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Abstract. We continue the study of a mathematical model for a forest ecosystem
which has been presented by Y. A. Kuznetsov, M. Y. Antonovsky, V. N. Biktashev
and A. Aponina (A cross-diffusion model of forest boundary dynamics, J. Math.
Biol. 32 (1994), 219–232). In the preceding two papers (L. H. Chuan and A. Yagi,
Dynamical systemfor forest kinematic model, Adv. Math. Sci. Appl. 16 (2006), 393–
409; L. H. Chuan, T. Tsujikawa and A. Yagi, Aysmptotic behavior of solutions for forest
kinematic model, Funkcial. Ekvac. 49 (2006), 427–449), the present authors already
constructed a dynamical system and investigated asymptotic behaviour of trajectories
of the dynamical system. This paper is then devoted to studying not only the structure
(including stability and instability) of homogeneous stationary solutions but also the
existence of inhomogeneous stationary solutions. Especially it shall be shown that in
some cases, one can construct an infinite number of discontinuous stationary solutions.

2000 Mathematics Subject Classification. 35J60, 37L15, 37N25.

1. Introduction. Conservation of forest resources is one of the main subjects
in environmental issues. The fundamental problems in the theoretical studies of this
subject are to know the physical principles of growth for individual trees, trees in a
plot of forest and even all trees in a forest and to know mathematical structures for
these growing dynamics. Many researchers have already challenged these problems.
The work due to Botkin et al. [6] (cf. also [5]) may give the first and most basic model in
the forest kinematic models. In their papers, considering the Individual-Based Model
in a plot of forest (100–300 m2), they presented a growth equation of individual trees
which describes the growth of a tree per year by

�D2H = αL
(

1 − DH
DmaxHmax

)
.
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Here D denotes diameter of the tree at the breast height, H entire height of the tree
(so D2H describes a volume) and L width of foliate area. The constants Dmax and
Hmax are the possible maximum diameter and height, respectively, which the tree can
attain, and the coefficient α > 0 denotes various environmental conditions surrounding
the tree including the effect of interactions with other trees in the plot. After this
model, the Individual-Based Continuous Space Model was presented by Pacala
et al. [15, 16]. In the meantime, macroscopic forest models concerning with the age-
dependent tree relationship have been introduced by many authors, e.g., Antonovsky
[2] and Antonovsky and Korzukhin [3]. Such a model is called the Age-Structured
Model. In this paper, we are concerned with the Age-Structured Continuous Space
Model. Among others we consider a prototype model describing the growth of a
forest by age-dependent trees relationships and by regeneration processes, which was
proposed by Kuznetsov et al. [11].

They considered a mono-species ecosystem with only two age classes of trees,
the young age class and the old age class, and modelled the regeneration process by
seed production, seed dispersion and establishment of seeds. Their system of equations
reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= βδw − γ (v)u − f u in � × (0,∞),

∂v

∂t
= f u − hv in � × (0,∞),

∂w

∂t
= d�w − βw + αv in � × (0,∞),

∂w

∂n
= 0 on ∂� × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) in �.

(1.1)

Here, � is a two-dimensional bounded domain. The unknown functions u = u(x, t)
and v = v(x, t) denote the tree densities of young and old age classes, respectively,
at a position x ∈ � and at time t ∈ [0,∞). The third unknown function w = w(x, t)
denotes the density of seeds in the air at x ∈ � and t ∈ [0,∞). The third equation
describes the kinetics of seeds; d > 0 is a diffusion constant of seeds, and α > 0 and
β > 0 are seed production and seed deposition rates, respectively. While the first and
second equations describe the growth of young and old trees, respectively; 0 < δ � 1
is an establishment rate of seeds, f > 0 is an aging rate and h > 0 is a mortality of old
trees. And γ (v) > 0 is a mortality of young trees which is allowed to depend on the
old-tree density v and is expected to hit a minimum at a certain optimal value of v.

In the preceding two papers [7, 8], the authors have already studied this system
analytically. In [7], they constructed a dynamical system (S(t), K, X) determined from
the initial-boundary value problem (1.1). As the underlying space X , we set a space of
the form

X =
⎧⎨⎩

(u
v

w

)
; u ∈ L∞(�), v ∈ L∞(�), w ∈ L2(�)

⎫⎬⎭ . (1.2)

It is necessary to handle the first and second ordinary differential equations in the
Banach space L∞(�). Indeed, since γ (v)u contains a non-linear term like v2u (see
(1.4)), the Banach space to be chosen must enjoy a norm property ‖v2u‖ ≤ C‖v‖2‖u‖,
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namely, the space must be a Banach algebra. Moreover, even if the initial functions
u0, v0 and w0 are smooth, its solution (u, v, w) can tend to a discontinuous stationary
solution as t → ∞ (see [8, Section 6] and [13]). That is, the continuous function space
C(�) is not suitable. The phase space K consists of triplets of non-negative functions
of X , i.e.,

K =
⎧⎨⎩

(u
v

w

)
; 0 ≤ u ∈ L∞(�), 0 ≤ v ∈ L∞(�), 0 ≤ w ∈ L2(�)

⎫⎬⎭ (1.3)

(see [8, Remark 2.1]). The non-linear semigroup S(t) acts on K for 0 ≤ t < ∞. In
[8], the authors found a Lyapunov function and investigated asymptotic behaviour
of trajectories S(t)U0, U0 ∈ K . Since some S(t)U0 can converge to a discontinuous
stationary solution even if the initial value U0 ∈ K consists of smooth functions
and since if so the trajectory S(t)U0 has an empty ω-limit set in X , the dynamical
system (S(t), K, X) never enjoys any compact attractor in general. Due to this
reason we introduced three kinds of ω-limit sets for U0 ∈ K , i.e., ω(U0) ⊂ L2-ω(U0) ⊂
w∗-ω(U0) 
= ∅, here ω(U0) denotes the usual one (see [4, 17]), L2-ω(U0) is an ω-limit set
with respect to the L2 topology and w∗-ω(U0) is that with respect to the weak∗ topology
of L∞(�). And we proved by utilizing the Lyapunov function that L2-ω(U0) consists
of stationary solutions only. So, roughly speaking, every trajectory S(t)U0, U0 ∈ K
converges asymptotically to some stationary solution of (1.1).

