ON SURFACES OF ORDER THREE

BY

TIBOR BISZTRICZKY

A surface of order three F in the real projective three-space P^3 is met by every line, not in F, in at most three points.

In the present paper, we determine the existence and examine the distribution of elliptic, parabolic and hyperbolic points; that is, the differentiable points of F which do not lie on any line contained in F.

We define a topology of P^3 in the usual manner. We denote the planes, lines and points of P^3 by the letters $\alpha, \beta, \ldots; L, M, \ldots$; and p, q, \ldots respectively. For a collection of flats $\alpha, L, p, \ldots; \langle \alpha, L, p, \ldots \rangle$ denotes the flat of P^3 spanned by them. For a set $\mathcal{M}, \langle \mathcal{M} \rangle$ denotes the flat of P^3 spanned by the points of \mathcal{M} .

1. A (plane) curve Γ is the union of a finite collection of sets $C_{\lambda}(M)$ where the C_{λ} 's are continuous maps from a line $M = \{m, m', \ldots\}$ into a plane α . Let $p \in \alpha$. Then p is a simple [double] point of $C_{\lambda}(M)$ if the equation $p = C_{\lambda}(m)$ has exactly one solution [exactly two solutions] $m \in M$.

Let $C = C_{\lambda}$. The line $T_m = \lim \langle C(m), C(m') \rangle$, as $m' \neq m$ tends to m, is the tangent of C at m. Let C be differentiable; that is, T_m exists and $|T_m \cap C(M)| < \infty$ for every $m \in M$. We introduce (cf. [1] 1.3.3 and [4]) the characteristic of C at m and the multiplicity with which a line $L \subset \alpha$ meets C at m. Then C is of order n if n is the supremum of the number of points of M, counting multiplicities, mapped into collinear points by C.

If C is of order two [three], we denote C(M) by $S^1[F_*]$]. Every point of an S^1 is simple, an F_*^1 contains at most one double point and a simple point of F_*^1 is an ordinary, inflection or cusp point; cf. [1] 1.4 and [2]. If C(M) is a line [point], then C is considered to have order one [two].

 Γ is of order k if k is the supremum of the number of points of Γ , counting multiplicities on each C_{λ} , lying on any line not in Γ . If k = 1, then Γ is a straight line. If k = 2, then Γ is an S^1 or an isolated point or a pair of distinct lines. If k = 3, then Γ is (i) an F_*^1 plus possibly an S^1 or an isolated point either disjoint from F_*^1 or (ii) the union of a line and a Γ' of order two. We denote a Γ of order three satisfying (i) by F^1 .

2. A surface of order three F in P^3 is a compact and connected set such that every intersection of F with a plane is a curve of order ≤ 3 and some plane intersection is an F^1 .

Let F be a surface of order three; $p \in F$. Let α denote a plane through p.

Received by the editors March 2, 1978 and, in revised form, September 7, 1978.

351

Then p is regular in $F[\alpha \cap F]$ if there is a line N in $P^3[\alpha]$ such that $p \in N$ and $|N \cap F| = 3$; otherwise, p is irregular in $F[\alpha \cap F]$. If $\alpha \cap F$ is an F^1 , then there is at most one irregular point v in $\alpha \cap F$ and such a v is a cusp, double point or isolated point. Finally,

$$l(p, \alpha) = |\{L \subset \alpha \mid p \in L \subset F\}| \le l(\alpha) = |\{L \subset \alpha \mid L \subset F\}| \le 3.$$

A line T is a tangent of F at p if T is the tangent of some C_{λ} at $m; p = C_{\lambda}(m) \subset C_{\lambda}(M) \subset F$. Let $\tau(p)$ be the set of tangents of F at p. Then p is differentiable if p is regular in F and $\tau(p)$ is a plane $\pi(p)$; otherwise, p is singular.

Henceforth, we assume that every regular p in F is differentiable and $\pi(p)$ depends continuously on p.

