LINEAR TRANSFORMATIONS ON MATRICES: THE INVARIANCE OF A CLASS OF GENERAL MATRIX FUNCTIONS

HOCK ONG

1. Introduction. Let F be a field, F^{*} be its multiplicative group and $M_{n}(F)$ be the vector space of all n-square matrices over F. Let S_{n} be the symmetric group acting on the set $\{1,2, \ldots, n\}$. If G is a subgroup of S_{n} and λ is a function on G with values in F, then the matrix function associated with G and λ, denoted by G^{λ}, is defined by

$$
G^{\lambda}(X)=\sum_{\sigma \in G} \lambda(\sigma) \prod_{i=1}^{n} x_{i \sigma(i)}, \quad X=\left(x_{i j}\right) \in M_{n}(F)
$$

and let

$$
\begin{aligned}
& \mathscr{T}(G, \lambda)=\left\{T: T \text { is a linear transformation of } M_{n}(F)\right. \text { to itself and } \\
& \left.\qquad G^{\lambda}(T(X))=G^{\lambda}(X) \text { for all } X\right\} .
\end{aligned}
$$

It is of interest to characterize all linear maps in $\mathscr{T}(G, \lambda)$. For example, if $G=S_{n}$ and λ is a linear character on S_{n}, i.e., $S_{n}{ }^{\lambda}$ is either the determinant or permanent, then $\mathscr{T}\left(S_{n}, \lambda\right)$ has been obtained $[\mathbf{3} ; \mathbf{4}$. If G is transitive and cyclic and λ is a function on $G[\mathbf{1}]$ or G is regular or doubly transitive and λ is a linear character on $G[\mathbf{2}]$ then $\mathscr{T}(G, \lambda)$ has also been characterized. In [2], it was mentioned that if G is singly transitive but not regular or doubly transitive, then the techniques in [2] fail and the dihedral group of degree four was given as a counter example. In this paper we show that D_{4} is, in fact, an exception, i.e., we apply the techniques in [2] and the results in [5] to characterize all linear maps in $\mathscr{T}\left(D_{n}, \lambda\right)$ where D_{n} is the dihedral group of degree $n, n \geqq 5$ and λ is a function on D_{n} with values in F^{*}.
2. Definitions and statements of the main results. Recall that the dihedral group of degree n is the subgroup of S_{n} generated by the two permutations g and h where $g(i)=i+1, i=1,2, \ldots, n-1 ; g(n)=1$ and $h(1)=1$, $h(i)=n-i+2, i=2,3, \ldots, n$. If we write $g_{i}=g^{i-1}, i=1,2, \ldots, n$, then $D_{n}=\left\{g_{i}, g_{i} h: i=1,2, \ldots, n\right\}$ and the diagonals $g_{i}, g_{i} h$ are illustrated by the following diagram when $n=6$, the solid lines denote the diagonals g_{i},

[^0]the dotted lines denote the diagonals $g_{i} h$.

If n is a positive integer let $K_{n}=\left\{\sigma \in S_{n}: \sigma\right.$ maps even integers onto even integers\}. Clearly K_{n} is a subgroup of S_{n} and the permutations in $K_{n} g$ map even integers onto odd integers.

A subspace Z of $M_{n}(F)$ is a 0 -subspace for $D_{n}{ }^{\lambda}$ if $\operatorname{dim} Z=n^{2}-n$ and $X \in Z$ implies $D_{n}{ }^{\lambda}(X)=0$. Then we have

Proposition 1. Let n be a positive integer, $n \geqq 5$ and

$$
D_{n}=\left\{g_{i}, g_{i} h: i=1,2, \ldots, n\right\}
$$

be the dihedral group of degree n. A subspace Z is a 0 -subspace for $D_{n}{ }^{\wedge}$ if and only if there exist n distinct pairs of integers $\left(i_{1}, j_{1}\right), \ldots\left(i_{n}, j_{n}\right), 1 \leqq i_{t}, j_{t} \leqq n$ and a permutation $\alpha \in S_{n}$ if n is odd and $\alpha \in K_{n}$ if n is even such that

