} so that each

element is repeated infinitely often. For each k, we construct a word ak in F
+
θ . There

are two cases for the word (p, q).

If pkqk ≥ 0 and pk 6= 0, choose ak = e
|pk|
1 f

|qk|
1 e2. If pk = 0, choose ak =

f
|qk|
1 f2. If pkqk < 0, use the construction from the proof of Theorem 3.1. Let

τ = a1a2a3 · · · .
To see that τ is aperiodic, consider any (p, q) 6= (0, 0). It occurs as (pk, qk) in-

finitely many times. If pkqk ≥ 0, consider the starting point (s, t) at the beginning

of the word ak = e
|pk|
1 f

|qk|
1 t , where t = e2 or f2. Then moving to (s − |pk|, t − |qk|)

yields the word beginning with t , which does not coincide with the beginning of ak.
If pkqk < 0, then argue as in the previous theorem. As each (p, q) occurs infinitely

often, τ is not eventually (p, q)-periodic for any period. Hence it is aperiodic.

The same proof works for the periodic semigroups, eliminating all symmetries

except those in every representation.

Corollary 3.5 If F
+
θ is periodic with minimal period (a,−b), then C∗(F

+
θ ) has a type

3a representation with symmetry group Z(a,−b).

Proof If F
+
θ is periodic with minimal period (a,−b), then a routine modification

of the proof above shows that there is an infinite word whose only symmetries are
Z(a,−b). Indeed, if ma0 = nb0 and gcd(a0, b0) = 1, then a = ka0 and b = kb0.

By hypothesis, there are words al with no (la0,−lb0) periodicity for 1 ≤ l < k. As

in the proof above, there are always words with no (p, q) periodicity when pq ≥ 0.
So following the same process, one obtains an infinite word τ without any of these

symmetries. Let λτ be the corresponding type 3a representation.

The symmetry group Hλτ contains (a,−b), and thus Z(a,−b). However by con-
struction, Hλτ ∩ N

2
0 = {(0, 0)} and (la0,−lb0) are not in Hλτ for 1 ≤ l < k. So

Hλτ ∩ Z(a0,−b0) = Z(a,−b). If it contained anything else, then it would contain a
non-zero element of N

2
0. So Hλτ = Z(a,−b).

4 Tests for Periodicity and Aperiodicity

We now examine a method for demonstrating aperiodicity. The permutation θ ∈ Smn

determines functions αi : n → n and β j : m → m so that θ(i, j) = (β j(i), αi( j)).
Thus if u = i1 · · · ia and v = jb · · · j1,

eu f j = fαi1
◦αi2

◦···◦αia ( j)eu ′ and ei fv = fv ′eβ j1
◦β j2

◦···◦β jb
(i).
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For (a,−b)-periodicity when ma
= nb, a necessary condition is that

αi1
◦ αi2

◦ · · · ◦ αia
and β j1

◦ β j2
◦ · · · ◦ β jb

are constant maps for all u and v. So we obtain the following.

Corollary 4.1 (Aperiodicity criterion) If there is a subset B ⊂ n with |B| ≥ 2

and a word i1 · · · ik ∈ mk so that αi1
◦ αi2

◦ · · · ◦ αik
(B) = B, then F

+
θ is aperiodic.

Similarly, if there is a subset A ⊂ m with |A| ≥ 2 and a word j1 · · · jk ∈ nk so that

β j1
◦ β j2

◦ · · · ◦ β jk
(A) = A, then F

+
θ is aperiodic.

Proof (αi1
◦ αi2

◦ · · · ◦ αik
)a(B) = B is never constant.

Remark 4.2 It is not hard to show that either there is a B ⊂ n with |B| ≥ 2 and a

word i1 . . . ik ∈ mk so that αi1
◦ αi2

◦ · · · ◦ αik
(B) = B or for some sufficiently large

k, all αi1
◦ αi2

◦ · · · ◦ αik
are constant maps.

Example 4.3 For θ ∈ S2×2, there are nine distinct algebras up to isomorphism [9].

For example, the forward 3-cycle algebra is given by the permutation θ in S2×2 given
by the 3-cycle

(

(1, 1), (1, 2), (2, 1)
)

. This yields the relations

e1 f1 = f2e1, e1 f2 = f1e2,

e2 f1 = f1e1, e2 f2 = f2e2.

One can easily check that ei f j = fi+ je j , where addition is modulo 2. Notice that

α2 = id; so α2({1, 2}) = {1, 2}. Hence it is aperiodic. This technique works for

seven of the nine 2 × 2 examples.
One exception is the flip algebra, which is given by the rule ei f j = fie j ; and it is

clearly (1,−1)-periodic.

The other is the square algebra given by the permutation

(

(1, 1), (1, 2), (2, 2), (2, 1)
)

.

This yields maps α1 = β2 = 2 and α2 = β1 = 1. These maps are constant, but are

not mutual inverses. So there is no (1,−1) periodicity. However a calculation shows
that ei1i2

f j1 j2
= fi ′1 i2

e j ′1 j2
, where i ′ = i + 1 (mod 2) and j ′ = j + 1 (mod 2). So the

function γ(i j) = i ′ j satisfies γ−1
= γ and eu fv = fγ(u)eγ(v) for all |u| = |v| = 2.

Thus the square algebra is (2,−2)-periodic.

So the periodicity can reveal itself only in the higher order commutation relations!

Example 4.4 Here is another example of this phenomenon. Consider θ ∈ S3×3

given by fixed points (i, i) for 1 ≤ i ≤ 3, and cycles

(

(1, 2), (2, 1)
)

and
(

(1, 3), (3, 2), (2, 3), (3, 1)
)

.