Let p be differentiable. Then $p \in T \subset \pi(p)$ implies that either $T \subset F$ or $|T \cap F| \leq 2$. Thus $l(p) = |\{L \subset F \mid p \in L\}| = l(p, \pi(p))$ and p is irregular in $\pi(p) \cap F$. If l(p) = 0, then p is an isolated point, cusp or double point of $\pi(p) \cap F$ and we call p elliptic, parabolic or hyperbolic respectively.

Let \mathscr{F} be a closed connected subset of S^1 or F_*^1 . If the end points of \mathscr{F} are distinct [equal], then \mathscr{F} is a *subarc* [*subcurve*]. A subarc of F_*^1 , containing only ordinary points in its interior, is of order two.

Let p be regular in F. Let $\mathscr{F}(p)$ be the set of all subarcs \mathscr{F} of order two such that $p \in \mathscr{F} \not\subset \pi(p)$; $\{\mathscr{F}_1, \mathscr{F}_2\} \subset \mathscr{F}(p)$. Then \mathscr{F}_1 and \mathscr{F}_2 are p-compatible if there is a $\beta \subset P^3 \setminus \{p\}$ and an open neighbourhood U(p) of p in P^3 such that $U(p) \cap (\mathscr{F}_1 \cup \mathscr{F}_2)$ is contained in a closed half-space of P^3 bounded by $\pi(p)$ and β ; otherwise, \mathscr{F}_1 and \mathscr{F}_2 are p-incompatible.

A pair of subarcs \mathscr{F} and \mathscr{F}' are *compatible* [*incompatible*] if there is a $p \in \mathscr{F} \cap \mathscr{F}'$ such that $\{\mathscr{F}, \mathscr{F}'\} \subset \mathscr{F}(p)$ and \mathscr{F} and \mathscr{F}' are *p*-compatible [*p*-incompatible]. We consider a subcurve of order two as an element of $\mathscr{F}(p)$ if it contains a subarc \mathscr{F} such that $p \in \mathscr{F} \in \mathscr{F}(p)$.

3. We assume that F is non-ruled; that is, F is not generated by lines. Then $l(F) = |\{l \subset P^3 \mid L \subset F\}| < \infty$ and F contains at most four irregular points; cf. [3]. We denote by E, I and H: the set of elliptic, parabolic and hyperbolic points of F respectively. We shall prove that for any (non-ruled) $F: H \neq \phi, I \neq \phi$ implies that $E \neq \phi, E$ is open and I is nowhere dense in F.

By way of preparation, we have the following remarks:

3.1 Let $L \subset F$ and $p \in F \setminus L$ such that $\langle L, p \rangle \cap F$ consists of L and an S¹. We denote this S¹ by S¹(L, p).

3.2 If a plane section of F is of order two, then it consists of a pair of lines. ([1], 2.2.3.)

3.3 If p is regular in F and isolated in $\alpha \cap F$, then $p \in E$ and $\alpha = \pi(p)$. ([1], 2.3.7.)

3.4 Let p be regular in F, l(p) = 0. Then $p \in H$ if and only if there exist incompatible \mathscr{F} and \mathscr{F}' in $\mathscr{F}(p)$ with $p \in int(\mathscr{F}) \cap int(\mathscr{F}')$. ([1], 2.5.7)

3.5 Let $\mathscr{F}' \in \mathscr{F}(p)$ for each $p \in \mathscr{F}'$. Let $L \subset F$ such that $L \notin \langle \mathscr{F}' \rangle$ and $S^1(L, p) \in \mathscr{F}(p)$ for each $p \in \mathscr{F}'$. Then \mathscr{F}' and $S^1(L, p)$ are either compatible for all $p \in \mathscr{F}'$ or incompatible for all $p \in \mathscr{F}'$. ([1], 2.5.8.)

3.6 Let p_{λ} be a sequence converging to a differentiable p. If $p_{\lambda} \in I[E]$ for each λ , then l(p) = 0 implies that $p \in I[E \cup I]$ and $\pi(p) \cap F = L \cup S^1$ implies that $L \cap S^1 = \{p\}$. ([1], 2.4.6 and 2.4.9.)