$$
g_{t}\left(i_{t}\right)=g_{\alpha(t)} h\left(i_{t}\right)=j_{t}
$$

and if $X \in Z, x_{i_{t} j_{t}}=0, t=1,2, \ldots, n$.
The group $D_{n}{ }^{\prime}=\left\{g_{i}: i=1,2, \ldots, n\right\}$ and the set $D_{n}{ }^{\prime} h$ are regular and $D_{n}=D_{n}{ }^{\prime} \cup D_{n}{ }^{\prime} h$. Hence for each pair of integers $(i, j), 1 \leqq i, j \leqq n$ there exist exactly one k and one $l, 1 \leqq k, l \leqq n$ such that $g_{k}(i)=j, g_{i} h(i)=j$ or $g_{k}(i)=g_{l} h(i)$. We define

$$
\varphi_{k}(i)=l .
$$

If we work modulo n using $\{1,2, \ldots, n\}$ as a system of distinct representatives, then it is known [5] that

$$
\varphi_{k}(i) \equiv k+2(i-1) \quad(\bmod n), i, k=1,2, \ldots, n
$$

and for n odd, φ_{k} are in S_{n} and for n even $\varphi_{k}(i)=\varphi_{k}(i+n / 2), k=1,2, \ldots, n$, $i=1,2, \ldots, n / 2$. For n even, since $\varphi_{j}(i), i=1,2, \ldots, n$ are even if and
only if j is even, we define $\varphi_{\sigma(j)}{ }^{-1}$ such that

$$
1 \leqq \varphi_{\sigma(j)}{ }^{-1} \mu \varphi_{j}(i) \leqq n / 2 \quad \text { if and only if } \quad 1 \leqq i \leqq n / 2
$$

where σ, μ are both in K_{n} or $K_{n} g$ and hence $\varphi_{\sigma(j)}{ }^{-1} \mu \varphi_{j}$ are in S_{n}.
If $\sigma \in S_{n}$ then the permutation matrix corresponding to $\sigma, P(\sigma)$, is the n-square matrix whose (i, j) entry is 1 if $\sigma(j)=i$ and 0 elsewhere. If $A=$ $\left(a_{i j}\right)$ and $B=b\left({ }_{i j}\right)$ are n-square matrices then the Hadamard product of A and $B, A * B$, is the n-square matrix whose (i, j) entry is $a_{i j} b_{i j}$ for all i and j. If $A=\left(a_{i j}\right) \in M_{n}(F)$ and $\sigma \in S_{n}$ then the σ-diagonal of A, A_{σ}, is the n-square matrix whose (i, j) entry is $a_{i j}$ if $\sigma(i)=j$ and 0 elsewhere. If $A=\left(a_{i j}\right) \in$ $M_{n}(F)$, let X^{r} be the n-square matrix whose (i, j) entry is $a_{i, n-j+1}$ for all i, $j=1,2, \ldots, n$. Let R be the linear transformation of $M_{n}(F)$ to itself such that $R(X)=X^{r}$ for all X. If $T: M_{n}(F) \rightarrow M_{n}(F)$ is a linear transformation which transforms the entries in σ-diagonal of $X \in M_{n}(F)$ onto the μ-diagonal where $\sigma, \mu \in S_{n}$ then we write $T(\sigma)=\mu$. It can be easily shown that $R\left(g_{i}\right)=g_{n-i+1} h$, $R\left(g_{i} h\right)=g_{n-i+1}, i=1,2, \ldots, n$. Now if n is odd, $(\sigma, \mu) \in S_{n} \times S_{n}$, the direct product of S_{n} by S_{n}, and $X \in M_{n}(F)$ we define

$$
\begin{equation*}
\left.(\sigma, \mu)(X)=\sum_{i=1}^{n} P\left(\varphi_{\sigma(i)}^{-1} \mu \varphi_{i}\right) X_{g_{i}} P\left(g_{i}\left(\varphi_{\sigma(i)}{ }^{-1} \mu \varphi_{i}\right)^{-1} g_{\mu(i)}\right)^{-1}\right) \tag{2.1}
\end{equation*}
$$

i.e., for $i=1,2, \ldots, n,(\sigma, \mu)$ permutes the entries within the g_{i}-diagonal of X by $\varphi_{\sigma(i)}{ }^{-1} \mu \varphi_{i}$ and then transforms the entries in g_{i}-diagonal to $g_{\mu(i)}$-diagonal or equivalently, (σ, μ) permutes the diagonals $g_{1}, g_{2}, \ldots, g_{n}$ by σ and permutes the diagonals $g_{1} j, g_{2} h, \ldots, g_{n} h$ by μ. Then we have

