ON SURFACES OF ORDER THREE

BY
TIBOR BISZTRICZKY

A surface of order three F in the real projective three-space P^{3} is met by every line, not in F, in at most three points.

In the present paper, we determine the existence and examine the distribution of elliptic, parabolic and hyperbolic points; that is, the differentiable points of F which do not lie on any line contained in F.

We define a topology of P^{3} in the usual manner. We denote the planes, lines and points of P^{3} by the letters $\alpha, \beta, \ldots ; L, M, \ldots$; and p, q, \ldots respectively. For a collection of flats $\alpha, L, p, \ldots ;\langle\alpha, L, p, \ldots\rangle$ denotes the flat of P^{3} spanned by them. For a set $\mathcal{M},\langle\mathcal{M}\rangle$ denotes the flat of P^{3} spanned by the points of \mathcal{M}.

1. A (plane) curve Γ is the union of a finite collection of sets $C_{\lambda}(M)$ where the C_{λ} 's are continuous maps from a line $M=\left\{m, m^{\prime}, \ldots\right\}$ into a plane α. Let $p \in \alpha$. Then p is a simple [double] point of $C_{\lambda}(M)$ if the equation $p=C_{\lambda}(m)$ has exactly one solution [exactly two solutions] $m \in M$.

Let $C=C_{\lambda}$. The line $T_{m}=\lim \left\langle C(m), C\left(m^{\prime}\right)\right\rangle$, as $m^{\prime} \neq m$ tends to m, is the tangent of C at m. Let C be differentiable; that is, T_{m} exists and $\left|T_{m} \cap C(M)\right|<$ ∞ for every $m \in M$. We introduce (cf. [1] 1.3.3 and [4]) the characteristic of C at m and the multiplicity with which a line $L \subset \alpha$ meets C at m. Then C is of order n if n is the supremum of the number of points of M, counting multiplicities, mapped into collinear points by C.

If C is of order two [three], we denote $C(M)$ by $S^{1}\left[F_{*}^{1}\right]$. Every point of an S^{1} is simple, an F_{*}^{1} contains at most one double point and a simple point of F_{*}^{1} is an ordinary, inflection or cusp point; cf. [1] 1.4 and [2]. If $C(M)$ is a line [point], then C is considered to have order one [two].
Γ is of order k if k is the supremum of the number of points of Γ, counting multiplicities on each C_{λ}, lying on any line not in Γ. If $k=1$, then Γ is a straight line. If $k=2$, then Γ is an S^{1} or an isolated point or a pair of distinct lines. If $k=3$, then Γ is (i) an F_{*}^{1} plus possibly an S^{1} or an isolated point either disjoint from F_{*}^{1} or (ii) the union of a line and a Γ^{\prime} of order two. We denote a Γ of order three satisfying (i) by F^{1}.
2. A surface of order three \boldsymbol{F} in P^{3} is a compact and connected set such that every intersection of F with a plane is a curve of order ≤ 3 and some plane intersection is an F^{1}.

Let F be a surface of order three; $p \in F$. Let α denote a plane through p.

[^0]Then p is regular in $F[\alpha \cap F]$ if there is a line N in $P^{3}[\alpha]$ such that $p \in N$ and $|N \cap F|=3$; otherwise, p is irregular in $F[\alpha \cap F]$. If $\alpha \cap F$ is an F^{1}, then there is at most one irregular point v in $\alpha \cap F$ and such a v is a cusp, double point or isolated point. Finally,

$$
l(p, \alpha)=|\{L \subset \alpha \mid p \in L \subset F\}| \leq l(\alpha)=|\{L \subset \alpha \mid L \subset F\}| \leq 3 .
$$

A line T is a tangent of F at p if T is the tangent of some C_{λ} at $m ; p=C_{\lambda}(m) \subset C_{\lambda}(M) \subset F$. Let $\tau(p)$ be the set of tangents of F at p. Then p is differentiable if p is regular in F and $\tau(p)$ is a plane $\pi(p)$; otherwise, p is singular.

Henceforth, we assume that every regular p in F is differentiable and $\pi(p)$ depends continuously on p.