In the next stage of researches, we are led to study the structure of stationary
solutions of (1.1). In this paper, we first seek homogeneous stationary solutions and
investigate their stability and instability. Secondly, we seek inhomogeneous stationary
solutions. The structure depends on the parameter h drastically. In fact, when 0 <

h < (f αδ)/(ab2 + c + f ), where a, b and c are positive constants contained in γ (v) (see
(1.4)), it is shown that there exist two homogeneous stationary solutions P+ (which
is non-zero solution) and the zero solution O = (0, 0, 0) and that P+ is stable and O
is unstable. This means that in this case any forest starting from a non-zero initial
state holds alive. In the meantime, when (f αδ)/(c + f ) < h < ∞, the zero solution O
is a unique stationary solution and is globally stable, that is, every forest is going
to vanish asymptotically. When f αδ

ab2+c+f < h <
f αδ

c+f , there exist three homogeneous
stationary solutions P± (which are non-zero) and the zero solution O; here, P+ and
O are stable meanwhile P− is unstable (see Figure 1). This means that some forests
can hold alive and others are going to vanish. What is more interesting is that, in
this case, there exist many inhomogeneous stationary solutions. Especially when a
and b are sufficiently large (see Remark 3.2), one can construct an infinite number of
discontinuous stationary solutions (u, v, w)’s, u, v ∈ L∞(�) being discontinuous and
w ∈ H2(�) being continuous.

Such a discontinuous stationary solution is very important in the view point
of forestry also (see [11]). The interface of discontinuity of a stationary solution is
considered as an internal and proper forest boundary, which is called an ecotone.
So we can re-create the ecotone of forest by using the prototype model (1.1). Many
interesting problems concerning discontinuous stationary solutions, however, remain
to be solved. For example, we have no rigorous argument on their stability or instability,
and do not know how many discontinuous solutions exist. It seems very hard to say how
the interface is determined from the parameters in the parabolic-ordinary system (1.1).
Only some numerical evidences suggest that the structure of discontinuous stationary

https://doi.org/10.1017/S0017089508004485 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004485


4 LE HUY CHUAN, TOHRU TSUJIKAWA AND ATSUSHI YAGI

Figure 1. Homogeneous stationary solutions.

solutions might be immensely complicated. In [8, Section 6] we found an example
having a symmetric and smooth interface of discontinuity. On the other hand, we shall
find in this paper an example which has an irregular and non smooth interface .

Throughout the paper, � is a C2 or convex, bounded domain in �2. But, in
Section 3, � will be a rectangular domain. We assume as in the paper [11] that the
function γ (v) is given by a quadratic function

γ (v) = a(v − b)2 + c, (1.4)

where a, b, c > 0 are all positive constants.

2. Homogeneous stationary solutions.

2.1. Structure of homogeneous stationary solutions. Let (u, v, w) be a non-
negative homogeneous stationary solution of system (1.1). Then u ≥ 0, v ≥ 0 and
w ≥ 0 satisfy the system of equations⎧⎪⎨⎪⎩

βδw − γ (v)u − f u = 0,

f u − hv = 0,

−βw + αv = 0.

(2.1)

Clearly, this system is reduced to{
w = Q(v) ≡ h

fβδ
{γ (v) + f }v,

w = mv ≡ α
β
v,

(2.2)

where Q denotes a cubic function and m = α
β

is a gradient of linear curve (see Figure 2).
So, the structure of non-negative solutions to (2.2), and hence (2.1), is described by

(1) When 0 < h ≤ f αδ

ab2+c+f , (2.1) has two solutions O = (0, 0, 0) and

P+ = ( h
f (b + √

D ), b + √
D, α

β
(b + √

D )), where D = f αδ−(c+f )h
ah ;

(2) When f αδ

ab2+c+f < h <
f αδ

c+f , (2.1) has three solutions O = (0, 0, 0) and

P± = ( h
f (b ± √

D ), b ± √
D, α

β
(b ± √

D )), where D is as in (1);
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Figure 2. Graphs of w = Q(v) and w = mv.

(3) When h = f αδ

c+f , (2.1) has two solutions O = (0, 0, 0) and P = P± = ( bh
f , b, αb

β
);

(4) When f αδ

c+f < h < ∞, (2.1) has a unique solution O = (0, 0, 0).

2.2. Stability and instability of homogeneous stationary solutions. Let P =
(u, v, w) be one of the three homogeneous stationary solutions O, P+ and P−. We now
study its stability or instability. For this purpose, we will localize problem (1.1) in a
neighbourhood of P and extend the phase space K of the dynamical system (S(t), K, X)
determined from (1.1) to a suitable one containing complex-valued functions in the
neighbourhood. And we will apply the general strategy announced in the Appendix
for the complexified dynamical system to construct the stable and unstable manifolds
in the neighbourhood.