A calculation shows that this algebra has (2,−2)-periodicity via the correspondence

ei j fkl = fγ(i j)eγ(kl) where γ(23) = 13, γ(13) = 23 and γ(i j) = i j otherwise (so

γ−1
= γ).
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These calculations can be simplified somewhat by observing that there are subal-
gebras isomorphic to the one in Example 3.3 generated by each of the sets

{e1, e2 ; f11, f12, f21, f22}, {e1, e3 ; f11, f23, f31, f33}, {e2, e3 ; f22, f13, f32, f33},

{ f1, f2 ; e11, e12, e21, e22}, { f2, f3 ; e22, e13, e32, e33}, { f1, f3 ; e11, e23, e31, e33}.

Thus there are corresponding 4 × 4 subsets of the 9 × 9 pattern of relations between

words of degree 2 that must have the desired form.

In order to develop a better test, we require a refinement of condition (iii) of The-
orem 3.1.

Proposition 4.5 If F
+
θ is periodic and γ : ma → nb is the bijective correspondence of

Theorem 3.1, then for i0, . . . , ia ∈ m, ei0
fγ(i1···ia) = fγ(i0···ia−1)eia

. Conversely, if there is

a bijection γ : ma → nb with this property, then F
+
θ is periodic.

Similarly for j0, . . . , jb ∈ n, eγ−1( j0··· jb−1) f jb
= f j0

eγ−1( j1··· jb). Again this property is

equivalent to (a,−b)-periodicity.

Proof From the commutation relations, we know that

ei0
fγ(i1···ia) = fvei ′a

= fγ(i ′0 ···i
′

a−1)ei ′a
,

where i ′0 · · · i ′a−1 = γ−1(v). Let u = ku ′ be any word of length a. Then

euei0
fγ(i1···ia) = ekeu ′i0

fγ(i1···ia) = ek fγ(u ′i0)ei1···ia

= eu fγ(i ′0 ···i
′

a−1)ei ′a
= fγ(u)ei ′0 ···i

′

a−1i ′a
.

Therefore i ′s = is for 1 ≤ s ≤ a. Similarly,

ei0
fγ(i1···ia)eu ′ = fγ(i ′0 ···i

′

a−1)ei ′a u ′ = ei ′0 ···i
′

a−1
fγ(i ′a u ′).

So i ′0 = i0.

Conversely, using this identity a times yields

eu fγ(u ′) = fγ(u)eu ′ for all u, u ′ ∈ ma.

Thus F
+
θ is periodic by Theorem 3.1.

The next proposition shows that the periodicity of the square algebra of Exam-

ple 4.3 is a consequence of the relation ei f j = fi+1e j .

Proposition 4.6 If ma
= nb and there are maps α : ma → nb and β : nb → ma such

that eu fv = fα(u)eβ(v) for all u ∈ ma and v ∈ nb, then F
+
θ is periodic.
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Proof Since there is a bijective correspondence θ ′ between the words eu fv and the
words fv ′eu ′ , it is easy to verify that α and β are bijections. Thus βα is a permutation

of ma. Let k be the order of βα in Sma ; so (βα)k
= id. Define γ : mak → nbk by

γ(u1 · · · uk) = α(u1)αβα(u2) · · ·α(βα)k−1(uk)

for ui ∈ ma, 1 ≤ i ≤ k. Then compute

eu0
fγ(u1···uk) = eu0

fα(u1) fαβα(u2) · · · fα(βα)k−1(uk)

= fα(u0)eβα(u1) fαβα(u2) · · · fα(βα)k−1(uk)

= fα(u0) fαβα(u1) · · · fα(βα)k−1(uk−1)e(βα)k(uk)

= fγ(u0u1···uk−1)euk
.

Therefore by Proposition 4.5, F
+
θ is (ak,−bk)-periodic.

Proposition 4.5 can be used to calculate γ. In turn, this leads to a checkable algo-
rithm for periodicity. This is captured in the following theorem.

Theorem 4.7 Suppose that F
+
θ is (a,−b)-periodic. Then the bijection γ : ma → nb

may be calculated for u0 ∈ ma by starting with an arbitrary j0 ∈ n and computing

eu0
f j0

= f j1
eu1
,

eu1
f j1

= f j2
eu2
,

...

eub
f jb

= f jeu.

Then γ(u0) = v0 := j1 j2 · · · jb, and also j = j0 and u = u0.

Reversing the process, start with an arbitrary i0 ∈ m and calculate

ei0
fv0

= fv1
ei1
,

ei1
fv1

= fv2
ei2
,

...

eia
fva

= fvei .

Then γ−1(v0) = iaia−1 · · · i1 = u0, and also v = v0 and i = i0.

Conversely, if for ma
= nb and for each u0 ∈ ma the procedure above passes all the

tests of equality for all j0 ∈ n and all i0 ∈ m, then F
+
θ is (a,−b)-periodic.

Proof By Proposition 4.5, if γ(u0) = j1 j2 · · · jb, then eu0
f j0

= f j1
eu1

, where

u1 = j2 · · · jb j0. Proceeding by induction, we find that ui = ji+1 · · · jb j0 · · · ji−1 and

eui
f ji

= f ji+1
eui+1

, where ui+1 = ji+2 · · · jb j0 · · · ji . In the last step, we return to the
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beginning and obtain eub
f jb

= f j0
eu0

. Hence we have calculated γ(u0) = j1 j2 · · · jb,
and j = j0 and u = u0.