Let p be differentiable. Then $p \in T \subset \pi(p)$ implies that either $T \subset F$ or $|T \cap F| \leq 2$. Thus $l(p)=|\{L \subset F \mid p \in L\}|=l(p, \pi(p))$ and p is irregular in $\pi(p) \cap F$. If $l(p)=0$, then p is an isolated point, cusp or double point of $\pi(p) \cap F$ and we call p elliptic, parabolic or hyperbolic respectively.

Let \mathscr{F} be a closed connected subset of S^{1} or F_{*}^{1}. If the end points of \mathscr{F} are distinct [equal], then \mathscr{F} is a subarc [subcurve]. A subarc of F_{*}^{1}, containing only ordinary points in its interior, is of order two.
Let p be regular in F. Let $\mathscr{F}(p)$ be the set of all subarcs \mathscr{F} of order two such that $p \in \mathscr{F} \not \subset \pi(p) ;\left\{\mathscr{F}_{1}, \mathscr{F}_{2}\right\} \subset \mathscr{F}(p)$. Then \mathscr{F}_{1} and \mathscr{F}_{2} are p-compatible if there is a $\beta \subset P^{3} \backslash\{p\}$ and an open neighbourhood $U(p)$ of p in P^{3} such that $U(p) \cap$ $\left(\mathscr{F}_{1} \cup \mathscr{F}_{2}\right)$ is contained in a closed half-space of P^{3} bounded by $\pi(p)$ and β; otherwise, \mathscr{F}_{1} and \mathscr{F}_{2} are p-incompatible.

A pair of subarcs \mathscr{F} and \mathscr{F}^{\prime} are compatible [incompatible] if there is a $p \in \mathscr{F} \cap \mathscr{F}^{\prime}$ such that $\left\{\mathscr{F}, \mathscr{F}^{\prime}\right\} \subset \mathscr{F}(p)$ and \mathscr{F} and \mathscr{F}^{\prime} are p-compatible [p incompatible]. We consider a subcurve of order two as an element of $\mathscr{F}(p)$ if it contains a subarc \mathscr{F} such that $p \in \mathscr{F} \in \mathscr{F}(p)$.
3. We assume that F is non-ruled; that is, F is not generated by lines. Then $l(F)=\left|\left\{l \subset P^{3} \mid L \subset F\right\}\right|<\infty$ and F contains at most four irregular points; cf. [3]. We denote by E, I and H : the set of elliptic, parabolic and hyperbolic points of F respectively. We shall prove that for any (non-ruled) $F: H \neq \phi, I \neq \phi$ implies that $E \neq \phi, E$ is open and I is nowhere dense in F.

By way of preparation, we have the following remarks:
3.1 Let $L \subset F$ and $p \in F \backslash L$ such that $\langle L, p\rangle \cap F$ consists of L and an S^{1}. We denote this S^{1} by $S^{1}(L, p)$.
3.2 If a plane section of F is of order two, then it consists of a pair of lines. ([1], 2.2.3.)
3.3 If p is regular in F and isolated in $\alpha \cap F$, then $p \in E$ and $\alpha=\pi(p)$. ([1], 2.3.7.)
3.4 Let p be regular in $F, l(p)=0$. Then $p \in H$ if and only if there exist incompatible \mathscr{F} and \mathscr{F}^{\prime} in $\mathscr{F}(p)$ with $p \in \operatorname{int}(\mathscr{F}) \cap \operatorname{int}\left(\mathscr{F}^{\prime}\right)$. ([1], 2.5.7)
3.5 Let $\mathscr{F}^{\prime} \in \mathscr{F}(p)$ for each $p \in \mathscr{F}^{\prime}$. Let $L \subset F$ such that $L \not \subset\left\langle\mathscr{F}^{\prime}\right\rangle$ and $S^{1}(L, p) \in$ $\mathscr{F}(p)$ for each $p \in \mathscr{F}^{\prime}$. Then \mathscr{F}^{\prime} and $S^{1}(L, p)$ are either compatible for all $p \in \mathscr{F}^{\prime}$ or incompatible for all $p \in \mathscr{F}^{\prime}$. ([1], 2.5.8.)
3.6 Let p_{λ} be a sequence converging to a differentiable p. If $p_{\lambda} \in I[E]$ for each λ, then $l(p)=0$ implies that $p \in I[E \cup I]$ and $\pi(p) \cap F=L \cup S^{1}$ implies that $L \cap S^{1}=\{p\}$. ([1], 2.4.6 and 2.4.9.)
3.7. Lemma. Let G be an open region in F such that $\alpha_{0} \cap \bar{G}=\phi$ for some $\alpha_{0}, b d(F \backslash G)=b d(G),\langle b d(G)\rangle$ is a plane and each $p \in G$ is regular in F. Then $G \cap E \neq \phi$.
Proof. We note that any line in a plane $\left\langle F_{*}^{1}\right\rangle$ meets F_{*}^{1} and thus, any line in P^{3} meets F by 3.2.