We introduce three cutoff functions χu(λ), χv(λ) and χw(λ) defined on the complex
plane � as follows: χu(λ) = λ for λ : |λ − u| < 1, χu(λ) vanishes for λ : |λ − u| > 2, and
χu(λ) is a smooth function in the real variables λ′ and λ′′ such that λ = λ′ + iλ′′. It is
similar for the definitions of χv(λ) and χw(λ).

The localized problem is then written in the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂t

= βδχw(w) − γ (χv(v))χu(u) − f u in � × (0,∞),

∂v

∂t
= f χu(u) − hv in � × (0,∞),

∂w

∂t
= d�w − βw + αχv(v) in � × (0,∞),

∂w

∂n
= 0 on ∂� × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) in �.

(2.3)

We can handle this localized problem in a quite analogous way as for the original
one. In fact, as before, the problem (2.3) is formulated as the Cauchy problem for an
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abstract evolution equation⎧⎨⎩
dU
dt

+ AU = F̃(U), 0 < t ≤ ∞,

U(0) = U0

(2.4)

in the function space X (see (1.2)). Here, the linear operator A is defined by

A =
⎛⎝f 0 0

0 h 0
0 0 �

⎞⎠ with D(A) =
⎧⎨⎩

⎛⎝u
v

w

⎞⎠ ; u, v ∈ L∞(�) and w ∈ H2
N(�)

⎫⎬⎭ ,

where � is realization of Laplace operator −d� + β in L2(�) under Neumann
boundary conditions on the boundary ∂� (see [9, Chapter VI]). It is known that
� is a positive definite self-adjoint operator of L2(�) with (see [10, 12, 18])

D(�θ ) =

⎧⎪⎨⎪⎩
H2θ (�) when 0 ≤ θ <

3
4
,

H2θ
N (�) = {u ∈ H2θ (�);

∂u
∂n

= 0on∂�} when
3
4

< θ ≤ 1.

It is clear that A is sectorial operator with angle less than π
2 . Moreover, for 0 ≤ θ ≤ 1,

θ 
= 3
4 ,

Aθ =
⎛⎝ f θ 0 0

0 hθ 0
0 0 �θ

⎞⎠ with D(Aθ ) =
⎧⎨⎩

⎛⎝ u
v

w

⎞⎠ ; u, v ∈ L∞(�) and w ∈ D(�θ )

⎫⎬⎭ .

The non-linear operator F̃ is given by

F̃(U) =
⎛⎝βδχw(w) − γ (χv(v))χu(u)

f χu(u)
αχv(v)

⎞⎠ , U =
⎛⎝ u

v

w

⎞⎠ ∈ D(Aη),

where η is an arbitrarily fixed exponent such that 1
2 < η < 1. Initial value U0 is taken

from D(Aμ) with 1
2 < μ < η.

Since χu(u), χv(v) and χw(w) are uniformly bounded, we can repeat the same
arguments as in [7] (cf. also [14]) to construct local and global solutions for every
initial value U0 from D(Aμ) in the function space

U ∈ C([0,∞); D(Aμ)) ∩ C1((0,∞); X) ∩ C((0,∞); D(A)).

Therefore, the localized problem (2.3) defines a semigroup S̃(t) acting on

Dμ = D(Aμ),
1
2

< μ < η < 1.

Since the similar Lipschitz continuity of solutions as in [7, Proposition 5.3] is also valid,
the problem (2.3) defines a dynamical system (̃S(t),Dμ,Dμ) in the universal space Dμ

with a whole phase space Dμ.
As 1

2 < μ < 1, we have Dμ ⊂ �∞(�) ≡ L∞(�) × L∞(�) × L∞(�). Then, in a
suitable neighbourhood of P in Dμ, any solution of the original problem (1.1) is

https://doi.org/10.1017/S0017089508004485 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004485


STATIONARY SOLUTIONS TO FOREST KINEMATIC MODEL 7

a solution of (2.3). In other words, in such a neighbourhood, any trajectory of
(S(t),Kμ,Dμ), where Kμ = K ∩ Dμ, is that of (̃S(t),Dμ,Dμ); conversely, any non-
negative trajectory of (̃S(t),Dμ,Dμ) in the neighbourhood is that of (S(t),Kμ,Dμ).
Clearly, P is an equilibrium of (̃S(t),Dμ,Dμ) also. Furthermore, we notice that, if P is
stable as an equilibrium of (̃S(t),Dμ,Dμ), then it is the same as that of (S(t),Kμ,Dμ).
However, we cannot say that, even if P is unstable in (̃S(t),Dμ,Dμ), it is the same
as that of (S(t),Kμ,Dμ). Nevertheless, instability of P in (̃S(t),Dμ,Dμ) provides
crucial information concerning the behaviour of trajectories of the original system
(S(t),Kμ,Dμ) in the neighbourhood of P, for, as the Theorem A.1 shows, the unstable
manifold of P in (̃S(t),Dμ,Dμ) is tangential at P to a subspace of the form P + X+,
where X+ is a linear subspace of X having a basis consisting of real functions. For the
details, see the proofs of Theorems 2.2 and 2.4.

Our goal is therefore to apply Theorem A.2 to the localized problem (2.4). Let us
first verify Fréchet differentiability of S̃(t) in a neighbourhood of P. In a neighbourhood
of P in D(Aη) ⊂ D(Aμ) ⊂ �∞(�), F̃ is Fréchet differentiable with the derivative

F̃ ′(U) =
⎛⎝−γ (v) −γ ′(v)u βδ

f 0 0
0 α 0

⎞⎠ , U ∈ BD(Aη)(P, r).

