WEIGHTED AVERAGING TECHNIQUES
 IN OSCILLATION THEORY FOR SECOND ORDER DIFFERENCE EQUATIONS

LYNN H. ERBE AND PENGXIANG YAN

Abstract

We consider the self-adjoint second-order scalar difference equation (1) $\Delta\left(r_{n} \Delta x_{n}\right)+p_{n} x_{n+1}=0$ and the matrix system (2) $\Delta\left(R_{n} \Delta X_{n}\right)+P_{n} X_{n+1}=0$, where $\left\{r_{n}\right\}_{0}^{\infty},\left\{p_{n}\right\}_{0}^{\infty}\left(\left\{R_{n}\right\}_{0}^{\infty},\left\{P_{n}\right\}_{0}^{\infty}\right)$ are sequences of real numbers $(d \times d$ Hermitian matrices) with $r_{n}>0\left(R_{n}>0\right)$. The oscillation and nonoscillation criteria for solutions of (1) and (2), obtained in [3, 4, 10], are extended to a much wider class of equations by Riccati and averaging techniques.

1. Introduction. In a number of recent papers, [1, 3-10], the oscillation properties of solutions of the following self-adjoint second order difference equations have been extensively studied:

$$
\begin{align*}
\Delta\left(r_{n} \Delta x_{n}\right)+p_{n} x_{n+1}=0, & n \geqq 0 \tag{1.1}\\
\Delta\left(R_{n} \Delta X_{n}\right)+P_{n} X_{n+1}=0, & n \geqq 0 . \tag{1.2}
\end{align*}
$$

Here Δ is the forward difference operator $\Delta x_{n}=x_{n+1}-x_{n}$ and, in (1.1) (resp. (1.2)), r_{n}, p_{n} (resp. R_{n}, P_{n}) denote sequences of real numbers (resp. $d \times d$ Hermitian matrices) with $r_{n}>0\left(R_{n}>0\right), n=0,1,2, \ldots$. We remark that Hermitian matrix inequalities $A>0(A \geqq 0)$ are in the sense of positive (nonnegative) definiteness.

A real solution $x=\left\{x_{n}\right\}_{n=0}^{\infty}$ of (1.1) $\left(X=\left\{X_{n}\right\}_{n=0}^{\infty}\right.$ of (1.2)) is said to be nonoscillatory if there exists $N \geqq 0$ such that $x_{n} x_{n+1}>0\left(X_{n}^{*} R_{n} X_{n+1}>0\right)$ for all $n \geqq N$ and is oscillatory otherwise. Either all solutions of (1.1) ((1.2)) are oscillatory or none are, (cf. [1], [3]).

As usual, a solution of (1.2) is said to be prepared in case

$$
\begin{equation*}
X_{n}^{*} R_{n} X_{n+1}=X_{n+1}^{*} R_{n} X_{n} . \tag{1.3}
\end{equation*}
$$

In this paper, we will employ the discrete version of the Riccati equation to extend the results of $[3,4]$ to the more general case.

First, we introduce the Riccati equations. If x is a solution of (1.1) (X for (1.2)) with $x_{n} x_{n+1}>0\left(X_{n}^{*} R_{n} X_{n+1}>0\right)$ for $n \geqq N \geqq 0$, let

$$
u_{n}=\frac{r_{n} \Delta x_{n}}{x_{n}} ; \quad\left(U_{n}=\left(R_{n} \Delta X_{n}\right) X_{n}^{-1}\right) .
$$

Received by the editors June 19, 1990; revised Noverber 21, 1990.
AMS subject classification: 39A10.
(c) Canadian Mathematical Society 1992.

