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O N S U R F A C E S O F O R D E R T H R E E 

BY 

TIBOR BISZTRICZKY 

A surface of order three F in the real projective three-space P3 is met by 
every line, not in F, in at most three points. 

In the present paper, we determine the existence and examine the distribu
tion of elliptic, parabolic and hyperbolic points; that is, the differentiable points 
of F which do not lie on any line contained in F. 

We define a topology of P3 in the usual manner. We denote the planes, lines 
and points of P3 by the letters a, | 3 , . . . ; L, M , . . . ; and p, q , . . . respectively. 
For a collection of flats a,L,p,... ; (a, L,p,...) denotes the flat of P3 spanned 
by them. For a set M, (Ji) denotes the flat of P3 spanned by the points of M. 

1. A (plane) curve V is the union of a finite collection of sets CX(M) where 
the Q ' s are continuous maps from a line M = {m, m ' , . . . } into a plane a. Let 
pea. Then p is a simple [double] point of CX(M) if the equation p = Q ( m ) has 
exactly one solution [exactly two solutions] meM. 

Let C = Ck. The line Tm =lim <C(m), C(m')), as m'±m tends to m, is the 
tangent of C at m. Let C be differentiable; that is, Tm exists and |Tm fï C(M)|< 
oo for every meM. We introduce (cf. [1] 1.3.3 and [4]) the characteristic of C at 
m and the multiplicity with which a line L e a meets C at m. Then C is of 
order n if n is the supremum of the number of points of M, counting 
multiplicities, mapped into collinear points by C. 

If C is of order two [three], we denote C(M) by S^FJJ. Every point of an S1 

is simple, an F* contains at most one double point and a simple point of F* is 
an ordinary, inflection or cusp point; cf. [1] 1.4 and [2]. If C(M) is a line 
[point], then C is considered to have order one [two]. 

T is of order k if k is the supremum of the number of points of T, counting 
multiplicities on each Q , lying on any line not in T. If k = 1, then T is a straight 
line. If k = 2 , then T is an S1 or an isolated point or a pair of distinct lines. If 
k = 3, then T is (i) an F^ plus possibly an Sx or an isolated point either disjoint 
from F% or (ii) the union of a line and a V of order two. We denote a T of 
order three satisfying (i) by F 1 . 

2. A surface of order three F in P3 is a compact and connected set such that 
every intersection of F with a plane is a curve of order < 3 and some plane 
intersection is an F1 . 

Let F be a surface of order three; peF. Let a denote a plane through p. 
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Then p is regular in F[a OF] if there is a line N in P 3 [a] such that p e N and 
| N H F | = 3; otherwise, p is irregular in F [a HF] . If a H F is an F 1 , then there 
is at most one irregular point v in a H F and such a v is a cusp, double point or 
isolated point. Finally, 

l(p, a ) = | { L c a | p G L c F } | < /(a) = |{L c a | L cz F}\ < 3. 

A line T is a tangent of F at p if T is the tangent of some CA at 
m;p = CK(m)<= Q ( M ) c F Let T(P) be the set of tangents of F at p. Then p is 
differentiable if p is regular in F and T(P) is a plane 7r(p); otherwise, p is 
singular. 

Henceforth, we assume that every regular p in F is differentiable and rr(p) 
depends continuously on p. 

Let p be differentiable. Then peT^7r(p) implies that either T c F or 
| T n F | < 2 . Thus l(p) = \{LczF\peL}\ = l(p,ir(p)) and p is irregular in 
7 r (p )nF If Z(p) = 0, then p is an isolated point, cusp or double point of 
7r (p)nF and we call p elliptic, parabolic or hyperbolic respectively. 

Let 3F be a closed connected subset of S1 or F*. If the end points of SF are 
distinct [equal], then SF is a subarc [subcurve]. A subarc of F*, containing only 
ordinary points in its interior, is of order two. 

Let p be regular in F Let 3F(p) be the set of all subarcs 2F of order two such 
that p G 3F<£ TT(P); {3FU £F2}^3F(p). Then 3FX and ZF2 are p-compatible if there is 
a |3 c P3\{p} and an open neighbourhood U(p) of p in P 3 such that U(p) D 
( ^ U ^ ) is contained in a closed half-space of P3 bounded by u(p) and |3; 
otherwise, ^ and &?2 are p-incompatible. 