Reversing the process works in the same manner.
Now consider the converse. Starting with each u0 in ma, for each value of j0 ∈ n,

we produce the same sequence v0 := j1 j2 · · · jb. This defines a function α : ma →
nb. Observe that with the notation from that calculation, since the sequence cycles
around due to the fact that v = v0 and j = j0, it follows that

α(ui) = ji+1 · · · jb j0 · · · ji−1 for 1 ≤ i ≤ b.

Then we reverse the process, and construct a function β : nb → ma and confirm

that β(v0) = u0, that is, β = α−1. Therefore α and β are bijections. Finally, the
initial calculation eu0

f j0
= f j1

eu1
yields eα−1( j1··· jb) f j0

= f j1
eα−1( j2··· jb j0). This verifies

the hypothesis of Proposition 4.5, and confirms that F
+
θ is (a,−b)-periodic.

4.1 A Computer Algorithm

Theorem 4.7 provides a valid test for periodicity that is effective as a computer pro-

gram. It allows a single pass through all the words in ma doing several tests. Failure

at any point indicates failure of (a,−b)-periodicity; while a completed run without
failure means that F

+
θ is indeed (a,−b)-periodic. An algorithm based on Theorem 3.1

would require checking all manb
= m2a pairs, and this is much too computationally

intensive.

Example 4.8 This example is a 4 × 4 example which has (12,−12)-periodicity.

This is surprisingly high periodicity for such a small number of generators. Already
it is basically impossible to calculate the multiplication table for the 412 × 412 pairs of

words. The algorithm described above reduces this example to a calculation that can

be done by computer in about an hour. We first show how hand calculations allow
us to deduce that there is no periodicity smaller than 12.

We call this the 8-cycle algebra. It is given by the 8-cycle:
(

(2, 1), (1, 2), (3, 1), (1, 3), (4, 2), (2, 4), (4, 3), (3, 4)
)

,

two 2-cycles
(

(1, 4), (4, 1)
)

and
(

(2, 3), (3, 2)
)

, and fixed points (i, i) for 1 ≤ i ≤ 4.
We first calculate the maps αi and β j .

α1(3) = 2 and α1( j) = 1 otherwise,

α2(4) = 3 and α2( j) = 2 otherwise,

α3(4) = 1 and α3( j) = 3 otherwise,

α4 = 4,

β1 = 1,

β2(1) = 3 and β2(i) = 2 otherwise,

β3(1) = 4 and β3(i) = 3 otherwise,

β4(3) = 2 and β4(i) = 4 otherwise.
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One readily calculates α2
2 = α2α1 = α2α3 = 2, α2

3 = α3α1 = α3α2 = 3, α2
1 = 1,

and any expression involving α4 is constant as well. However α1α3 and α1α2 are not

constant. It follows though that every composition of three αi ’s is constant. A similar
calculation shows that the composition of any three β j ’s is constant. This suggests

that the 8-cycle algebra may be periodic. But one might think that it should have

small order. That turns out not to be the case.
We will show by hand that if the 8-cycle algebra F

+
θ is periodic with the minimal

period (a,−b), then (a,−b) = (12k,−12k) for some k ≥ 1. Clearly m = n implies

that a = b. A useful observation is that if F
+
θ is (k,−k)-periodic, then, when |u| =

|v| = k and eu fv = fv ′eu ′ , it follows that eu ′ fv ′ = fveu. That is, the cycle lengths are

just 1 and 2. We will show that this forces k to be a multiple of 12.
Observe that in the commutation relations between the 2-letter words {11, 12, 13,

24, 34} remain within this set, and so we obtain a subsemigroup generated by these

words that is a 2-graph with a 5 × 5 multiplication table.
The point (12, 11) lies on the 6 cycle

(

(12, 11), (11, 13), (34, 11), (11, 12), (13, 11), (11, 24)
)

.

By induction, we can obtain the following identities:

e2k+1
12 f 2k+1

11 = ( f13 f34)k f13e2k+1
11 for k ≥ 0,

e2k
12 f 2k

11 = ( f13 f34)ke2k
11 for k ≥ 1.

On the other hand, we compute

e6k+1
11 ( f13 f34)3k f13 = f 6k+1

11 e34e6k
24,

e6k+2
11 ( f13 f34)3k+1

= f 6k+2
11 e13e6k+1

12 ,

e6k+3
11 ( f13 f34)3k+1 f13 = f 6k+3

11 e12e6k+2
24 ,

e6k+4
11 ( f13 f34)3k+2

= f 6k+4
11 e34e6k+3

12 ,

e6k+5
11 ( f13 f34)3k+2 f13 = f 6k+5

11 e13e6k+4
24 ,

e6k+6
11 ( f13 f34)3k+3

= f 6k+6
11 e6k+6

12 .

From this, we see that the required 2-cycle condition does not hold for words of

length 12k + 2i for 1 ≤ i ≤ 5. It also follows that there is no odd period (k,−k),
for then (2k,−2k) would be a period which is not a multiple of 12. Therefore,

(k,−k)-periodicity can only hold if 12 divides k.

The computer algorithm successfully verified that F
+
θ is (12,−12)-periodic. Hence

the symmetry group is Z(12,−12).

As a corollary, we see that the 5 × 5 algebra that we used has symmetry group
Z(6,−6). This follows because the map γ on 412 restricts to a map on the 6-letter

words from the 5 × 5 algebra. So there is (6,−6)-periodicity. Our argument shows

that it has no smaller period.
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For a while, we had conjectured that if there is a constant k so that the composition
of any k of the maps αi is constant, as is the composition of any k of the maps β j , then

F
+
θ should be periodic. However the following example shows that this is not the case.