Then we have

$$
\begin{equation*}
\Delta u_{n}+\frac{u_{n}^{2}}{u_{n}+r_{n}}+p_{n}=0, \quad n \geqq N \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta U_{n}+U_{n}\left(U_{n}+R_{n}\right)^{-1} U_{n}+P_{n}=0, \quad n \geqq N \tag{1.5}
\end{equation*}
$$

It is known (cf. [1,3]) that (1.1) ((1.2)) is nonoscillatory if and only if there exists a solution of (1.4) ((1.5)) such that $r_{n}+u_{n}>0\left(R_{n}+U_{n}>0\right)$.
2. Scalar Case. We will denote by F the set of all sequences of real numbers $b=$ $\left\{b_{n}\right\}_{n=0}^{\infty}$ with $0 \leqq b_{n} \leqq 1$ and $\sum_{n=0}^{\infty} b_{n}=+\infty$.

Let

$$
B_{n}=\sum_{j=0}^{n} b_{j}, \quad B_{n, m}=\sum_{j=m}^{n} b_{j} .
$$

We introduce the following conditions:

$$
\left(A_{2}^{\alpha}\right)
$$

$$
\begin{gather*}
\limsup _{n \rightarrow \infty} B_{n}^{-\left(\frac{3}{2}+\alpha\right)} \sum_{j=0}^{n} b_{j} r_{j+1}<+\infty \tag{1}\\
\limsup _{n \rightarrow \infty} B_{n}^{-(1+\alpha)} \sum_{j=0}^{n} b_{j} r_{j+1}<+\infty \\
\quad \limsup _{n \rightarrow \infty} B_{n}^{-\alpha} r_{n}<+\infty
\end{gather*}
$$

where $\alpha \geqq 0$. Obviously $\left(A_{3}^{\alpha}\right) \Longrightarrow\left(A_{2}^{\alpha}\right) \Longrightarrow\left(A_{1}^{\alpha}\right)$.
Theorem 2.1. Assume that $\left(A_{1}^{\alpha}\right)$ holds for some $b \in F$ and that (1.1) is nonoscillatory. Then the following are equivalent:
(i) $\limsup _{n \rightarrow \infty} B_{n}^{-1-\alpha}\left|\sum_{k=0}^{n} b_{k} \sum_{j=0}^{k} p_{j}\right|<+\infty$;
(ii)

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} B_{n}^{-1-\alpha} \sum_{k=0}^{n} b_{k} \sum_{j=0}^{k} p_{j}>-\infty \tag{2.1}
\end{equation*}
$$

(iii) For any solution x of(1.1) with $x_{n} x_{n+1}>0, n \geqq N$ for some $N \geqq 0$, the sequence $u_{n}=\frac{r_{n} \Delta x_{n}}{x_{n}}$ satisfies:

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} \frac{u_{j}^{2}}{u_{j}+r_{j}}<+\infty \tag{2.2}
\end{equation*}
$$

Proof. Obviously, (i) \Longrightarrow (ii). Now we prove (ii) \Longrightarrow (iii). Suppose not, let $\rho_{n}=$ $\frac{u_{n}^{2}}{u_{n}+r_{n}}$. Then we have

$$
\limsup _{n \rightarrow \infty} B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} \rho_{j}=+\infty
$$

We may assume, without loss of generality, that $n>N$ is sufficiently large so that $B_{n, N}>$ 0 in what follows. Then from (1.4) we have:

$$
\begin{equation*}
B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} \rho_{j}+B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} p_{j}-B_{n, N}^{-\alpha} u_{N}=B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k}\left(-u_{k+1}\right) . \tag{2.3}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} B_{n, N}^{-\alpha-1} \sum_{k=N}^{n} b_{k}\left(-u_{k+1}\right)=+\infty . \tag{2.4}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k}\left|u_{k+1}\right|=+\infty . \tag{2.5}
\end{equation*}
$$

Dividing (2.3) by $B_{n, N}^{1 / 2}$, then in view of (ii), (A_{1}^{α},) and the fact that $-u_{k+1}<r_{k+1}$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} B_{n, N}^{-\frac{3}{2}-\alpha} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} \rho_{j}<+\infty . \tag{2.6}
\end{equation*}
$$