Let $p \in G$ and put $L=\alpha_{0} \cap\langle b d(G)\rangle$. Then $L \cap \bar{G}=\phi$ implies that $L \cap(F \backslash \bar{G}) \neq \phi$ and $\langle L, p\rangle \cap G$ is an S^{1} or an isolated point of $\langle L, p\rangle \cap F$. Obviously, $\alpha_{0} \cap \bar{G}=\phi$ yields that there is a $p_{0} \in G$ such that $\left\langle L, p_{0}\right\rangle \cup G=\left\{p_{0}\right\}$. Then $p_{0} \in E$ and $\pi\left(p_{0}\right)=\left\langle L, p_{0}\right\rangle$ by 3.3.

We note that $\bar{E} \cap H=\phi$ and $\bar{I} \cap(E \cup H)=\phi$ by 3.6. It is clear that a limit of hyperbolic points may be parabolic but not elliptic. Thus, E is open in F and

$$
\{p \in \bar{E} \cap \bar{H} \mid l(p)=0 \text { and } p \text { is regular in } F\} \subseteq I
$$

3.8. Theorem. If $l(F)>0$, then I is nowhere dense in F and

$$
I=\{p \in \bar{E} \cap \bar{H} \mid l(p)=0 \text { and } p \text { is regular in } F\}
$$

Proof. Let $L \subset F$ and $p_{0} \in I$. Then there is a $T \subset \pi\left(p_{0}\right)$ such that $T \cap F=\left\{p_{0}\right\}$. Let $T \subset \beta \neq \pi\left(p_{0}\right)$. Then $l\left(p_{0}\right)=0, T \cap F=\left\{p_{0}\right\}$ and 3.2 imply that $\beta \cap F$ is an F^{1} with p_{0} as an inflection point. Thus there are \mathscr{F} and \mathscr{F} in $\mathscr{F}\left(p_{0}\right)$ such that $\mathscr{F} \cup \mathscr{F}^{\prime} \subset \beta$ and $\mathscr{F} \cap \mathscr{F}^{\prime}=\left\{p_{0}\right\}$. We note that \mathscr{F} and \mathscr{F}^{\prime} are incompatible and for p close to p_{0} in $\mathscr{F} \cup \mathscr{F}^{\prime}, p$ is regular in F. Since $l\left(p_{0}\right)=0$ and $T \cap L=\phi$, we may assume that $l(p)=0$ and $(\beta \cap \pi(p)) \cap L=\phi$ for each $p \in \mathscr{F} \cup \mathscr{F}$. Then $\langle L, p\rangle \cap F=L \cup S^{1}(L, p)$ for each $p \in \mathscr{F} \cup \mathscr{F}^{\prime}$ by 3.3.
(i) Since \mathscr{F} and \mathscr{F}^{\prime} are incompatible, $S^{1}\left(L, p_{0}\right) \in \mathscr{F}\left(p_{0}\right)$ implies that $S^{1}\left(L, p_{0}\right)$ and say \mathscr{F} are incompatible. By $3.5, S^{1}(L, p)$ and \mathscr{F} are incompatible for each $p \in \operatorname{int}(\mathscr{F})$. Thus $p_{0} \in \bar{H}$ by 3.4.
(ii) Since $p_{0} \in I$,

$$
\pi\left(p_{0}\right) \cap F=\mathscr{F}_{1} \cup \mathscr{F}_{2}
$$

where $\mathscr{F}_{1}\left[\mathscr{F}_{2}\right]$ is a subarc of order two, $p_{0} \in \mathscr{F}_{1} \cap \mathscr{F}_{2}$ and $\left|\mathscr{F}_{1} \cap \mathscr{F}_{2}\right|=2$. Let p_{λ} in $\operatorname{int}(\mathscr{F})$ converge to p_{0}. Since $p_{\lambda} \in H$ for each λ,