So we pose the less precise problem: Find a computable condition on the permutation

θ which is equivalent to periodicity.

Example 4.9 Consider the 3 × 3 example with an 8-cycle

(

(1, 3), (1, 1), (3, 1), (3, 3), (2, 3), (1, 2), (2, 1), (3, 2)
)

.

It is easy to calculate that αi = i are constant for i = 1, 2, 3, as is β1 = 3; β2 sends

3 to 1 and 1, 2 to 2; and β3 sends 3 to 2, and 1, 2 to 1. So β2
2 = 2 = β2β3 and

β2
3 = 1 = β3β2. So all compositions of two maps are constant.

We claim that e1k f1k = f132k−2euk
. Indeed this is an easy calculation by induction

starting with e11 f11 = f13e23, since

e1k+1 f1k+1 = e1 f132k−2euk
f1 = f13e2 f2k−2 f jeu ′

k

= f132k−2e2 f jeu ′

k
= f132k−2 f2ei ′u ′

k
= f132k−1euk+1

.

Thus, if F
+
θ were (k,−k)-periodic for k ≥ 4, one would have euk

f132k−2 = f1ke1k .

However,

euk
f132k−2 = eu ′

k
ei f132k−2 = eu ′

k
f j1 j2

ei ′ f2k−2 = eu ′

k
fv ′e2,

because β2
2 = 2. Thus F

+
θ must be aperiodic.

Example 4.10 Here is another example with a 4 × 4 permutation:

(

(1, 1), (3, 2), (4, 4), (2, 3)
)

,
(

(2, 1), (1, 2), (4, 2), (2, 4)
)

,
(

(3, 1), (3, 4), (4, 3), (1, 3)
)

, ((4, 1), (1, 4)), ((2, 2)), ((3, 3)).

This is unusual in our experience, because α1 = α2, α3 = α4, β1 = β3, and β2 = β4.
Compositions are constant after two compositions:

α1α3 = 1, α2
1 = 2, α2

3 = 3, α3α1 = 4

and

β1β2 = 1, β2
2 = 2, β2

1 = 3, β2β1 = 4.

It is (2,−2)-periodic.

Example 4.11 This final example gives some variants on Example 4.8. For any
m ≥ 4, consider the m×m example which consists of all flips ((i, j), ( j, i)) and fixed

points ((i, i)) except when exactly one of i, j belongs to {1,m}. These belong to the
4(m − 2)-cycle

(

(2, 1), (1, 2), (3, 1), (1, 3), . . . , (m − 1, 1), (1,m − 1),

(m, 2), (2,m), (m, 3), (3,m), . . . , (m,m − 1), (m − 1,m)
)

.

https://doi.org/10.4153/CJM-2009-058-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-058-0


Periodicity in Rank 2 Graph Algebras 1253

The maps αi and β j become constant after three compositions.
Computer tests show that when m = 2k + 2 is even, the algebra has (12k,−12k)-

periodicity for 1 ≤ k ≤ 9. Simple examples show that they are not (6k,−6k) or
(4k,−4k) periodic. Except for k = 1 (Example 4.8), in which an exhaustive computer

check was performed, the computer tested a random set of a million words of length

12k and found the algebras to be (12k,−12k)-periodic. Experience shows that failure
of periodicity exhibits itself within a small number of examples.

On the other hand, when m is odd, these examples are aperiodic. Since ei com-

mutes with fi , one sees that ek
i commutes with f k

i . Therefore the bijection γ of mk

demonstrating periodicity must map ek
i to f k

i . Hence if the algebra were (k,−k)-per-

iodic, one would need to have the identity ek
1 f k

2 = f k
1 ek

2.
For the 5 × 5 12-cycle algebra, we find by induction that

e2k+1
1 f 2k+1

2 = f k+1
1 f2 f k−1

5 e5e2k
2 for k ≥ 1,

e2k
1 f 2k

2 = f k+1
1 f4 f k−2

5 e5e2k−1
2 for k ≥ 2.

Hence it is aperiodic. Similarly, for m = 2s + 1 one can show that

ek
1 f k

2 = f k−l−1
1 f2 j f l

memek−1
2 for k ≥ m − 2,

where k ≡ j−2 (mod s) and l = ⌊k/s⌋−2. So again these algebras are all aperiodic.

5 Periodicity and the Structure of C∗(F
+
θ )

We first provide a different proof of the Kumjian–Pask result that aperiodicity implies

simplicity of C∗(F
+
θ ). We have already observed that there is a faithful expectation Φ

onto a (mn)∞-UHF algebra F. If we can show that any ideal J of C∗(F
+
θ ) is mapped

by Φ into J ∩ F, then the simplicity of F will imply that C∗(F
+
θ ) is also simple. To

do this, we copy an argument that works for the Cuntz algebra [1] (see also [2, The-
orem V.4.6]). We show that in the aperiodic case, the canonical expectation onto the

UHF subalgebra is approximately inner. The interested reader should look at [14],

where they proved simplicity for higher rank Cuntz–Kreiger algebras.

Theorem 5.1 Let F
+
θ be aperiodic. There is a sequence of isometries Wk ∈ C∗(F

+
θ ) so

that

Φ(A) = lim
k→∞

W ∗
k AWk for all A ∈ C∗(F

+
θ ).

Proof It suffices to prove the claim for elements of the form uv∗ where u, v ∈ F
+
θ .