Now for any fixed $n \geqq N+1$, we can find $m>n$ such that $B_{n, N} \leqq B_{m}-B_{n} \leqq 2 B_{n, N}$ and hence $B_{m, N} \leqq 3 B_{n, N}$. Therefore combining with (2.6) we obtain:

$$
\begin{align*}
B_{n, N}^{-\frac{1}{2}-\alpha} \sum_{j=N}^{n} \rho_{j} & =B_{n, N}^{-\frac{3}{2}-\alpha} B_{n, N} \sum_{j=N}^{n} \rho_{j} \\
& \leqq B_{n, N}^{-\frac{3}{2}-\alpha} \sum_{k=n+1}^{m} b_{k} \sum_{j=N}^{k} \rho_{j} \tag{2.7}\\
& \leqq 3^{\frac{3}{2}} B_{m, N}^{-\frac{3}{2}-\alpha} \sum_{k=N}^{m} b_{k} \sum_{j=N}^{k} \rho_{j} \\
& \leqq M<+\infty .
\end{align*}
$$

Let

$$
a_{n}=\left\{\begin{array}{lll}
u_{n}+r_{n} & \text { if } & u_{n} \neq 0 \\
0 & \text { if } & u_{n}=0 .
\end{array}\right.
$$

Then we have $r_{n} \geqq a_{n}-u_{n}$, so

$$
\begin{equation*}
B_{n, N}^{-\frac{3}{2}-\alpha} \sum_{k=N}^{n} b_{k} r_{k+1} \geqq B_{n, N}^{-\frac{3}{2}-\alpha} \sum_{k=N}^{n} b_{k} a_{k+1}+B_{n, N}^{-\frac{3}{2}-\alpha} \sum_{k=N}^{n} b_{k}\left(-u_{k+1}\right) . \tag{2.8}
\end{equation*}
$$

Since $B_{n+1, N}^{\frac{1}{2}+\alpha}=\left(B_{n, N}+b_{n+1}\right)^{\frac{1}{2}+\alpha} \leqq 2^{\frac{1}{2}+\alpha} B_{n, N}^{\frac{1}{2}+\alpha}$ and

$$
\begin{aligned}
\left(\sum_{k=N}^{n} b_{k}\left|u_{k+1}\right|\right)^{2} & =\left(\sum_{k=N}^{n} b_{k} \sqrt{a_{k+1} \rho_{k+1}}\right)^{2} \\
& \leqq\left(\sum_{k=N}^{n} b_{k} a_{k+1}\right)\left(\sum_{k=N}^{n} b_{k} \rho_{k+1}\right) \\
& \leqq \sum_{k=N}^{n} \rho_{k+1} \sum_{k=N}^{n} b_{k} a_{k+1} \\
& \leqq M B_{n, N}^{\frac{1}{2}+\alpha} \sum_{k=N}^{n} b_{k} a_{k+1},
\end{aligned}
$$

it follows that

$$
\begin{equation*}
B_{n, N}^{-\frac{3}{2}-\alpha} \sum_{k=N}^{n} b_{k} a_{k+1} \geqq \frac{1}{M}\left(B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k}\left|u_{k+1}\right|\right)^{2} . \tag{2.9}
\end{equation*}
$$

By (2.8-2.9), we get:

$$
\begin{aligned}
B_{n, N}^{-\frac{3}{2}-\alpha} \sum_{k=N}^{n} b_{k} r_{k+1} & \geqq B_{n, N}^{-\frac{3}{2}-\alpha} \sum_{k=N}^{n} b_{k} a_{k+1}+B_{n, N}^{-\frac{3}{2}-\alpha} \sum_{k=N}^{n}\left(-u_{k+1}\right) b_{k} \\
& \geqq \frac{1}{M}\left(B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k}\left|u_{k+1}\right|\right)^{2}+B_{n, N}^{-\frac{3}{2}-\alpha} \sum_{k=N}^{n} b_{k}\left(-u_{k+1}\right) .
\end{aligned}
$$