A pair of subarcs £F and ^ ' are compatible [incompatible] if there is a 
p e f n ^ such that {^ ,^}c=^(p) and ^ and S '̂ are p-compatible [p-
incompatible]. We consider a subcurve of order two as an element of &*(p) if it 
contains a subarc 2F such that p € f e £F(p). 

3. We assume that F is non-ruled; that is, F is not generated by lines. Then 
1(F) = |{i cz p 3 I L c F}\ < œ and F contains at most four irregular points; cf. [3]. 
We denote by E, I and H: the set of elliptic, parabolic and hyperbolic points of 
F respectively. We shall prove that for any (non-ruled) F:H^ </>, I=fi <f) implies 
that E^&E is open and I is nowhere dense in F 

By way of preparation, we have the following remarks: 
3.1 Let L^F and p G F\L such that (L, p) H F consists of L and a n S 1 . We 

denote this S1 by Sa(L, p). 
3.2 If a plane section of F is of order two, then it consists of a pair of lines. 

([112.2.3.) 
3.3 If p is regular in F and isolated in a Pi F, then p G F and a = Trip). ([1], 

2.3.7.) 
3.4 Let p be regular in F, Z(p) = 0. Then p e H if and only if there exist 

incompatible 9 and <F in <^(p) with p e i n t ^ n i n t O F ) . ([1], 2.5.7) 
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3.5 Let &' e&(p) for each p e&'. Let L c F such that L£{&') and S 1 ^ p) e 
^ (p) for each p e ^ ' . Then ^ ' and S1(L, p) are either compatible for all p e ^ ' 
or incompatible for all pe&'. ([1], 2.5.8.) 

3.6 Let px be a sequence converging to a differentiable p. If px e / [ JE] for 
each A, then l(p) = 0 implies that p e I [ E U l ] and 7r(p)nF = L U S 1 implies 
that L f l S ^ i p } . ([1], 2.4.6 and 2.4.9.) 

3.7. LEMMA. Let G be an open region in F such that a 0 n G = <£ /or some 
a0, bd(F\G) = bd(G),(bd(G)) is a plane and each peG is regular in F. Then 
GnE^<t>. 

Proof. We note that any line in a plane (F%) meets F* and thus, any line in 
F 3 meets F by 3.2. 

Let peG and put L = a0C\(bd(G)). Then LPiG = 4> implies that 
LD(F\G)^cl) and (L,p)nG is an S1 or an isolated point of <L,p)nF. 
Obviously, a0nG = <f) yields that there is a p 0 e G such that (L, p0)U G = {p0}. 
Then p 0 e E and 7r(p0) = (L, p0) by 3.3. 

We note that É H H = <f> and I n (E U H) = <J> by 3.6. It is clear that a limit of 
hyperbolic points may be parabolic but not elliptic. Thus, E is open in F and 

{p G Ë H H | /(p) = 0 and p is regular in F} ç I. 

3.8. THEOREM. If i(F)>0, then I is nowhere dense in F and 

I = {p e E H H | l(p) = 0 and p is regular in F}. 

Proof. Let L c F and p 0 e I . Then there i s a T c 7r(p0) such that T D F ^ { p 0 } . 
Let Tc/3^7r(po). Then J(Po) = 0, T n F = {p0} and 3.2 imply that 0 PlF is an 
F 1 with po as an inflection point. Thus there are 8F and SF' in ^(p0) such that 
& U ̂ ' c |3 and ^ f W = {p0}. We note that & and ^ ' are incompatible and for 
p close to p0 in & U ̂ ' , p is regular in F. Since i(p0) = 0 and T H L = <f>, we may 
assume that l(p) = 0 and (0 n ?r(p)) H L = <£ for each p e ^ U ^ ' . Then 
<L,p>nF = LUS 1 (L ,p) for each p e ^ U ^ ' by 3.3. 

(i) Since & and ^ ' are incompatible, S1(L,p0)e^(p0) implies that S1^^^ 
and say & are incompatible. By 3.5, S1^, p) and ^ are incompatible for each 
peint(&). Thus p 0 e H b y 3.4. 