Recall that Φ(uv∗) = uv∗ if d(u) = d(v), and Φ(uv∗) = 0 otherwise. Moreover in

the first case, it suffices to suppose that d(u) = d(v) = (k0, k0) for some k0 ≥ 1

sufficiently large. Indeed, if we have d(u) = (k1, k2) ≤ (k0, k0), then

uv∗ =

∑

d(x)=(k0−k1 ,k0−k2)

(ux)(vx)∗

is the sum of words with the desired degree.
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Let τ be an aperiodic tail constructed by Theorem 3.4. Then there is a finite
segment, say τk, which has no (a, b)-periodicity for |a| ≤ mk and |b| ≤ nk. Let

Sk = {x ∈ F
+
θ : d(x) = (k, k)}. Then set Wk =

∑

x∈Sk
xτkx∗.

Suppose that d(u) = d(v) = (k, k). Then

W ∗
k uv∗Wk =

∑

x∈Sk

∑

y∈Sk

xτ∗k x∗uv∗yτk y∗ = uτ∗k τkv∗ = uv∗.

On the other hand, suppose that

d(u) ∨ d(v) ≤ (k, k) and d(v) − d(u) = (a, b) 6= (0, 0).

Then x∗uv∗y will either be 0 or will have the form x∗0 y0 in reduced form of total
degree (a, b). Therefore τ∗k x∗0 y0τk = 0 because τk does not have (a, b) periodicity. So

an examination of the calculation above yields W ∗
k uv∗Wk = 0.

Corollary 5.2 If F
+
θ is aperiodic, then C∗(F

+
θ ) is simple.

Proof If J is a non-zero ideal in C∗(F
+
θ ), let A be a non-zero positive element. Then

Φ(A) = limk→∞ W ∗
k AWk belongs to J ∩ F. Since Φ is faithful, Φ(A) 6= 0. It follows

that J contains the ideal of F generated by Φ(A), which contains the identity because

F is simple. Therefore J = C∗(F
+
θ ).

5.1 Periodic Algebras

We now turn to the structure of C∗(F
+
θ ) when F

+
θ is periodic. Our goal is to show that

C∗(F
+
θ ) ≃ C(T) ⊗ A where A is simple.

Assume that the minimum period is (a,−b) for a, b > 0. By Theorem 3.1, there
is a bijection γ : ma → nb so that eu fv = fγ(u)eγ−1(v) for all u ∈ ma and v ∈ nb.

Lemma 5.3 Let F
+
θ be periodic with minimal period (a,−b) and define

W :=
∑

u∈ma

fγ(u)e
∗
u .

Then W is a unitary in the centre of C∗(F
+
θ ).

Proof It is clear that W is unitary since {eu : u ∈ ma} is a set of Cuntz isometries, as

are { fv : v ∈ nb}. By Proposition 4.5,

eiW =

∑

u∈ma

ei fγ(u)e
∗
u =

∑

u ′∈ma−1, j∈m

ei fγ(u ′ j)e
∗
u ′ j

=

∑

u ′∈ma−1

fγ(iu ′)

m
∑

j=1

e je
∗
j e∗u ′ =

∑

u ′∈ma−1

fγ(iu ′)e
∗
u ′.
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Thus we compute

Wei =

∑

u∈ma

fγ(u)e
∗
uei =

∑

u ′∈ma−1, j∈m

fγ( ju ′)e
∗
ju ′ei

=

∑

u ′∈ma−1, j∈m

fγ( ju ′)e
∗
u ′(e∗j ei) =

∑

u ′∈ma−1

fγ(iu ′)e
∗
u ′ = eiW.

Similarly, W commutes with each f j , and hence it lies in the centre of C∗(F
+
θ ).

Corollary 5.4 Let F
+
θ be periodic with minimal period (a,−b). Then fγ(u) = euW for

all u ∈ ma. Also if u ∈ ma and v ∈ nb, then e∗u fv = δu,γ−1(v)W .

Proof euW = Weu =
∑

u ′∈ma fγ(u ′)(e∗u ′eu) = fγ(u). Therefore

e∗u fγ(u ′) = e∗u eu ′W = δu,u ′W.

5.2 The Direct Integral Decomposition

Let λτ be the representation constructed in Corollary 3.5. This representation is a

faithful representation of C∗(F
+
θ ) by [3]. By construction, the symmetry group Hτ =

Z(a,−b). By [4], λτ decomposes as a direct integral of irreducible representations

of type 3bii. It will be helpful to see how this is done in this case, using the extra
structure in our possession.

Following the explicit construction of Example 2.2, we have described λτ as an

inductive limit of copies of the left regular representation. Indeed, F
+
θ acts on the set

Gτ = lim
−→

(Gs, ρs), where the ρs are injections of Gs into Gs+1 determined by the word

τ , and ιs are injections of Gs into Gτ . We formed Hτ = ℓ2(Gτ ) and obtained a faithful
representation of C∗(F

+
θ ) via the action

λτ (w)ξιs(x) = ξιs(wx) for all w, x ∈ F
+
θ and s ≥ 0.

To understand the way that W of Lemma 5.3 acts on a basis vector ξ, observe that

there is a unique word u ∈ ma with ξ ∈ Ranλτ (eu). The unitary W acts on ξ by
pulling back a steps along the blue edges to λτ (eu)∗ξ, and then pushing forward via

λτ ( fγ(u)). This can be computed at a basis vector ξ by representing it as ξιs(x) with

d(x) ≥ (a, 0) by choosing s sufficiently large. Then x factors as x = eux ′ with |u| = a,
and λτ (W )ξιs(x) = ξιs( fγ(u)x ′).