Then (2.4) and (2.5) imply that

$$
\limsup _{n \rightarrow \infty} B_{n, N}^{-\frac{3}{2}-\alpha} \sum_{k=N}^{n} b_{k} r_{k+1}=+\infty
$$

which contradicts $\left(A_{1}^{\alpha}\right)$. Therefore, (ii) \Longrightarrow (iii). Next we prove (iii) \Longrightarrow (i). As in (2.7) and using (2.2), we first observe that $B_{n, N}^{-\alpha} \sum_{j=N}^{n} \rho_{j} \leqq M$, which means $\sum_{j=N}^{n} \rho_{j} \leqq B_{n, N}^{\alpha} M$. Next let

$$
v_{n}=\sum_{j=N}^{n} b_{j}\left|u_{j+1}\right|
$$

Then from (iii), we have

$$
\begin{align*}
v_{n}^{2} & =\left(\sum_{j=N}^{n} \sqrt{\rho_{j+1}} \sqrt{r_{j+1}+u_{j+1}} b_{j}\right)^{2} \\
& \leqq \sum_{j=N}^{n} b_{j} \rho_{j+1} \sum_{j=N}^{n} b_{j}\left(u_{j+1}+r_{j+1}\right) \\
& \leqq \sum_{j=N}^{n} \rho_{j+1} \sum_{j=N}^{n} b_{j}\left(u_{j+1}+r_{j+1}\right) \tag{2.11}\\
& \leqq M B_{n, N}^{\alpha}\left(v_{n}+\sum_{j=N}^{n} b_{j} r_{j+1}\right) \\
& \leqq 2 M B_{n, N}^{\alpha} \max \left\{v_{n}, \sum_{j=N}^{n} b_{j} r_{j+1}\right\} .
\end{align*}
$$

Thus

$$
\begin{equation*}
v_{n} \leqq \max \left\{2 M B_{n, N}^{\alpha},\left(2 M B_{n, N}^{\alpha} \sum_{j=N}^{n} b_{j} r_{j+1}\right)^{1 / 2}\right\} \tag{2.12}
\end{equation*}
$$

From (A_{1}^{α}) and (2.12), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} B_{n, N}^{-1-\alpha} v_{n}=0 \tag{2.13}
\end{equation*}
$$

Thus, from (2.3) and (2.13), the proof is complete.

REMARK. If $\alpha=0$, one can show $B_{n, N}^{-1} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} \rho_{j}$ is monotone with respect to n. This means

$$
\limsup _{n \rightarrow \infty} B_{n, N}^{-1} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} \rho_{j}=\lim _{n \rightarrow \infty} B_{n, N}^{-1} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} \rho_{j}
$$

Therefore (i) in Theorem 2.1 can be replaced by the condition $\lim _{n \rightarrow \infty} B_{n, N}^{-1} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} p_{j}$ exists (constant). This is the same as Theorem 2.11 of [3].

Corollary 2.2. If $\left(A_{1}^{\alpha}\right)$ and (2.1) hold for some $b \in F$, then equation (1.1) is oscillatory provided:

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\limsup } B_{n}^{-1-\alpha} \sum_{k=0}^{n} b_{k} \sum_{j=0}^{k} p_{j}=+\infty \tag{2.14}
\end{equation*}
$$

EXAmple 2.1. Consider $\Delta\left(n \Delta x_{n}\right)+n^{-\beta} x_{n+1}=0$. Here $r_{n}=n, p_{n}=n^{-\beta}, \beta \geqq 0$. Let $b_{j}=1$. Then $B_{n}=n$. Choosing $\alpha=\frac{1}{2}$, we see that $\left(A_{1}^{\alpha}\right)$ holds. Evidently, if $\beta<\frac{1}{2}$, we have $\frac{1}{n^{3 / 2}} \sum_{k=1}^{n} \sum_{j=1}^{k} p_{j} \rightarrow+\infty$ as $n \rightarrow \infty$. By Corollary 2.2 , we know that this equation is oscillatory. Through a computation, we note that with increasing β, the "distance between zeros" increases.