Theorem 1. Let n be an odd positive integer, $n \geqq 5$,

$$
D_{n}=\left\{g_{i}, g_{i} h: i=1,2, \ldots, n\right\}
$$

be the dihedral group of degree n and λ be a function on D_{n} with values in F^{*}. Then $T \in \mathscr{T}\left(D_{n}, \lambda\right)$ if and only if there exist a matrix $A=\left(a_{i j}\right)$ in $M_{n}(F)$ and a linear transformation T^{\prime} in the group $S_{n} \times S_{n} \circ\{I, R\}$ such that

$$
T(X)=A * T^{\prime}(X) \text { for all } X
$$

with

$$
\begin{aligned}
& \prod_{i=1}^{n} a_{i\left(T^{\prime}(g k)\right)(i)}=\lambda\left(g_{k}\right)\left(\lambda\left(T^{\prime}\left(g_{k}\right)\right)\right)^{-1}, \\
& \prod_{i=1}^{n} a_{i\left(T^{\prime}(g k h)(i)\right.}=\lambda\left(g_{k} h\right)\left(\lambda\left(T^{\prime}\left(g_{k} h\right)\right)\right)^{-1}, \quad k=1,2, \ldots, n,
\end{aligned}
$$

where \circ is the usual function composition and I is the identity transformation of $M_{n}(F)$.

Next suppose $n=2 m$ is a positive even integer. Let H_{n} be the subgroup of S_{n} generated by the transpositions $(i m+i), i=1,2, \ldots, m$. For $\lambda_{1}, \lambda_{2}, \ldots$,
$\lambda_{n} \in H_{n}$, let $\Lambda_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}$ be the linear transformation of $M_{n}(F)$ into itself defined by

$$
\Lambda_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}(X)=\sum_{i=1}^{n} P\left(\lambda_{i}\right) X_{g_{i}} P\left(g_{i} \lambda_{i} g_{i}^{-1}\right) \quad \text { for all } X
$$

and let

$$
\Lambda=\left\{\Lambda_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}:\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in H_{n} \times \ldots \times H_{n}\right\}
$$

Note that Λ is a group and $\Lambda_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}$ is the linear transformation which permutes the entries in g_{i}-diagonal by $\lambda_{i}, i=1,2, \ldots, n$, i.e., $\Lambda_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}$ either interchanges the entries at positions $\left(k, g_{i}(k)\right),\left(k+m, g_{i}(k+m)\right)$ or fixes them, $k=1,2, \ldots, m ; i=1,2, \ldots, n$. Clearly $\Lambda_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}(\sigma)=\sigma$ for all $\sigma \in D_{n}$. If $A=\left(a_{i j}\right)$ is an n-square matrix we denote by A_{0} the n-square matrix whose (i, j) entry is $a_{i j}$ if $i+j$ is even and 0 elsewhere and $A_{e}=$ $A-A_{0}$. Let U, V be the linear transformations of $M_{n}(F)$ into itself defined by

$$
\begin{aligned}
& U(X)=X P\left(g^{-1}\right) \text { for all } X, \\
& V(X)=X_{0}+R\left(U\left(X_{e}\right)\right) \text { for all } X .
\end{aligned}
$$

Then it can be shown that

$$
\begin{aligned}
& U\left(g_{i}\right)=g_{\theta(i)}, \quad U\left(g_{i} h\right)=g_{\theta(i)} h, \quad i=1,2, \ldots, n, \\
& V\left(g_{i}\right)=g_{i}, \quad V\left(g_{i} h\right)=g_{i} h \quad \text { if } i \text { is odd, } \\
& V\left(g_{i}\right)=g_{n-i} h, \quad V\left(g_{i} h\right)=g_{n-i} \quad \text { if } i \text { is even }\lfloor\mathbf{5}\rfloor .
\end{aligned}
$$

If for $(\sigma, \mu) \in K_{n} \times K_{n}$ and $X \in M_{n}(F)$, we define $(\sigma, \mu)(X)$ by (2.1), then we can state our