$$
\pi\left(p_{\lambda}\right) \cap F=\mathscr{L}_{\lambda} \cup \mathscr{F}_{1, \lambda} \cup \mathscr{F}_{2, \lambda}
$$

where \mathscr{L}_{λ} is a subcurve of order two, $\mathscr{F}_{1, \lambda}\left[\mathscr{F}_{2, \lambda}\right]$ is a subarc of order two, $\mathscr{L}_{\lambda} \cap\left(\mathscr{F}_{1, \lambda} \cup \mathscr{F}_{2, \lambda}\right)=\left\{p_{\lambda}\right\}, p_{\lambda} \in \mathscr{F}_{1, \lambda} \cap \mathscr{F}_{2, \lambda}$ and $\left|\mathscr{F}_{1, \lambda} \cap \mathscr{F}_{2, \lambda}\right|=2$. We note that as
p_{λ} tends to p_{0},

$$
\lim \pi\left(p_{\lambda}\right) \cap F=\pi\left(p_{0}\right) \cap F
$$

and $\lim \mathscr{L}_{\lambda}$ is a closed curve of order ≤ 2. It is easy to check that

$$
\lim \mathscr{L}_{\lambda}=\left\{p_{0}\right\} \quad \text { and } \quad \lim \mathscr{F}_{1, \lambda} \cup \mathscr{F}_{2, \lambda}=\mathscr{F}_{1} \cup \mathscr{F}_{2}
$$

Since p_{0} is parabolic, we can describe a sufficiently small neighbourhood of p_{0} in F. In particular, it is easy to check that (for p_{λ} sufficiently close to p_{0}) \mathscr{L}_{λ} is the boundary of an open region $F\left(\mathscr{L}_{\lambda}\right) \subset F$ such that $b d\left(F \backslash F\left(\mathscr{F}_{\lambda}\right)\right)=$ $b d\left(F\left(\mathscr{L}_{\lambda}\right)\right)$ and $\lim \overline{F\left(\mathscr{L}_{\lambda}\right)}=\left\{p_{0}\right\}$. Finally, $l\left(p_{0}\right)=0$ and p_{0} regular in F imply that $F\left(\mathscr{L}_{\lambda}\right)$ satisfies 3.7 for p_{λ} sufficiently close to p_{0}. Hence, $F\left(\mathscr{L}_{\lambda}\right) \cap E \neq \phi$ and $p_{0} \in \bar{E}$.
3.9. Theorem. If $l(F)>0$, then F contains hyperbolic points.

Proof. We note that $l(\beta)=0$ implies that $\beta \cap F$ contains an inflection point by 3.2. As $l(F)<\infty$, the set

$$
\mathscr{Q}=\{q \in F \mid q \text { is an inflection point }\}
$$

is infinite. If $q \in \mathscr{Q}$ and $l(q)=0$, then $q \in I \cup H$. Since $I \neq \phi$ implies that $\bar{E} \cap \bar{H} \neq \phi$ (and thus $E \neq \phi \neq H$) by 3.8, we obtain that $q \in I \cup H$ yields that $H \neq \phi$.

Suppose that $H=\phi$. Then $l(q)>0$ for each $q \in \mathscr{2}$ and there is an $L \subset F$ such that $L \cap 2$ is an infinite set.

Case 1. There is an $M \subset F$ such that $L \cap M=\phi$.
Let $q \in L \cap 2$. Then $\pi(q)=\left\langle L, T_{q}\right\rangle$ where $T_{q} \cap F=\{q\}$. As $\pi(q) \cap M \not \subset L$, this implies that either $\langle q, \pi(q) \cap M\rangle \subset F$ or $\pi(q) \cap F$ consists of L and an S^{1} where $\left|L \cap S^{1}\right|=2$ and $q \in L \cap S^{1}$. In the latter case, 3.6 clearly implies that $q \in \bar{H}$ and $H \neq \phi$; a contradiction. Thus $\langle q, \pi(q) \cap M\rangle \subset F$ for each $q \in L \cap 2$. Then $l(F)<$ ∞ implies that $|L \cap 2|<\infty$; a contradiction.