By a direct calculation the derivative F ′(U) is seen to fulfill the assumptions (A.4) and
(A.5) of Theorem A.2. Hence, by Theorem A.2, the semigroup S̃(t) is also Fréchet
differentiable in a neighbourhood. In particular, the Fréchet derivative of S̃(t) at P is
given by S̃′(t)P = e−tA, where e−tA is an analytic semigroup on X generated by

A = A − F̃ ′(P) =
⎛⎝M N −βδ

−f h 0
0 −α �

⎞⎠ , (2.5)

where M = γ (v) + f and N = 2au(v − b).
Let us next verify the hyperbolicity of P, namely, let us verify the condition (A.2).

As Theorem A.2 shows again, it is sufficient to verify that

σ (A) ∩ {λ ∈ �; Reλ = 0} = ∅.

To this end, let us consider a proper value problem

(λ − A)

⎛⎝u
v

w

⎞⎠ =
⎛⎝ p

q
r

⎞⎠ ,

or equivalently ⎧⎨⎩
(λ − M)u − Nv + βδw = p,

f u + (λ − h)v = q,

αv + (λ − �)w = r

for (u, v, w) ∈ D(A) = D(A), (p, q, r) ∈ X and λ ∈ �. It then follows that

{[(λ − M)(λ − h) + Nf ](λ − �) + f αβδ}w
= f αp − α(λ − M)q + [(λ − M)(λ − h) + Nf ]r.
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If λ is a solution to the quadratic equation

(λ − M)(λ − h) + Nf = 0, (2.6)

then w cannot belong to H2(�) in general, i.e., λ ∈ σ (A). Now, let λ do not satisfy
(2.6), then λ ∈ σ (A) if and only if λ + f αβδ

(λ−M)(λ−h)+Nf ∈ σ (�). In other words, λ ∈ σ (A)
if and only if λ is a solution to one of the following cubic equations:

[(λ − M)(λ − h) + Nf ](λ − dμn − β) + f αβδ = 0, (2.7)

where

0 = μ0 < μ1 ≤ μ2 ≤ · · · → ∞

are the infinite number of eigenvalues of the Laplace operator −� in L2(�) equipped
with the Neumann boundary conditions.

Thus, we arrive at the following general result.

THEOREM 2.1. The homogeneous stationary solutions P is a hyperbolic equilibrium
if and only if Mh + Nf 
= 0 and (Mh + Nf )(dμn + β) − f αβδ 
= 0 for n = 0, 1, 2, . . . .

Proof. Necessity is trivial because if Mh + Nf = 0 or (Mh + Nf )(dμn + β) −
f αβδ = 0 with some μn then λ = 0 is an eigenvalue of A.

For sufficiency, let Mh + Nf 
= 0 and (Mh + Nf )(dμn + β) − f αβδ 
= 0 for n =
0, 1, 2, . . .. It is easy to see that equation (2.6) has no imaginary solution. Assume that
λ = iy, y ∈ � is a solution of (2.7) with μn = μn0 . Then, by direct calculation, we get
y 
= 0 and {

y2 = (M + h)(dμn0 + β) + Mh + Nf,
y2(M + h + dμn0 + β) = (Mh + Nf )(dμn0 + β) − f αβδ.

But this system has no solution for every μn0 ≥ 0, which is a contradiction to the
assumption. �

From now let us consider the particular cases.
Case 1. P = O. In this the case, we have M = ab2 + c + f and N = 0.

THEOREM 2.2. (i) Let 0 < h <
f αδ

ab2+c+f and let the conditions

μn 
= β{f αδ − (ab2 + c + f )h}
(ab2 + c + f )hd

, n = 0, 1, 2, . . .

be satisfied. Then, O is an unstable equilibrium of (̃S(t),Dμ,Dμ).
(ii) Let f αδ

ab2+c+f < h < ∞. Then O is an exponentially stable equilibrium of
(̃S(t),Dμ,Dμ).

Proof. (i) By using Theorem 2.1, we obtain that O is a hyperbolic equilibrium.
It is now suffices to verify that S̃(t)′O has spectra in the region {λ ∈ �; |λ| > 1} or
equivalently σ (A) ∩ {λ ∈ �; Reλ < 0} 
= ∅. By virtue of Routh–Hurwitz theorem, we
verify that, for μn satisfying μn >

β{f αδ−(ab2+c+f )h}
(ab2+c+f )hd , equation (2.7) has all solutions in

the region {λ ∈ �; Reλ > 0}. In addition, for 0 ≤ μn <
β{f αδ−(ab2+c+f )h}

(ab2+c+f )hd , equation (2.7)
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has a negative real solution λn, namely,

λn ∈ σ−(A) = σ (A) ∩ {λ ∈ �; Reλ < 0}.
Let X− denotes the subspace of Dμ corresponding to the spectral set σ−(A). Then, there
exists a smooth unstable manifold M+(O) with dimension dim X− which is tangential
to the subspace X− at O. More precisely, σ−(A) consists of finite number of eigenvalues
and the space X− corresponding to σ−(A) is a finite-dimensional subspace spanned by
vectors of the form⎛⎝ βδ(h − λn)

fβδ

(ab2 + c + f − λn)(h − λn)

⎞⎠ φn, 0 ≤ μn <
β{f αδ − (ab2 + c + f )h}

(ab2 + c + f )hd
,

where φn denotes a real eigenfunction of −� corresponding to the eigenvalue μn.
(ii) In this case, we verify by Routh–Hurwitz theorem that all equations in (2.6)

and (2.7) have all their solutions in the region {λ ∈ �; Reλ > 0}. Therefore, O is
exponentially stable equilibrium of (̃S(t),Dμ,Dμ). �

Case 2. P = P+. In this the case, we have M = f αδ

h and N = 2ah
f (D + b

√
D ). Then,

by Routh–Hurwitz theorem, we observe that all equations in (2.6) and (2.7) have all
their solutions in the region {λ ∈ �; Reλ > 0}, which implies that P+ is exponentially
stable equilibrium of (̃S(t),Dμ,Dμ).