Theorem 2. Let n be an even positive integer, $n \geqq 6$,

$$
D_{n}=\left\{g_{i}, g_{i} h: i=1,2, \ldots, n\right\}
$$

be the dihedral group of degree n and λ be a function on D_{n} with values in F^{*}. Then $T \in \mathscr{T}\left(D_{n}, \lambda\right)$ if and only if there exist a matrix $A=\left(a_{i j}\right)$ in $M_{n}(F)$ and a linear transformation T^{\prime} in the group $\Lambda \circ K_{n} \times K_{n} \circ\{I, U\} \circ\{I, R\} \circ\{I, V\}$ such that

$$
T(X)=A * T^{\prime}(X) \text { for all } X
$$

with

$$
\begin{aligned}
& \prod_{i=1}^{n} a_{t\left(T^{\prime}(o k)\right)(i)}=\lambda\left(g_{k}\right)\left(\lambda\left(T^{\prime}\left(g_{k}\right)\right)\right)^{-1}, \\
& \prod_{i=1}^{n} a_{t\left(T^{\prime}\left(g_{k} h\right)\right)(i)}=\lambda\left(g_{k} h\right)\left(\lambda\left(T^{\prime}\left(g_{k} h\right)\right)\right)^{-1}, \quad k=1,2, \ldots, n .
\end{aligned}
$$

3. Proofs. For $\sigma \in S_{n}$, let $D(\sigma)=\{(i, \sigma(i)): i=1,2, \ldots, n\}$. If S is a finite set let $|S|$ denote the number of elements in S. Then since $D_{n}{ }^{\prime}$ and $D_{n}{ }^{\prime} g$ are regular, $\left|D\left(g_{i}\right) \cap D\left(g_{j}\right)\right|=\left|D\left(g_{i} h\right) \cap D\left(g_{j} h\right)\right|=0$ if $i \neq j$. Furthermore we have the following properties of $D_{n}\lfloor\mathbf{5}]$.

Lemma 1. For each pair $g_{j}, g_{k} h$ in $D_{n}, 1 \leqq j, k \leqq n$, if n is odd then

$$
\left|D\left(g_{j}\right) \cap D\left(g_{k} h\right)\right|=1
$$

and if n is even then

$$
\begin{aligned}
& \left|D\left(g_{j}\right) \cap D\left(g_{k} h\right)\right|=0 \quad \text { if } 2 \nmid(j-k), \\
& \left|\mathrm{D}\left(g_{j}\right) \cap D\left(g_{k} h\right)\right|=2 \quad \text { if } 2 \mid(j-k) .
\end{aligned}
$$

Suppose Z is a subspace of $M_{n}(F)$ and $\operatorname{dim} Z=n^{2}-n$. By using the reduction of a basis for Z to Hermite normal form we can assume that there exist n distinct pairs of integers $\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{n}, j_{n}\right)\right\}=M$ such that the matrices

$$
A_{i j}=E_{i j}+\sum_{t=1}^{n} c_{t}^{i j} E_{i t j t}, \quad c_{t}^{i j} \in F,(i, j) \notin M
$$

form a basis for Z. Here $E_{i j}$ is the matrix whose (i, j) entry is 1 and 0 elsewhere.
If G is a subgroup of S_{n} let $G(i, j)=\{\sigma \in G: \sigma(i)=j\}$. If G is transitive then $|G|=n p$ and $|G(i, j)|=p$ for all $1 \leqq i, j \leqq n$ where p is an integer and $p \geqq 1$.

Lemma 2. If G is a transitive subgroup of S_{n} and for some $\sigma \in G,|D(\sigma) \cap M|$ $=k>1$, then there exist at least $k-1$ elements $\mu_{1}, \ldots, \mu_{k-1}$ in G such that $\left|D\left(\mu_{i}\right) \cap M\right|=0, i=1,2, \ldots, k-1$.