Case 2. Every $M \subset F$ meets L.
Clearly, there is a point $q_{1} \in \mathscr{Q} \backslash L$. Thus there is an $L_{1} \subset F$ such that $q_{1} \in L_{1}$ and $L_{1} \cap L$ is a point $v \neq q_{1}$.

If $M \subset F$ such that $M \cap L_{1}=\phi$, then $M_{1}=\left\langle q_{1}, \pi\left(q_{1}\right) \cap M\right\rangle \subset F$ by the preceding. Since $v \notin M_{1}$ and $M_{1} \cap L \neq \phi$, we obtain that $M_{1} \subset\left\langle L, L_{1}\right\rangle$. Then $\pi\left(q_{1}\right) \cap F=M_{1} \cup L_{1} \cup L$ where $M_{1} \cap L_{1} \cap L=\phi$ implies that $q_{1} \notin \mathscr{Q}$; a contradiction. Thus, every line in F passes through v.

Let $v \in \beta$. Then either $l(\beta)>0$ or $(l(\beta)=0, \beta \cap 2=\{v\}$ and) β contains an irregular point of F. Since F contains a finite number of lines and irregular points, this is a contradiction.
4. In each of the following examples, F contains exactly one irregular point v and one line L. Recall that $\tau(v)$ is the set of tangents of F at v.

Let P^{3} be suitably coordinatized.
The surface F defined by

$$
0=x_{0}^{3}-\left(x_{1}^{2}+x_{2}^{2}\right) x_{3} \quad\left(L \equiv x_{0}=x_{3}=0, v \equiv(0,0,0,1)\right)
$$

contains neither elliptic nor parabolic points. $\tau(v)$ is a line $T \equiv x_{1}=x_{2}=0$ and v is the cusp [isolated point] of $\beta \cap F$ if $T \subset \beta[\beta \cap T=\{v\}]$.

The surface F defined by

$$
0=x_{0}^{3}-\left(x_{1}^{2}+x_{2}^{2}-x_{0}^{2}\right) x_{3} \quad\left(L \equiv x_{0}=x_{3}=0, v \equiv(0,0,0,1)\right)
$$

contains elliptic but not parabolic points. $\tau(v)$ is a cone of order two with vertex v and $v \in T \subset \tau(v)$ if and only if $T \cap F=\{v\}$. If $\beta \cap \tau(v)=\{v\}$, then v is the isolated point of $\beta \cap F$; otherwise, v is the cusp or the double point of $\beta \cap F$. Finally, E and H are both connected with $\bar{E}=E \cup\{v\}$ and $\bar{H}=$ $H \cup L \cup\{v\}$.

The surface F defined by

$$
0=x_{0}^{3}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3} \quad\left(L \equiv x_{0}=x_{1}=0, v \equiv(0,0,0,1)\right)
$$

contains parabolic points, $\tau(v) \equiv x_{1}=0$ and $\beta \cap L=\{v\}$ implies that v is the cusp of $\beta \cap F$. In this case; $I=S^{1}(L, \bar{p}) \backslash\{v\}$ where $\bar{p} \equiv(0,1,0,0)$ or equivalently $I \equiv 0=x_{0}=x_{2}^{2}+x_{1} x_{3}, E$ is connected with $\bar{E}=E \cup I \cup\{v\}$ and $\bar{H}=H \cup I \cup L$.

References

1. T. Bisztriczky, Surfaces of order three with a peak. I., J. of Geometry, Vol. 22 (1) (1978), 55-83.
2. O. Haupt and H. Künneth, Geometrische Ordnungen, Springer-Verlag, Berlin, 1967.
3. A. Marchaud, Sur les surfaces du troisième ordre de la Géométrie finie, J. Math. Pur. Appl. 18, (1939), 323-362.
4. P. Scherk, Über differenzierbare Kurven und Bögen. I. Zum Begriff der Charakteristik, Časopis Pěst. Mat. 66 (1937), 165-171.

Department of Mathematics and Statistics
The University of Calgary, Calgary, Alberta. T2N 1N4

[^0]: Received by the editors March 2, 1978 and, in revised form, September 7, 1978.