THEOREM 2.3. Let 0 < h <
f αδ

c+f . Then, P+ is an exponentially stable equilibrium of
(̃S(t),Dμ,Dμ).

Case 3. P = P−. In this the case, we have M = f αδ

h and N = 2ah
f (D − b

√
D ) < 0.

THEOREM 2.4. (i) Let Mh + Nf > 0 and let the conditions

μn 
= β

d

(
f αδ

Mh + Nf
− 1

)
, n = 0, 1, 2, . . .

be satisfied. Then, P− is an unstable equilibrium of (̃S(t),Dμ,Dμ).
(ii) Let Mh + Nf < 0, then P− is an unstable equilibrium of (̃S(t),Dμ,Dμ).

Proof. (i) In view of Theorem 2.1, we have P− as a hyperbolic equilibrium. By virtue
of Routh–Hurwitz theorem, for μn satisfying μn >

β

d ( f αδ

Mh+Nf − 1), all solutions of equa-

tion (2.7) lie in the region {λ ∈ �; Reλ > 0}. In addition, for 0 ≤ μn <
β

d ( f αδ

Mh+Nf − 1),
equation (2.7) has a negative real solution λn, namely,

λn ∈ σ−(A) = σ (A) ∩ {λ ∈ �; Reλ < 0}.
Let X− denote the subspace of Dμ corresponding to the spectral subset σ−(A). Then,
there exists a smooth unstable manifold M+(P−) with dimension dim X− which is
tangential to P− + X− at P−. The space X− contains at least vectors of the form⎛⎝ βδ(h − λn)

fβδ

(M − λn)(h − λn) + Nf

⎞⎠ φn, 0 ≤ μn <
β

d

(
f αδ

Mh + Nf
− 1

)
,

where φn denotes a real eigenfunction of −� corresponding to the eigenvalue μn.
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(ii) In view of Theorem 2.1, we see that P− is a hyperbolic equilibrium. In addition,
we verify that every cubic equation in (2.7) has a negative real solution λn, namely, λn ∈
σ (A) ∩ {λ ∈ �; Reλ < 0} for all n. Therefore, in this case, there exists a smooth unstable
manifold M+(P−) with dimension dim X− = ∞ which is tangential to P− + X− at P−.
The space X− contains an infinite number of vectors of the form⎛⎝ βδ(h − λn)

fβδ

(M − λn)(h − λn) + Nf

⎞⎠ φn, n = 0, 1, 2, . . . .

�
REMARK 2.5. The condition Mh + Nf < 0 is equivalent to ab2 > 3(c + f ) and

f αδ
{
ab2 + 3(c + f ) −

√
ab2[ab2 − 3(c + f )]

}
2(c + f )(ab2 + c + f )

< h

<
f αδ

{
ab2 + 3(c + f ) +

√
ab2[ab2 − 3(c + f )]

}
2(c + f )(ab2 + c + f )

.

2.3. Non-existence of inhomogeneous stationary solutions. In this subsection, we
will show that in some cases, there is no non-negative stationary solution other than
homogeneous ones.

THEOREM 2.6. Let f αδ

c+f < h < ∞. If U ∈ D(A) is a non-negative stationary solution
of (1.1), then U necessarily coincides with the zero solution O.

Proof. Let U = (u, v, w) be any non-negative stationary solution. Then, v and w

satisfy the following elliptic-algebraic system⎧⎨⎩
w = Q(v) in �,

d�w − βw = −αv in �,
∂w
∂n = 0 on ∂�.

(2.8)

Since the linear curve in (2.2) lies under the graph of the cubic curve for v,w ≥ 0,
the first equation of (2.8) implies that w(x) ≥ mv(x) for almost all x ∈ �, that is,
βw − αv ≥ 0 for almost all x ∈ �. On the other hand,

∫
�
{βw − αv}dx = d

∫
�

�wdx =
0. Therefore, βw − αv = 0 and hence �w = 0 for almost all x ∈ �. Furthermore, it
follows that

∫
�

|∇w|2dx = − ∫
�

�w wdx = 0 and that w is a constant. �
In the one-dimensional case, we can show the similar result for the case when

0 < h <
f αδ

ab2+c+f .

THEOREM 2.7. Let � = (0, �) and let 0 < h <
f αδ

ab2+c+f . If U ∈ D(A) is a non-negative
stationary solution of (1.1), then U necessarily coincides with one of the homogeneous
stationary solutions O and P+.

Proof. Let U = (u, v, w) be any non-negative stationary solution. Put

w(x1) = max
x∈[0,�]

w(x) ≡ w1.
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Then, we have w′(x1) = 0. Indeed, it is clear if x1 ∈ (0, �). In the case when x1 = 0 or
x1 = �, this follows from the Neumann boundary conditions.