Theorem 2.3. Assume that $\left(A_{2}^{\alpha}\right)$ holds for some $b \in F$. If

$$
\limsup _{n \rightarrow \infty} B_{n}^{-1-\alpha} \sum_{k=1}^{n} b_{k} \sum_{j=1}^{k} p_{j}=+\infty
$$

then (1.1) is oscillatory.
Proof. Suppose (1.1) is nonoscillatory. From $\left(A_{2}^{\alpha}\right)$ we have

$$
M_{2}:=\underset{n \rightarrow \infty}{\limsup } B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} r_{k+1} \geqq \underset{n \rightarrow \infty}{\limsup } B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k}\left(-u_{k+1}\right) .
$$

Therefore, from (2.3), we have

$$
\begin{aligned}
M_{2} & \geqq \limsup _{n \rightarrow \infty} B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k}\left(-u_{k+1}\right) \\
& \geqq \liminf _{n \rightarrow \infty} B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} \rho_{j}+M_{3} \\
& +\limsup _{n \rightarrow \infty} B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} p_{j} \\
& \geqq \limsup _{n \rightarrow \infty} B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} p_{j}+M_{3} .
\end{aligned}
$$

for some constant $M_{3}(=0$ if $\alpha>0)$. This contradiction shows that (1.1) is oscillatory.

Example 2.2. In (1.1), let $\alpha>0$ and let

$$
\begin{aligned}
& r_{n}=\left\{\begin{array}{lll}
n^{\alpha} & \text { if } \quad n=\text { odd } \\
n^{\alpha+2} & \text { if } \quad n=\text { even },
\end{array}\right. \\
& p_{n}= \begin{cases}1 & \text { if } n=1 \\
(-1)^{\left[\frac{n}{2}\right]} n^{\beta_{0}}-\sum_{k=1}^{n-1} p_{k}, & n=2,3, \ldots,\end{cases} \\
& b_{n}=\left\{\begin{array}{lll}
1 & n & \text { even } \\
0 & n & \text { odd. }
\end{array}\right.
\end{aligned}
$$

Then $\left(A_{2}^{\alpha}\right)$ holds. Furthermore, we have $\sum_{j=1}^{n} p_{j}=(-1)^{\left[\frac{k}{2}\right]} n^{\beta_{0}}$ and

$$
\limsup _{n \rightarrow \infty} B_{n}^{-\beta_{0}} \sum_{k=1}^{n} b_{k} \sum_{j=1}^{k} p_{j}=\frac{1}{2}>0
$$

Hence, by Theorem 2.3, if $\beta_{0}>1+\alpha$, (1.1) is oscillatory. This result is not obtainable by Theorem 1 or by any of the results of the references.

ThEOREM 2.4. If $\left(A_{3}^{\alpha}\right)$ holds for some $b \in F$, then (1.1) is oscillatory provided

$$
\limsup _{n \rightarrow \infty} B_{n}^{-\alpha} \sum_{k=1}^{n} p_{j}=+\infty
$$

Proof. Suppose not. From (1.4), we have

$$
u_{n+1}-u_{N}+\sum_{k=N}^{n} \rho_{k}+\sum_{k=N}^{n} p_{k}=0
$$

Now in view of $\left(A_{3}^{\alpha}\right)$ and the fact that $-u_{n+1}<r_{n+1}$, we have

$$
B_{n, N}^{-\alpha} \sum_{k=N}^{n} p_{k} \leqq-B_{n, N}^{-\alpha} \sum_{k=N}^{n} \rho_{k}+m_{1} \leqq m .
$$

This contradiction shows that (1.1) is oscillatory.
3. Matrix Case. Set $a_{n}=\lambda_{d}\left(R_{n}\right), A_{n}=\lambda_{1}\left(R_{n}\right)$, where we suppose that the eigenvalues of R_{n} are ordered with $\lambda_{1}\left(R_{n}\right) \geqq \ldots \geqq \lambda_{d}\left(R_{n}\right)$.