3.7. LEMMA. Let G be an open region in F such that $\alpha_0 \cap \overline{G} = \phi$ for some α_0 , $bd(F \setminus G) = bd(G)$, $\langle bd(G) \rangle$ is a plane and each $p \in G$ is regular in F. Then $G \cap E \neq \phi$.

Proof. We note that any line in a plane $\langle F_*^1 \rangle$ meets F_*^1 and thus, any line in P^3 meets F by 3.2.

Let $p \in G$ and put $L = \alpha_0 \cap \langle bd(G) \rangle$. Then $L \cap \overline{G} = \phi$ implies that $L \cap (F \setminus \overline{G}) \neq \phi$ and $\langle L, p \rangle \cap G$ is an S^1 or an isolated point of $\langle L, p \rangle \cap F$. Obviously, $\alpha_0 \cap \overline{G} = \phi$ yields that there is a $p_0 \in G$ such that $\langle L, p_0 \rangle \cup G = \{p_0\}$. Then $p_0 \in E$ and $\pi(p_0) = \langle L, p_0 \rangle$ by 3.3.

We note that $\overline{E} \cap H = \phi$ and $\overline{I} \cap (E \cup H) = \phi$ by 3.6. It is clear that a limit of hyperbolic points may be parabolic but not elliptic. Thus, *E* is open in *F* and

 $\{p \in \overline{E} \cap \overline{H} \mid l(p) = 0 \text{ and } p \text{ is regular in } F\} \subseteq I.$

3.8. THEOREM. If l(F)>0, then I is nowhere dense in F and

 $I = \{ p \in \overline{E} \cap \overline{H} \mid l(p) = 0 \text{ and } p \text{ is regular in } F \}.$

Proof. Let $L \subset F$ and $p_0 \in I$. Then there is a $T \subset \pi(p_0)$ such that $T \cap F = \{p_0\}$. Let $T \subset \beta \neq \pi(p_0)$. Then $l(p_0) = 0$, $T \cap F = \{p_0\}$ and 3.2 imply that $\beta \cap F$ is an F^1 with p_0 as an inflection point. Thus there are \mathscr{F} and \mathscr{F}' in $\mathscr{F}(p_0)$ such that $\mathscr{F} \cup \mathscr{F}' \subset \beta$ and $\mathscr{F} \cap \mathscr{F}' = \{p_0\}$. We note that \mathscr{F} and \mathscr{F}' are incompatible and for p close to p_0 in $\mathscr{F} \cup \mathscr{F}'$, p is regular in F. Since $l(p_0) = 0$ and $T \cap L = \phi$, we may assume that l(p) = 0 and $(\beta \cap \pi(p)) \cap L = \phi$ for each $p \in \mathscr{F} \cup \mathscr{F}'$. Then $\langle L, p \rangle \cap F = L \cup S^1(L, p)$ for each $p \in \mathscr{F} \cup \mathscr{F}'$ by 3.3.

(i) Since \mathscr{F} and \mathscr{F}' are incompatible, $S^1(L, p_0) \in \mathscr{F}(p_0)$ implies that $S^1(L, p_0)$ and say \mathscr{F} are incompatible. By 3.5, $S^1(L, p)$ and \mathscr{F} are incompatible for each $p \in int(\mathscr{F})$. Thus $p_0 \in \overline{H}$ by 3.4.