Furthermore, we can deduce that the value w1 satisfies w1 ≤ m(b + √
D). In fact,

assume that w1 > m(b + √
D). Then, since w(x) is a continuous function of x ∈ [0, �]

and since the values (v(x), w(x)) lie on the cubic curve in (2.2), there exists a number ε >

0 and a neighbourhood of x1 in [0, �] in which w(x) ≥ mv(x) + ε is valid. Consequently,
w′′(x) = β

d {w(x) − mv(x)} ≥ βε

d in the neighbourhood of x1. Furthermore, since

w(x) = w(x1) + w′(x1)(x − x1) +
∫ x

x1

(x − y)w′′(y)dy,

it follows that w(x) ≥ w1 + βε

2d (x − x1)2 for all x in the neighbourhood. This is
obviously a contradiction.

Since 0 ≤ w(x) ≤ w1 ≤ m(b + √
D ), and since the values (v(x), w(x)) lie on the

cubic curve, we observe that w(x) ≤ mv(x), that is, βw − αv ≤ 0 for almost all x ∈
(0, �). Then, by the same argument as in proof of Theorem 2.6, we conclude that w is
constant. �

In the two-dimensional case, if we add assumptions that � is a C2 domain and
w ∈ C2(�), then we can repeat the same argument as in the proof of Theorem 2.7 to
prove the following result.

THEOREM 2.8. Let � be C2 domain in �2 and let 0 < h <
f αδ

ab2+c+f . Let U ∈ D(A) is a
non-negative stationary solution of (1.1) with w ∈ C2(�). Then, U necessarily coincides
with one of the homogeneous stationary solutions O and P+.

3. Discontinuous stationary solutions. In this section, we intend to construct
discontinuous stationary solutions of (1.1) which is obviously the solutions of (2.8).

We assume that � is a rectangular domain in �2 and that the coefficients satisfy the
relations f αδ

ab2+c+f < h <
f αδ

c+f and ab2 > 3(c + f ). We already know that, when 0 < h <

f αδ

ab2+c+f or f αδ

c+f < h < ∞, one cannot expect existence of any inhomogeneous stationary

solution (cf. Theorems 2.6–2.8). In addition, when ab2 ≤ 3(c + f ), we have Q′(v) ≥
0 and therefore Q(v) is monotone increasing. Hence v = Q−1(w) is a single-valued
continuous function for −∞ < w < ∞ and (2.8) has no discontinuous solutions.

So, let the two relations f αδ

ab2+c+f < h <
f αδ

c+f and ab2 > 3(c + f ) be satisfied. Then,
there exists the homogeneous stationary solution P− = (u−, v−, w−) as defined in
Section 2. In addition, the equation Q′(v) = 0 has two positive solutions 0 < v1 <

v2 < ∞. We here set the two more points v′
1 > v1 and v′

2 < v2 in such a way that
Q(v′

1) = Q(v1) and Q(v′
2) = Q(v2), respectively. It is then clear that 0 < v′

2 < v1 < v2 <

v′
1 < ∞ (see Figure 2). We now make a basic assumption

v′
2 < v− < v′

1. (3.1)

Under this assumption, we take two points (V+, W+) and (V−, W−) on the cubic
curve w = Q(v) in the (v,w)-plane which satisfy the following conditions: (1) Q(v2) <

W+ = W− < Q(v1); (2) W+ > mV+ and W− < mV−, respectively and (3) v′
2 < V+ <

v′
− < V− < v′

1. Remember that v− was obtained as the intersection point of the cubic
curve and the linear curve w = mv.
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Let W0 = W± and let [W0 − ω, W0 + ω] be a sufficiently small neighbourhood of
W0 in the w-axis such that one can define single-valued smooth branches v = Q−1

± (w)
for w ∈ [W0 − ω, W0 + ω] of the multi-valued function v = Q−1(w) such that V+ =
Q−1

+ (W0) and V− = Q−1
− (W0). In addition, let w − mQ−1

+ (w) ≥ ε and w − mQ−1
− (w) ≤

−ε for w ∈ [W0 − ω, W0 + ω], respectively, with a suitable constant ε > 0.
We now introduce the Cauchy problem for some ordinary differential equation{

dw′′ = β{w − mQ−1
− (w)}, 0 ≤ x < ∞,

w(0) = W0, w′(0) = ν > 0.
(3.2)

For each number ν0 > 0, there exists an interval [0, �] (� > 0) of x such that, for any
initial differential quotient ν ∈ (0, ν0], (3.2) has a unique solution wν at least on the
fixed interval [0, �]. For such a solution wν , we see that

w′
ν(x) = w′

ν(0) +
∫ x

0
w′′

ν (τ )dτ < ν − βεx
d

, 0 ≤ x ≤ �.

Therefore, if 0 < ν ≤ βε�

d , then each wν has a unique point x = �ν ≤ � such that
w′

ν(�ν) = 0 and w′
ν(x) > 0 for 0 ≤ x < �ν .

LEMMA 3.1. The point �ν is continuous for 0 < ν ≤ βε�

d and lim
ν→0

�ν = 0.

Proof. Let z = w′
ν . Then, x ∈ [0, �ν ] and z = w′

ν(x) ∈ [0, ν] have one to one
correspondence. In addition, �ν is given by the formula

�ν − 0 =
∫ 0

ν

dx
dz

dz = −
∫ ν

0

1
w′′

ν

dz = −
∫ ν

0

d

β{wν − mQ−1
− (wν)}dz.

Meanwhile, since

dwν

dz
= dwν

dx

/ dz
dx

= zd

β{wν − mQ−1
− (wν)} ,

it follows that

z
dz

dwν

= β

d

{
wν − mQ−1

− (wν)
}
.