We introduce the following conditions which will be needed in the results to follow:
Suppose there exists $b \in F$ such that:

$$
\limsup _{n \rightarrow \infty} B_{n}^{-\frac{1}{2}}\left(\frac{A_{n}}{a_{n}}\right)<+\infty
$$

$$
\limsup _{n \rightarrow \infty} B_{n}^{-\frac{3}{2}-\alpha} \sum_{j=0}^{n} b_{j} A_{j+1}<+\infty
$$

$\left(\bar{A}_{3}^{\alpha}\right)$

$$
\begin{gather*}
\limsup _{n \rightarrow \infty} B_{n}^{-1-\alpha} \sum_{j=0}^{n} b_{j} A_{j+1}<+\infty \tag{A}\\
\quad \limsup _{n \rightarrow \infty} B_{n}^{-\alpha} A_{n}<+\infty
\end{gather*}
$$

Here $\alpha \geqq 0$ and clearly, $\left(\bar{A}_{3}^{\alpha}\right) \Longrightarrow\left(\bar{A}_{3}^{\alpha}\right) \Longrightarrow\left(\bar{A}_{1}^{\alpha}\right)$.
In a similar way as in [4] and in the scalar case above, we can prove the following results:

Theorem 3.1. If R satisfies (H) and $\left(\bar{A}_{1}^{\alpha}\right)$ for some $b \in F$, and equation (1.2) is nonoscillatory, then the following are equivalent:
(i)
(3.1) If $C_{n}:=B_{n}^{-1-\alpha} \sum_{k=0}^{n} b_{k} \sum_{j=0}^{k} P_{j}$, then $\left|\left(C_{n}\right)_{i j}\right| \leqq m$, for some $m>0$ and for $n \geqq$ $N, i, j=1, \ldots, d$.
(ii)

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} B_{n}^{-1-\alpha} \sum_{k=0}^{n} b_{k} \sum_{j=0}^{k} \operatorname{tr} P_{j}>-\infty \tag{3.2}
\end{equation*}
$$

(iii) For any prepared solution X of (1.2) with $X_{n+1}^{*} R_{n} X_{n}>0$ for $n \geqq N$ for some $N \geqq 0$, the sequence $U_{n}=\left(R_{n} \Delta X_{n}\right)^{*} X_{n}^{-1}$ satisfies:

$$
B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} \bar{\rho}_{j} \leqq M_{0} ; \quad \text { (constant Hermitian matrix). }
$$

$\left(\right.$ Here $\bar{\rho}_{j}=U_{j}^{*}\left(U_{j}+R_{j}\right)^{-1} U_{j}$, for any $\left.n \geqq N\right)$.
Corollary 3.2. Suppose that R satisfies $\left(\bar{A}_{1}^{\alpha}\right)$ for some $b \in F$ and (H), and P satisfies (3.2), then (1.2) is oscillatory provided either

$$
\limsup _{n \rightarrow \infty} B_{n}^{-1-\alpha} \lambda_{1}\left(\sum_{k=0}^{n} b_{k} \sum_{j=0}^{k} P_{j}\right)=+\infty
$$

or

$$
\underset{n \rightarrow \infty}{\limsup }\left|\left(C_{n}\right)_{i_{0} j_{0}}\right|=+\infty
$$

for some $1 \leqq i_{0}, j_{0} \leqq d$.
REmARK. In [4], condition (H) is simply $\limsup _{n \rightarrow \infty} \frac{A_{n}}{a_{n}}<+\infty$. The above results also improve the results of [10].

EXAMPLE 3.1. In (1.2), let $R_{n}=\left(\begin{array}{cc}\sqrt{n} & \frac{1}{2} \\ \frac{1}{2} & n\end{array}\right), \quad P_{n}=\left(\begin{array}{cc}1 & (-1)^{n} \\ (-1)^{n} & n^{-\frac{1}{3}}\end{array}\right)$ or $P_{n}=$ $\left(\begin{array}{cc}0 & n^{-\frac{1}{3}} \\ n^{-\frac{1}{3}} & 0\end{array}\right)$. By Corollary 3.2 , it is easy to show that (1.2) is oscillatory. This may not be concluded from any of the known oscillation criteria, as far as the authors are aware.