(ii) Since $p_0 \in I$,

$$\pi(p_0) \cap F = \mathscr{F}_1 \cup \mathscr{F}_2$$

where $\mathscr{F}_1[\mathscr{F}_2]$ is a subarc of order two, $p_0 \in \mathscr{F}_1 \cap \mathscr{F}_2$ and $|\mathscr{F}_1 \cap \mathscr{F}_2| = 2$. Let p_{λ} in int(\mathscr{F}) converge to p_0 . Since $p_{\lambda} \in H$ for each λ ,

$$\pi(p_{\lambda}) \cap F = \mathscr{L}_{\lambda} \cup \mathscr{F}_{1,\lambda} \cup \mathscr{F}_{2,\lambda}$$

where \mathscr{L}_{λ} is a subcurve of order two, $\mathscr{F}_{1,\lambda}[\mathscr{F}_{2,\lambda}]$ is a subarc of order two, $\mathscr{L}_{\lambda} \cap (\mathscr{F}_{1,\lambda} \cup \mathscr{F}_{2,\lambda}) = \{p_{\lambda}\}, p_{\lambda} \in \mathscr{F}_{1,\lambda} \cap \mathscr{F}_{2,\lambda} \text{ and } |\mathscr{F}_{1,\lambda} \cap \mathscr{F}_{2,\lambda}| = 2.$ We note that as

1979]

 p_{λ} tends to p_0 ,

$$\lim \pi(p_{\lambda}) \cap F = \pi(p_0) \cap F$$

and $\lim \mathcal{L}_{\lambda}$ is a closed curve of order ≤ 2 . It is easy to check that

$$\lim \mathscr{L}_{\lambda} = \{p_0\} \quad \text{and} \quad \lim \mathscr{F}_{1,\lambda} \cup \mathscr{F}_{2,\lambda} = \mathscr{F}_1 \cup \mathscr{F}_2.$$

Since p_0 is parabolic, we can describe a sufficiently small neighbourhood of p_0 in F. In particular, it is easy to check that (for p_{λ} sufficiently close to p_0) \mathscr{L}_{λ} is the boundary of an open region $F(\mathscr{L}_{\lambda}) \subset F$ such that $bd(F \setminus F(\mathscr{F}_{\lambda})) = bd(F(\mathscr{L}_{\lambda}))$ and $\lim \overline{F(\mathscr{L}_{\lambda})} = \{p_0\}$. Finally, $l(p_0) = 0$ and p_0 regular in F imply that $F(\mathscr{L}_{\lambda})$ satisfies 3.7 for p_{λ} sufficiently close to p_0 . Hence, $F(\mathscr{L}_{\lambda}) \cap E \neq \phi$ and $p_0 \in \overline{E}$.

3.9. THEOREM. If l(F)>0, then F contains hyperbolic points.

Proof. We note that $l(\beta) = 0$ implies that $\beta \cap F$ contains an inflection point by 3.2. As $l(F) < \infty$, the set

 $\mathcal{Q} = \{q \in F \mid q \text{ is an inflection point}\}$

is infinite. If $q \in \mathcal{Q}$ and l(q) = 0, then $q \in I \cup H$. Since $I \neq \phi$ implies that $\overline{E} \cap \overline{H} \neq \phi$ (and thus $E \neq \phi \neq H$) by 3.8, we obtain that $q \in I \cup H$ yields that $H \neq \phi$.

Suppose that $H = \phi$. Then l(q) > 0 for each $q \in \mathcal{Q}$ and there is an $L \subset F$ such that $L \cap \mathcal{Q}$ is an infinite set.

CASE 1. There is an $M \subseteq F$ such that $L \cap M = \phi$.

Let $q \in L \cap \mathcal{Q}$. Then $\pi(q) = \langle L, T_q \rangle$ where $T_q \cap F = \{q\}$. As $\pi(q) \cap M \notin L$, this implies that either $\langle q, \pi(q) \cap M \rangle \subset F$ or $\pi(q) \cap F$ consists of L and an S^1 where $|L \cap S^1| = 2$ and $q \in L \cap S^1$. In the latter case, 3.6 clearly implies that $q \in \overline{H}$ and $H \neq \phi$; a contradiction. Thus $\langle q, \pi(q) \cap M \rangle \subset F$ for each $q \in L \cap \mathcal{Q}$. Then $l(F) < \infty$ implies that $|L \cap \mathcal{Q}| < \infty$; a contradiction.

CASE 2. Every $M \subseteq F$ meets L.