Put an equivalence relation ∼ on Gτ by taking the equivalence classes to be the

orbits of each basis vector under powers of W . That is, x ∼ y if and only if there
is an integer k ∈ Z so that W kξx = ξy . Let the equivalence classes be denoted by

[x], and set W[x] = span{ξy : y ∈ [x]}. Identify each W[x] with ℓ2(Z) by fixing a
representative x ′ ∈ [x] and sending the standard basis {ηk : k ∈ Z} for ℓ2(Z) to W[x]

by setting J[x]ηk = W kξx ′ .

We wish to choose the representative for each equivalence class in a consistent way.
So begin with the element x0 = ι0(∅). Let

S = {x ∈ Gτ : ξx = λτ (eue∗v f ∗w )ξx0
for u, v ∈ F

+
m, w ∈ F

+
n , |w| < b}.
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We claim that S intersects each equivalence class of Gτ/∼ in a single point.

Let x ∈ Gτ , and choose s so that ιs(Gs) contains x. Then with ξ = ξιs(∅), we have
words eu fv and fweu ′ so that λτ (eu fv)ξ = ξx and λτ ( fweu ′)ξ = ξx0

. If |v| ≡ −k

(mod b) for 1 ≤ k < b, we replace ξ by ξιs+k(∅) so that |v| is a multiple of b. Factor
fv = fv1

· · · fvs
where |vi| = b and factor fw = fw0

fw1
· · · fwt

where 0 ≤ |w0| < b

and |w j| = b for 1 ≤ j ≤ t . Then set ui = γ−1(vi) and xi = γ−1(wi) and use

Corollary 5.4:

ξx = λτ (eu fve∗u ′ f ∗w )ξx0

= λτ (eu)λτ ( fv1
· · · fvs

)λτ (e∗u ′)λτ ( f ∗wt
· · · f ∗w1

)λτ ( fw0
)∗ξx0

= λτ (eu)λτ (W seu1
· · · eus

)λτ (e∗u ′)λτ (W t∗e∗xt
· · · e∗x1

)λτ ( f ∗w0
)ξx0

= λτ (W s−t)λτ (eu ′′e∗x ′ ′ f ∗w0
)ξx0

=: λτ (W s−t)ξy,

where u ′′
= uu1 · · ·us and x ′ ′

= x1 · · · xtu
′ and ξy = λτ (eu ′′e∗x ′′ f ∗w0

)ξx0
. Therefore

[x] ∩ S contains y.

Uniqueness follows because there is an essentially unique way to write

ξx = λτ (eu fve∗u ′ f ∗w )ξx0
,

except for reducing the word because of redundancies. As

ξx = λτ (W k)ξy = λτ (W keu ′ ′e∗v ′ ′ f ∗w0
)ξx0

,

one sees W keu ′′e∗v ′ ′ f ∗w0
has degree (|u ′′|− |v ′ ′|− ka, kb− |w0|). Since kb− |w0| is not

in [1 − b, 0], this point does not lie in S.

The fact that W lies in the centre of C∗(F
+
θ ) means that if w ∈ F

+
θ and λτ (w)ξx = ξy

then λτ (wW k)ξx = λτ (W k)ξy . Thus λτ (w) maps each subspace W[x] onto another

subspace W[y].

Let U be the bilateral shift on ℓ2(Z). Then one sees that λτ (W ) acts as a shift

J[x]U J∗[x] on every W[x]. Hence λτ (W ) ≃ U ⊗ I is a bilateral shift of infinite mul-
tiplicity. In particular, the spectrum of W is the whole circle T, and the spectral

measure of λτ (W ) is Lebesgue measure.

Let us consider how λτ (ei) acts on W[x], say [x] ∩ S = {y}, where

ξy = λτ (eue∗v f ∗w )ξx0
.

Then [eix] ∩ S is z where ξz = λτ (eiue∗v f ∗w )ξx0
. This is in reduced form unless u = ∅

and v = v ′i, in which case, after cancellation, ξz = λτ (e∗v ′ f ∗w )ξx0
. Either way, we see

that z ∈ S. Hence λτ (ei)|W[x]
= J[z] J∗[y] = J[ei x] J∗[x].

Similarly we analyze λτ ( f j). This comes down to understanding the representative
[ f jx] ∩ S. Again we use the representative y ∈ [x] with ξy = λτ (eue∗v f ∗w )ξx0

. If

|w| ≥ 1, write w = w ′i. Then there is a unique word ṽ ∈ F
+
n with |ṽ| = b − 1 so

that λτ (e∗v f ∗w )ξx0
= λτ ( fṽ f ∗ṽ e∗v f ∗w )ξx0

is in the range of λτ ( fṽ). Therefore using the
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commutation relations f jeu = eu ′ f j ′ and e∗v f ∗i = f ∗i ′e
∗
v ′ ,

λτ ( f jeue∗v f ∗w )ξ0 = λτ ( f jeu fṽ f ∗ṽ e∗v f ∗w )ξ0

= λτ (eu ′ f j ′ṽ f ∗i ′ṽe∗v ′ fw ′)ξ0

= λτ (eu ′e j ′ ṽWW ∗e∗i ′ṽe∗v ′ fw ′)ξ0

= λτ (eu ′ j ′ ṽe∗v ′i ′ṽ fw ′)ξ0.

So again, we see that the canonical representative y in [x] is carried by f j to f j y, the

canonical representative in [ f jx], whence λτ ( f j)|W[x]
= J[ f j x] J∗[x].