Proof. If $|D(\sigma) \cap M|=k>1$ say $D(\sigma) \cap M=\left\{\left(i_{1}, j_{1}\right), \ldots,\left(i_{k}, j_{k}\right)\right\}$, then for $t=2,3, \ldots, k,\left|G\left(i_{1}, j_{1}\right) \cap G\left(i_{t}, j_{t}\right)\right| \geqq 1$. Hence

$$
\begin{aligned}
\left|\bigcup_{r=1}^{n} G\left(i_{r}, j_{r}\right)\right| & \leqq \sum_{r=1}^{n}\left|G\left(i_{r}, j_{r}\right)\right|-\sum_{t=2}^{k}\left|G\left(i_{1}, j_{1}\right) \cap G\left(i_{t}, j_{t}\right)\right| \\
& =n p-(k-1)=|G|-(k-1)
\end{aligned}
$$

Therefore there exist $\mu_{1}, \ldots, \mu_{k-1} \in G$ such that $\mu_{i} \notin \cup_{t=1}^{n} G\left(i_{t}, j_{t}\right)$, i.e., $\left|D\left(\mu_{i}\right) \cap M\right|=0, i=1,2, \ldots, k-1$.

Lemma 3. If $n \geqq 5$ and $|D(\sigma) \cap M|=0$ for some $\sigma \in D_{n}$ then there exists a matrix B in Z such that $D_{n}{ }^{\lambda}(B) \neq 0$.

Proof. Consider the matrix

$$
\left(b_{\tau s}\right)=B=\sum_{i=1}^{n} A_{i \sigma(i)}=P(\sigma)+\sum_{t=1}^{n} c_{t} E_{i_{t} j t}
$$

where $c_{t}=\sum_{t=1}^{n} c_{t}{ }^{i \sigma(i)}, t=1,2, \ldots, n$. Clearly $B \in Z, b_{r s}=0$ if $(r, s) \notin$ $D(\sigma) \cup M$ and

$$
\begin{equation*}
D_{n}{ }^{\lambda}(B)=\lambda(\sigma)+\sum_{\tau \neq \sigma} \lambda(\tau) \prod_{i=1}^{n} b_{i \tau(i)} . \tag{3.1}
\end{equation*}
$$

If for all $\tau \neq \sigma, \prod_{i=1}^{n} b_{i r(i)}=0$ then $D_{n}{ }^{\lambda}(B)=\lambda(\sigma) \neq 0$. Hence assume that for some $\tau \neq \sigma, \prod_{i=1}^{n} \quad b_{i \tau(i)} \neq 0$. Then $D(\tau) \subset D(\sigma) \cup M$. By Lemma 1,
$|D(\sigma) \cap D(\tau)|=0$ or 1 if n is odd and 0 or 2 if n is even. Hence $|D(\tau) \cap M|=$ n or $n-1$ if n is odd and n or $n-2$ if n is even. Since D_{n} is transitive and $|D(\tau) \cap M| \geqq n-2 \geqq 3$, by Lemma 2 there exists $\mu \in D_{n}, \mu \neq \sigma$ such that $|D(\mu) \cap M|=0$. Let

$$
\left(b_{r s}{ }^{\prime}\right)=B^{\prime}=\sum_{i=1}^{n} A_{i \mu(i)}=P(\mu)+\sum_{t=1}^{n} c_{t}{ }^{\prime} E_{i t j t}
$$

where $c_{t}{ }^{\prime}=\sum_{i=1}^{n} c_{t}{ }^{i \mu(i)}$. Then $B^{\prime} \in Z, b_{T s}{ }^{\prime}=0$ if $(r, s) \notin D(\mu) \cup M$ and

$$
\begin{equation*}
D_{n}^{\lambda}\left(B^{\prime}\right)=\lambda(\mu)+\sum_{v \neq \mu} \lambda(\nu) \prod_{i=1}^{n} b_{i v(i)^{\prime}} . \tag{3.2}
\end{equation*}
$$

We consider the cases $|D(\tau) \cap M|=n, n-1, n-2$ separately.
(i) $M=D(\tau)$. Consider (3.1). Since for $\nu \neq \sigma, \tau,|D(\nu) \cap D(\sigma)| \leqq 2$, $|D(\nu) \cap D(\tau)| \leqq 2$, it follows that $|D(\nu) \cap(D(\sigma) \cup D(\tau))| \leqq 4$ and $\prod_{i=1}^{n} b_{i \nu(i)}=0$ since $n \geqq 5$. Hence

$$
D_{n}^{\lambda}(B)=\lambda(\sigma)+\lambda(\tau) \prod_{t=1}^{n} c_{t}
$$

with $\prod_{t=1}^{n} c_{t} \neq 0$. Similarly in (3.2) we have $\prod_{i=1}^{n} b_{i \nu(i)}{ }^{\prime}=0$ for $\nu \neq \mu, \tau$. If $\prod_{i=1}^{n} b_{i \tau(i)}{ }^{\prime}=0$ then $D_{n}{ }^{\lambda}\left(B^{\prime}\right)=\lambda(\mu) \neq 0$. Hence suppose