By integration,

�(wν) = 1
2

(z2 − ν2), where �(wν) =
∫ wν

W0

β

d
{wν − mQ−1

− (wν)}dwν.

Therefore, we obtain the formula

�ν = −
∫ ν

0

d

β
{
�−1

[ 1
2 (z2 − ν2)

] − mQ−1
−

(
�−1

[ 1
2 (z2 − ν2)

])}dz.

This shows that �ν depends on ν continuously. �
Similarly, we consider the backward Cauchy problem{

dw′′ = β{w − mQ−1
+ (w)}, −∞ < x ≤ 0,

w(0) = W0, w′(0) = ν > 0.
(3.3)
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Then, for each number ν0 > 0, there exists an interval [−�′, 0] (�′ > 0) of x such that, for
any ν ∈ (0, ν0], (3.3) has a unique solution wν at least on the fixed interval [−�′, 0]. We
can similarly verify that if 0 < ν ≤ βε�′

d then each wν has a unique point x = −�′
ν ≥ −�′

such that w′
ν(−�′

ν) = 0 and w′
ν(x) > 0 for −�′

ν < x ≤ 0. Furthermore, by the same proof
as for Lemma 3.1, we see that �′

ν is continuous for 0 < ν ≤ βε�′
d and lim

ν→0
�′

ν = 0.

Joining these two solutions, we accomplish construction of the discontinuous
stationary solution. Indeed, take a ν so that 0 < ν ≤ min{ βε�

d ,
βε�′

d } and consider a
rectangular domain � = (−�′

ν, �ν) × Iy, where Iy is any bounded open interval for the
variable y. Let w(x, y) = wν(x) for (x, y) ∈ � and v(x, y) = Q−1

+ (wν(x)) for (x, y) ∈
(−�′

ν, 0] × Iy and v(x, y) = Q−1
− (wν(x)) for (x, y) ∈ (0, �ν) × Iy. It is then easily verified

that the pair of functions v(x, y) and w(x, y) is certainly a solution of (2.8).
Let now Ix be any bounded open interval for the variable x and let � = Ix × Iy.

Since �ν + �′
ν is continuous for 0 < ν ≤ min{ βε�

d ,
βε�′

d } and lim
ν→0

(�ν + �′
ν) = 0, there exists

an integer n and a suitable ν such that |Ix| = n(�ν + �′
ν). We already know existence

of discontinuous solution to (2.8) in the domain (−�′
ν, �ν) × Iy. Then, by reflexion, we

can construct a discontinuous solution in the domain Ix × Iy also.
In this way, when f αδ

ab2+c+f < h <
f αδ

c+f and ab2 > 3(c + f ) and (3.1) is satisfied, we
have shown that, in any rectangular domain �, there exists an infinite number of
discontinuous stationary solutions to (1.1).

REMARK 3.2. (i) In the case when 3(c + f ) < ab2 ≤ 4(c + f ), condition (3.1) is
equivalent to

9f αδ

5ab2 − 3(c + f ) + 4
√

ab2[ab2 − 3(c + f )]
< h

<
9f αδ

5ab2 − 3(c + f ) − 4
√

ab2[ab2 − 3(c + f )]
.

(ii) In the case when ab2 > 4(c + f ), condition (3.1) is equivalent to

9f αδ

5ab2 − 3(c + f ) + 4
√

ab2[ab2 − 3(c + f )]
< h <

f αδ

c + f
.

4. Numerical results. We shall present some numerical examples. The coefficients
are taken as α = β = 1.0, δ = 0.1, f = 1.0, h = 0.04, a = 1.0, b = 3.0, c = 0.2 and
d = 0.05. Initial functions u0 and w0 are given by u0 ≡ w0 ≡ 0, on the other hand,
v0 is constructed randomly as in Figure 3(a) in the square domain � = [0, 5] × [0, 5].
We performed numerical computations for sufficiently large time until the graph of
solution and the values of Lyapunov function are stabilized numerically. The graph
of v at t = 200, 000 in Figure 3(b) has a clear interface of discontinuity. However, the
interface seems to be described by an irregular and non-smooth curve.

Appendix We shall review some known results for the stable and unstable
manifolds of the dynamical system.

Let (S(t), X, X) be a continuous dynamical system in a complex Banach space X
and let U ∈ X be an equilibrium of (S(t), X, X). Then the stable and unstable manifolds
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Figure 3. Interface of discontinuity.

at U are defined by

M−(U) = {U0 ∈ X ; lim
t→∞ S(t)U0 = U},

M+(U) = {U0 ∈ X ; ∃U : (−∞, 0] → X, S(t)U(−τ ) = U(t − τ ) for 0 ≤ t ≤ τ,

U(0) = U0 and lim
t→∞ U(−t) = U},

respectively. From these definitions, it is easily verified that M−(U) and M+(U) are
invariant sets of S(t) for any t > 0; in particular, S(t) maps M+(U) onto itself, i.e.,

S(t)(M−(U)) ⊂ M−(U) and S(t)(M+(U)) = M+(U).

Fix any finite time 0 < t∗ < ∞. We obviously have a discrete dynamical system
(Sn, X, X), where S = S(t∗). In an analogous way, the stable and unstable manifolds at
U are defined by

W−(U) = {U0 ∈ X ; lim
n→∞ SnU0 = U},

W+(U) = {U0 ∈ X ; ∃{U−n}n=1,2,... ⊂ X,

SU−n = U−n+1 for n ≥ 1 and lim
n→∞ U−n = U}.