(ii) Since p0el, 

7r(p0)nF = &1U&2 

where ^ i [ ^ 2 ] is a subarc of order two, p0e&1n&2 and | ^ \ H ^ 2 | = 2. Let px in 
int(^) converge to p0. Since pxeH for each A, 

where !£K is a subcurve of order two, ^ i , x [^2, \ ] *s a subarc of order two, 
2K H ^ L X U^ 2 , x ) = {px}, px e ^ 1 A n ^ 2 , x and | ^ 1 A n ^ 2 , x | = 2. We note that as 
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pK tends to p0, 

l i m i r ( p j n F = 7 r ( p 0 ) n F 

and limi£x is a closed curve of order <2 . It is easy to check that 

lim «Sfx = {p0} and lim &^K U ̂ 2,A = ^ , U ^ 2 -

Since p0 is parabolic, we can describe a sufficiently small neighbourhood of 
p0 in F. In particular, it is easy to check that (for pK sufficiently close to p0) S£x 

is the boundary of an open region F(i?x)<=F such that bd(F\F(&k)) = 
bd(F(3?x)) and lim F(££k) ={p0}. Finally, l(p0) = 0 and p0 regular in F imply that 
F(«SPX) satisfies 3.7 for px sufficiently close to p0. Hence, F(J£K)C\E^<$) and 
p 0 e F . 

3.9. THEOREM. 1/ i(F)>0, then F contains hyperbolic points. 

Proof. We note that l((3) = 0 implies that /3DF contains an inflection point 
by 3.2. As /(F)<°°, the set 

â={q G F I q is an inflection point} 

is infinite. If q e â and /(q) = 0, then qelUH. Since I^c^ implies that 
ËC\Hï<t> (and thus E^4>^H) by 3.8, we obtain that q G l U H yields that 

Suppose that H = </>. Then l(q)>0 for each q e â and there is an L c F such 
that L H â is an infinite set. 

CASE 1. There is an M cz F such that Lf)M = <f). 

Let q G L H â. Then ir(q) = <L, Tq> where Tq H F = {q}. As ir(q) H M<£ L, this 
implies that either (q, 7r(q)n M) a F or ir(q) H F consists of L and an S1 where 
\L n S 1 ! = 2 and q e L D S 1 . In the latter case, 3.6 clearly implies that qeH and 
H ^ </>; a contradiction. Thus (q, ir(q)DM)c:F for each q e L f l l Then / (F)< 
oo implies that |LHâ|<oo; a contradiction. 

CASE 2. Every M<=F meets L. 

Clearly, there is a point q1e2l\L. Thus there is an L1aF such that q1eL1 

and L j O L is a point vj=qr. 
If M c F such that M f l L ^ ^ , then M1 = (ql9 ir(q^) f l M ) c F b y the preced

ing. Since v£Mt and M1C)L^<f>, we obtain that M1a{L,L1). Then 
7r(q1)nF = M 1 U L 1 U L where M i n i ^ n L ^ ^ implies that qx^Si\ a con
tradiction. Thus, every line in F passes through v. 

Let U G 0 . Then either i(0)>O or (1(0) = 0, pC\2L={v} and) 0 contains an 
irregular point of F. Since F contains a finite number of lines and irregular 
points, this is a contradiction. 
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4. In each of the following examples, F contains exactly one irregular point 
v and one line L. Recall that r(v) is the set of tangents of F at v. 

Let P 3 be suitably coordinatized. 
The surface F defined by 

0 = xl-(xl + xi)x3 (L=xo = x3 = 0,v = (0,0,0,l)) 

contains neither elliptic nor parabolic points. r(v) is a line T = xt = x2 = 0 and v 
is the cusp [isolated point] of (3 O F if T c j3[j3 n T = {t)}]. 

The surface F defined by 

0--=xl-(xl + xl-xl)x3 (L = x0 = x3 = 0,v = (0,0,0,1)) 

contains elliptic but not parabolic points. r(t>) is a cone of order two with 
vertex v and v e T<= r(v) if and only if TC\F = {v}. If (3 HT(U) = {i;}, then v is 
the isolated point of j3HF; otherwise, u is the cusp or the double point of 
j3PlF. Finally, E and H are both connected with É = EU{v} and H = 
H U L U W . 

The surface F defined by 

0 = *o + xxx\ 4- x 1X3 (L = x0 = * i = 0, v = (0,0, 0,1)) 

contains parabolic points, T(V) = X1 = 0 and jSHL^ji;} implies that v is the 
cusp of |8 H F. In this case; I = S1(L, p)\{u} where p = (0,1 , 0, 0) or equivalently 
I = 0 = x0 = x\ 4- xxx3, E is connected with Ë = EUlU{v} and H = H U J U L . 
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