Clearly, there is a point $q_1 \in \mathcal{Q} \setminus L$. Thus there is an $L_1 \subset F$ such that $q_1 \in L_1$ and $L_1 \cap L$ is a point $v \neq q_1$.

If $M \subset F$ such that $M \cap L_1 = \phi$, then $M_1 = \langle q_1, \pi(q_1) \cap M \rangle \subset F$ by the preceding. Since $v \notin M_1$ and $M_1 \cap L \neq \phi$, we obtain that $M_1 \subset \langle L, L_1 \rangle$. Then $\pi(q_1) \cap F = M_1 \cup L_1 \cup L$ where $M_1 \cap L_1 \cap L = \phi$ implies that $q_1 \notin 2$; a contradiction. Thus, every line in F passes through v.

Let $v \in \beta$. Then either $l(\beta) > 0$ or $(l(\beta) = 0, \beta \cap \mathcal{Q} = \{v\}$ and) β contains an irregular point of *F*. Since *F* contains a finite number of lines and irregular points, this is a contradiction.

[September

4. In each of the following examples, F contains exactly one irregular point v and one line L. Recall that $\tau(v)$ is the set of tangents of F at v.

Let P^3 be suitably coordinatized.

The surface F defined by

$$0 = x_0^3 - (x_1^2 + x_2^2)x_3 \qquad (L \equiv x_0 = x_3 = 0, v \equiv (0, 0, 0, 1))$$

contains neither elliptic nor parabolic points. $\tau(v)$ is a line $T \equiv x_1 = x_2 = 0$ and v is the cusp [isolated point] of $\beta \cap F$ if $T \subset \beta[\beta \cap T = \{v\}]$.

The surface F defined by

$$0 = x_0^3 - (x_1^2 + x_2^2 - x_0^2)x_3 \qquad (L \equiv x_0 = x_3 = 0, v \equiv (0, 0, 0, 1))$$

contains elliptic but not parabolic points. $\tau(v)$ is a cone of order two with vertex v and $v \in T \subset \tau(v)$ if and only if $T \cap F = \{v\}$. If $\beta \cap \tau(v) = \{v\}$, then v is the isolated point of $\beta \cap F$; otherwise, v is the cusp or the double point of $\beta \cap F$. Finally, E and H are both connected with $\overline{E} = E \cup \{v\}$ and $\overline{H} = H \cup L \cup \{v\}$.

The surface F defined by

$$0 = x_0^3 + x_1 x_2^2 + x_1^2 x_3 \qquad (L \equiv x_0 = x_1 = 0, v \equiv (0, 0, 0, 1))$$

contains parabolic points, $\tau(v) \equiv x_1 = 0$ and $\beta \cap L = \{v\}$ implies that v is the cusp of $\beta \cap F$. In this case; $I = S^1(L, \bar{p}) \setminus \{v\}$ where $\bar{p} \equiv (0, 1, 0, 0)$ or equivalently $I \equiv 0 = x_0 = x_2^2 + x_1 x_3$, E is connected with $\bar{E} = E \cup I \cup \{v\}$ and $\bar{H} = H \cup I \cup L$.

REFERENCES

1. T. Bisztriczky, Surfaces of order three with a peak. I., J. of Geometry, Vol. 22 (1) (1978), 55-83.

2. O. Haupt and H. Künneth, Geometrische Ordnungen, Springer-Verlag, Berlin, 1967.

3. A. Marchaud, Sur les surfaces du troisième ordre de la Géométrie finie, J. Math. Pur. Appl. 18, (1939), 323-362.

4. P. Scherk, Über differenzierbare Kurven und Bögen. I. Zum Begriff der Charakteristik, Časopis Pěst. Mat. 66 (1937), 165–171.

DEPARTMENT OF MATHEMATICS AND STATISTICS THE UNIVERSITY OF CALGARY, CALGARY, ALBERTA. T2N 1N4

https://doi.org/10.4153/CMB-1979-044-5 Published online by Cambridge University Press