However, when w = ∅, one obtains

λτ ( f jeue∗v )ξ0 = λτ (eu ′ f j ′ṽ f ∗ṽ e∗v ′)ξ0

= λτ (eu ′e j ′ ṽW f ∗ṽ e∗v ′)ξ0

= λτ (Weu ′ j ′ ṽe∗v ′ ′ fw ′)ξ0,

where |w ′| = |ṽ| = b − 1. So when λτ ( f j) maps W[x] to W[ f j x], it is acting like the
bilateral shift, namely λτ ( f j)|W[x]

= J[ f j x]U J∗[x].

Form a Hilbert space K = ℓ2(Gτ/∼) with basis {ζ[x]; [x] ∈ Gτ/∼}. One can see
that λτ is unitarily equivalent to a representation πτ on ℓ2(Gτ/∼) ⊗ L2(T) given by

πτ (ei)ζ[x] ⊗ h = ζ[ei x] ⊗ h,

πτ ( f j)ζ[x] ⊗ h =

{

ζ[ f j x] ⊗ h if [x] = [eue∗v f ∗w x0], 1 ≤ |w| < b,

ζ[ f j x] ⊗ zh if [x] = [eue∗v x0],

for all [x] ∈ Gτ/∼ and h ∈ L2(T).
Define a representation σ1 by σ1(w)ζ[x] = ζ[y] if λτ (w)W[x] = W[y], i.e.,

σ1(w)ζ[x] = ζ[wx], Then for each z ∈ T, define σz(ei) = σ1(ei) and σz( f j) = zσ1( f j)
and extend to F

+
θ . It is not difficult to see that σz is unitarily equivalent to another

atomic representation ρzb , given by

ρzb (ei)ζ[x] = ζ[ei x],

ρzb ( f j)ζ[x] =

{

ζ[ f j x] if [x] = [eue∗v f ∗w x0], 1 ≤ |w| < b,

zbζ[ f j x] if [x] = [eue∗v x0].

In particular, σz ≃ σw if and only if zb
= wb.

The representations σz are irreducible by [4, Lemma 8.14] because the symmetry

group Hσz
= {0} is the trivial subgroup of Z

2/Z(a,−b). Note that σz(W ) = zbI.
From this picture, one can see how to decompose the representation λτ as a direct

integral. Indeed,

λτ ≃

∫ 2π/b ⊕

0

σeit dt ≃

∫ 2π ⊕

0

ρeit dt.

In particular, notice that the C∗-algebra A = σz(C∗(F
+
θ )) is independent of z.
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5.3 An Expectation

We need to build a somewhat different expectation in the periodic case.

Theorem 5.5 If F
+
θ is a periodic semigroup with minimal period (a,−b), define

Ψ(X) =

∫

T

γzb,za (X) dz.

Then Ψ is a faithful, approximately inner expectation onto

C∗(F,W ) ≃ C(T) ⊗ F ≃ C(T,F).

Proof As an integral of automorphisms, Ψ is evidently a faithful completely positive

map. Suppose that w = eu fve∗u ′ f ∗v ′ is a word of degree (k, l) where k = |u| − |u ′| and
l = |v| − |v ′|. Then

Ψ(eu fve∗u ′ f ∗v ′) =

∫

T

zkb+laeu fve∗u ′ f ∗v ′ dz =

{

eu fve∗u ′ f ∗v ′ if kb + la = 0,

0 otherwise.

That is, Ψ(w) = w if d(w) ∈ Z(a,−b) and is 0 otherwise. Therefore this is an idem-

potent map, and so it is an expectation. Since the degree map is a homomorphism,
the range of Ψ is a C∗-subalgebra of C∗(F

+
θ ).

The range contains F as this is spanned by words of degree (0, 0) and W , which

has degree (−a, b). The typical word of degree (−pa, pb) is w = eu fve∗u ′ f ∗v ′ where
|u| − |u ′| = −pa and |v| − |v ′| = pb. For convenience, consider p ≥ 0. If |u| ≡ −k

(mod a) for 0 ≤ k < a and |v| ≡ −l (mod b) for 0 ≤ l < b, then

w =

∑

x∈F
+
θ ,d(x)=(k,l)

eu fvxx∗e∗u ′ f ∗v ′.

Hence w is in the span of words of the form eu fve∗u ′ f ∗v ′ for which

|u| ≡ |u ′| ≡ 0 (mod a) and |v| ≡ |v ′| ≡ 0 (mod b).

For such words, we may split each word u, u ′ into words of length a and each v, v ′

into words of length b as

w ′
= eu1···us

fv1···vt+p
e∗u ′

1 ···u
′

s+p
f ∗v ′

1 ···v
′

t

= W peu1···usγ−1(v1)···γ−1(vt+p )e
∗
γ−1(v ′

1 )···γ−1(v ′

t )u ′

1 ···u
′

s+p
.

Therefore all of these words lie in C∗(F,W ). So this identifies the range of Ψ as
C∗(F,W ).

Now W lies in the centre of C∗(F
+
θ ); and it is easy to check that C∗(W ) ∩ F = CI.

So a dense subalgebra of C∗(F,W ) is given by the polynomials
∑

k FkW
k where the

sum is finite and Fk ∈ F. Since the spectrum of W is T,

∥

∥

∥

∑

k

FkW
k
∥

∥

∥
= sup

z∈T

∥

∥

∥

∑

k

Fkzk
∥

∥

∥
.
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Now a routine modification of the proof of Féjer’s Theorem shows that C∗(F,W ) ≃
C(T,F) ≃ C(T) ⊗ F.