Theorem 3.3. Let $\left(\bar{A}_{2}^{\alpha}\right)$ hold for some $b \in F$. Then equation (1.2) is oscillatory provided

$$
\limsup _{n \rightarrow \infty} B_{n}^{-1-\alpha} \lambda_{1}\left(\sum_{k=0}^{n} b_{k} \sum_{j=0}^{k} P_{j}\right)=+\infty .
$$

Proof. From (1.5), we have

$$
\begin{aligned}
B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} P_{j}= & B_{n, N}^{-\alpha} U_{N}+B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k}\left(-U_{k+1}\right) \\
& -B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} \bar{\rho}_{j} .
\end{aligned}
$$

By Weyl's inequality [11], and $U_{n}+R_{n}>0$ and $\left(\bar{A}_{2}^{\alpha}\right)$ we have:

$$
\begin{aligned}
\lambda_{1}\left(B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} P_{j}\right) \leqq & \lambda_{1}\left(B_{n, N}^{-\alpha} U_{N}\right)+\lambda_{1}\left(B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k}\left(-U_{k+1}\right)\right) \\
& +\lambda_{1}\left(-B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} \sum_{j=N}^{k} \bar{\rho}_{j}\right) \\
& \leqq \lambda_{1}\left(B_{n, N}^{-\alpha} U_{N}\right)+\lambda_{1}\left(B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} R_{k+1}\right) \\
& \leqq \bar{M}_{2}+B_{n, N}^{-1-\alpha} \sum_{k=N}^{n} b_{k} A_{k+1} \\
& \leqq \bar{M}_{2}<+\infty .
\end{aligned}
$$

for some constant \bar{M}_{2}. The contradiction shows that (1.2) is oscillatory.
In the same way, we can prove:
THEOREM 3.4. Let $\left(\bar{A}_{3}^{\alpha}\right)$ hold for some $b \in F$. Then (1.2) is oscillatory provided

$$
\limsup _{n \rightarrow \infty} B_{n}^{-\alpha} \lambda_{1}\left(\sum_{k=0}^{n} P_{k}\right)=+\infty .
$$

Remark. This result may also be concluded from the results of [10].

References

1. C.D. Ahlbrandt and J.W. Hooker, Recessive solutions of symmetric three term recurrence relations, C.M.S. Conference Proc., Vol 8, Oscillation, Bifurcation and Chaos American Mathematical Society Providence, R.I. (1987) 3-42 .
2. R. Byers, B.J. Harris, and M.K. Kwong, Weighted means and oscillation conditionsfor second order matrix differential equations, J. Differential Equations, 61(1986) 164-177 .
3. S. Chen and L.H. Erbe, Riccati techniques and discrete oscillations, J. Math. Anal. and Appl., 142(1989) 468-487.
4. S. Chen and L.H. Erbe, Oscillation and nonoscillation for systems of self-adjoint second-order difference equations, SIAM J. Math. Anal., 20(1989) 939-949.
5. D.B. Hinton and R.T. Lewis, Spectral analysis of second order difference equations, J. Math. Anal. and Appl., 63(1978) 421-438 .
6. J.W. Hooker, M.K. Kwong and W.T. Patula, Oscillatory second order linear difference equations and Riccati equations, SIAM J. Math. Anal., 18(1987) 54-63 .
7. J.W. Hooker and W.T. Patula, Riccati type transformations for second order linear difference equations, J. Math. and Appl., 82(1987) 451-462 .
8. M.K. Kwong, J.W. Hooker and W.T. Patula, Riccati type transformationsfor second order linear difference equations, II, J. Math. Appl., 107(1985) 182-196.
9. A.B. Mingarelli, Volterra-Stieltjes integral equations and generalized ordinary differential expression, Lecture Notes in Mathematics 989, Springer-Verlag New York (1983) .
10. A. Peterson and J. Ridenhour, Oscillation of second order linear matrix difference equations, J. Diff. Eqns., 89(1991) 69-88 .
11. R.A. Horn and C.R. Johnson, Matrix Analysis Cambridge Univ. Press New York (1985) .