Let O be any neighbourhood of U . We also consider the localized stable and unstable
manifolds in O

W−(U ; O) = {U0 ∈ O; SnU0 ∈ O for n ≥ 1 and lim
n→∞ SnU0 = U},

W+(U ; O) = {U0 ∈ O; ∃{U−n}n=1,2,... ⊂ O, SU−n = U−n+1 for n ≥ 1

and lim
n→∞ U−n = U}.

We can then verify the following coincidence

M−(U) = W−(U) =
∞⋃

n=0

S−n(W−(U ; O)), M+(U) = W+(U) =
∞⋃

n=0

Sn(W+(U ; O)).
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This means that M−(U) and M+(U) could be characterized by W−(U ; O) and
W+(U ; O) in some sense. We now proceed to the problem of representing W±(U ; O) as
smooth manifolds under the assumption that the operator S is Fréchet differentiable
in a neighbourhood of U .

Consider a dynamical system (S(t), X, X). Let, for some fixed time 0 < t∗ < ∞,
S(t∗) be Fréchet differentiable in a neighbourhood Õ of U and let a Hölder
condition

‖S(t∗)′U − S(t∗)′V‖L(X) ≤ D‖U − V‖α, U, V ∈ Õ (A.1)

be satisfied with some exponent 0 < α ≤ 1 and some constant D > 0. Moreover, let U
be a hyperbolic equilibrium of (S(t∗)n, X, X), i.e.,

σ (S(t∗)′U) ∩ {λ ∈ �; |λ| = 1} = ∅. (A.2)

Let Xi = Xi(U) and Xe = Xe(U) be the invariant subspaces of S(t∗)′U such that X =
Xi + Xe in which each of the parts S(t∗)′U |Xi and S(t∗)′U |Xe has its spectrum in {λ ∈
�; |λ| < 1} and in {λ ∈ �; |λ| > 1}, respectively.

Then the following theorem is known.

THEOREM A.1 [[17, Chapter VII, Theorem 3.1] and [19]] Let U be an equilibrium
of a dynamical system (S(t), X, X). Let (A.1) and (A.2) be satisfied for some fixed time
0 < t∗ < ∞ and an open neighbourhood Õ of U . Let Xi and Xe be the invariant subspaces
as above. Then, in a sufficiently small open neighbourhood O ⊂ Õ of U , W−(U ; O) and
W+(U ; O) are C1,α manifolds with dimensions dim Xi and dim Xe, respectively. Moreover,
the manifolds W−(U ; O) and W+(U ; O) are tangential at U to U + Xi and U + Xe,
respectively.

Let us next apply these results to a dynamical system determined from a semilinear
abstract evolution equation. We consider the Cauchy problem for a semilinear abstract
evolution equation ⎧⎨⎩

dU
dt

+ AU = F(U), 0 < t ≤ ∞,

U(0) = U0

(A.3)

in a Banach space X . Here, A is a sectorial operator of X with angle ωA < π
2 ;

consequently, −A is the generator of an analytic semigroup e−tA on X . The operator
F is a non-linear operator from D(Aη) into X , where η is some exponent such that
0 < η < 1, and is assumed to satisfy a Lipschitz condition of the form

‖F(U) − F(V )‖ � ϕ(‖AμU‖ + ‖AμV‖)

× {‖Aη(U − V )‖+ (‖AηU‖ + ‖AηV‖)‖Aμ(U − V )‖}, U, V ∈ D(Aη),

where μ is some exponent such that 0 ≤ μ ≤ η < 1 and ϕ(·) is some increasing
continuous function. The initial value U0 is taken from D(Aμ).

We consider the case when a dynamical system (S(t),D(Aμ),D(Aμ)) is determined
from the problem (A.3). Let U be a stationary solution to (A.3), namely, U is an
equilibrium of (S(t),D(Aμ),D(Aμ)). We will investigate the Fréchet differentiability of
S(t) in an open neighbourhood of U .
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Let us assume that F : D(Aη) → X is of class C1,1 in BD(Aη)(U ; r), with some r > 0.
Moreover, the derivative satisfies the following conditions:

‖F ′(U)V‖ ≤ ψ(‖AμU‖)‖AηU‖‖AμV‖, U, V ∈ BD(Aη)(U ; r), (A.4)

‖{F ′(U1) − F ′(U2)}V‖ ≤ ψ(‖AμU1‖ + ‖AμU2‖)

× ‖Aη(U1 − U2)‖‖AμV‖, U1, U2, V ∈ BD(Aη)(U ; r) (A.5)

with some continuous increasing function ψ(·).
Then the following theorem can be proved.

THEOREM A.2 [1, Sections 5 and 6] Let U be an equilibrium of (S(t),D(Aμ),D(Aμ))
and let (A.4) and (A.4) be satisfied with some r > 0. Let 0 < t∗ < ∞ be arbitrarily fixed.
Then, for a sufficiently small number r′ > 0, the semigroup S(t), where 0 ≤ t ≤ t∗, is
Fréchet differentiable in the ball BD(Aμ)(U ; r′). And its derivative satisfies a Lipschitz
condition

‖S(t)′U − S(t)′V‖L(D(Aμ)) ≤ C‖U − V‖D(Aμ), 0 ≤ t ≤ t∗, U, V ∈ BD(Aμ)(U ; r′).

Furthermore, if σ (A − F ′(U)) ∩ {λ ∈ �; Reλ = 0} = ∅ then U is a hyperbolic
equilibrium of (S(t∗)n,D(Aμ),D(Aμ)).

This theorem has essentially been proved in the arguments of [1, Sections 5 and 6].
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