The last part of the proof is to establish that Ψ is approximately inner. The argu-
ment is a modification of the proof of Theorem 5.1.

Let τ be the infinite tail used above whose only symmetries are Z(a,−b). Then
there is a finite segment, say τk, such that τ∗k u∗vτk = 0 whenever u, v ∈ F

+
θ with

d(u) − d(v) 6∈ Z(a,−b) and max{d(u), d(v)} ≤ (ka, kb).

Let Sk = {x ∈ F
+
θ : d(x) = (ak, bk)}. Then set Wk =

∑

x∈Sk
xτkx∗.

Suppose that w = uv∗ for u, v ∈ F
+
θ such that d(w) ∈ Z(a,−b) and

max{d(u), d(v)} ≤ (ka, kb).

Then as before, we may write w as a sum of words with the same property and the
additional stipulation that d(u) ∨ d(v) = (ka, kb). Say, as a typical case, that d(u) =

(ka, (k − p)b) and d(v) = ((k − p)a, kb). Then uv∗ = W−p(uW pv∗), and the
term uW pv∗ splits as a sum of words xy∗ with d(x) = d(y) = (pa, pb). Thus if

d(x0) = d(y0) = (pa, pb),

W ∗
k W ∗px0 y∗0Wk = W ∗p

∑

x∈Sk

∑

y∈Sk

xτ∗k x∗x0 y∗0 yτk y∗

= W ∗px0τ
∗
k τk y∗0 = W ∗px0 y∗0 .

On the other hand, suppose that w = uv∗ for u, v ∈ F
+
θ with d(w) 6∈ Z(a,−b) and

max{d(u), d(v)} ≤ (ka, kb). Then x∗uv∗y will either be 0 or will have the form x∗0 y0

in reduced form with

d(y0) − d(x0) = (d(v) − d(y)) − (d(u) − d(x))

= d(v) − d(u) = −d(w) 6∈ Z(a,−b).

Therefore τ∗k x∗0 y0τk = 0, whence W ∗
k uv∗Wk = 0.

Now we “evaluate at 1” and obtain a faithful, approximately inner expectation of

A = σ1(C∗(F
+
θ )) onto F.

Theorem 5.6 There is a faithful, approximately inner expectation Ψ1 of A onto F so

that the following diagram commutes, where ε1 is evaluation at 1:

C∗(F
+
θ )

σ1
//

Ψ

��

A

Ψ1

��

C(T,F)
ε1

// F

https://doi.org/10.4153/CJM-2009-058-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-058-0


1260 K. R. Davidson and D. Yang

Proof The first step is to observe that [3, Lemma 3.4] shows that there is a unitary
Uz := Uzb,za given by

Uzξιs(eu fv) = zb(|u|−s)+a(|v|−s)ξιs(eu fv),

which implements γzb,za in that

γzb,za (X) = Uzλτ (X)U ∗
z for X ∈ C∗(F

+
θ ).

Observe that Uz is constant on the subspaces W[x], and thus it determines a unitary

Vz on ℓ2(Gτ/∼) by Vzζ[x] = tζ[x] if Uz|W[x]
= tPW[x]

.

Clearly Vzσ1(X)V ∗
z = σ1(Uzλτ (X)U ∗

z ) = σ1(γzb,za (X)). This determines an auto-
morphism ψz of A. Define a map Ψ1(A) =

∫

T
ψz(A) dz for A ∈ A. It follows that

Ψ1(σ1(X)) = σ1(Ψ(X)) for X ∈ C∗(F
+
θ ). In particular, Ψ1 is a faithful expectation of

A onto σ1(C∗(F,W )).

Now σ1(W ) = I. So σ1(C∗(F,W )) = σ1(F) ≃ F, because F is simple. The ideal

of C∗(F,W ) generated by W − I is contained in kerσ1. But this ideal is evidently
C0(T \ {1}) ⊗ F. Thus σ1|C∗(F,W ) = ε1 is evaluation at 1.

Finally, since Ψ is approximately inner, we obtain for any A = σ1(X) in A that

Ψ1(A) = σ1(Ψ(X)) = lim
k→∞

σ1(W ∗
k XWk) = lim

k→∞
σ1(W ∗

k )Aσ1(Wk).

So Ψ1 is approximately inner.

Corollary 5.7 A is simple.

Proof If J is a non-zero ideal, then it contains a positive element A. Since Ψ1 is
faithful, Ψ1(A) 6= 0. As Ψ1 is approximately inner, Ψ1(A) belongs to F ∩ J. But F is

simple and unital, so J contains F and thus is all of A.

Corollary 5.8 Let F
+
θ have minimal period (a,−b). Then C∗(F

+
θ ) ≃ C(T) ⊗ A.

Proof Here it is more convenient to use the representations ρz. The analysis above

applied to each representation ρz shows that ker ρz = 〈W −zI〉. Define a map ϕ from

C∗(F
+
θ ) to C(T,A) by ϕ(X)(z) = ρz(X). Checking continuity is straightforward, as is

surjectivity. That the map is injective follows from the direct integral decomposition

of the faithful representation λτ .

As a corollary, we obtain a special case of the result of Robertson and Sims [13] on

the simplicity of higher rank graph algebras.

Corollary 5.9 Let F
+
θ be a rank 2 graph with a single vertex. Then C∗(F

+
θ ) is simple if

and only if F
+
θ is aperiodic.

Corollary 5.10 Let F
+
θ be a periodic rank 2 graph with a single vertex. Then the centre

of C∗(F
+
θ ) is C∗(W ) ≃ C(T).
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