$$
D_{n}{ }^{\lambda}\left(B^{\prime}\right)=\lambda(\mu)+\lambda(\tau) \prod_{t=1}^{n} c_{t}^{\prime}
$$

with $\prod_{i=1}^{n} c_{t}{ }^{\prime} \neq 0$. Since $c_{1}{ }^{\prime} \neq 0$ there exists i^{\prime} such that $c_{1}{ }^{i \prime \mu(i \prime)} \neq 0$. Consider the matrix

$$
A(x)=\sum_{i=1}^{n} A_{i \sigma(i)}+x A_{i^{\prime} \mu\left(i^{\prime}\right)}
$$

where x is an indeterminate over F. Then the $\left(i_{1}, j_{1}\right)$ entry of $A(x)$ is a nonzero polynomial of degree one; hence we may choose $c \in F$ so that this entry is zero. Let

$$
\left(a_{r s}\right)=A(c)=\sum_{i=1}^{n} A_{i \sigma(i)}+c A_{i^{\prime} \mu\left(i^{\prime}\right)} .
$$

Then $a_{r s}=0$ if $(r, s) \notin D(\sigma) \cup\left\{\left(i^{\prime}, \mu\left(i^{\prime}\right)\right)\right\} \cup\left(M-\left\{\left(i_{1}, j_{1}\right)\right\}\right)=\Omega_{A}$. Clearly for $\nu \in D_{n}, \nu \neq \sigma, \tau,\left|D(\nu) \cap \Omega_{A}\right| \leqq 3$ if n is odd and $\left|D(\nu) \cap \Omega_{A}\right| \leqq \delta$ if n is even. Since $n \geqq 5, \prod_{i=1}^{n} b_{i \nu(i)}=0$ for all $\nu \neq \sigma$. Hence $D_{n}{ }^{\lambda}(A(c))=\lambda(\sigma) \neq 0$.
(ii) $|D(\tau) \cap M|=n-1$. Then n is odd and $|D(\sigma) \cap D(\tau)|=1$. Consider (3.1). For $\nu \neq \sigma, \tau$, since $|D(\nu) \cap D(\sigma)| \leqq 1$ and $|D(\nu) \cap M| \leqq 2$ it follows that $|D(\nu) \cap(D(\sigma) \cup M)| \leqq 3$ and $\prod_{i=1}^{n} b_{i r(i)}=0$ since $n \geqq$). Hence

$$
D_{n}^{\lambda}(B)=\lambda(\sigma)+\lambda(\tau) \prod_{i=1}^{n} b_{i \tau(i)} .
$$

Applying the same argument to (3.2) we have $\prod_{i=1}^{n} b_{i \nu(i)}=0$ if $\nu \neq \mu, \tau$. Furthermore $|D(\mu) \cap D(\tau)|=0$ for otherwise $|D(\mu) \cap M| \neq 0$ or $\mu=\sigma$. Hence $(i, \tau(i)) \notin D(\mu) \cup M$ for some i, i.e., $b_{i \tau(i)^{\prime}}=0$ and $D_{n}{ }^{\lambda}\left(B^{\prime}\right)=\lambda(\mu)$ $\neq 0$.
(iii) $|D(\tau) \cap M|=n-2$. Then n is even and $|D(\sigma) \cap D(\tau)|=2$. We may assume $\sigma=g_{k}, \tau=g_{l} h$ for some k and l and $2 \mid(k-l)$. Consider (3.1). For $\nu \neq \sigma, \tau$, since either $|D(\nu) \cap D(\sigma)|=0$ or $|D(\nu) \cap D(\tau)|=0$, it follows that $|D(\nu) \cap(D(\sigma) \cup M)| \leqq 4$ and $\prod_{i=1}^{n} b_{i \nu(i)}=0$. Hence

$$
D_{n}^{\lambda}(B)=\lambda(\sigma)+\lambda(\tau) \prod_{i=1}^{n} b_{i \tau(i)} .
$$

Since there are $n / 2(\geqq 3) g_{i}$-diagonals with $2 \npreceq(i-l)$ which do not intersect with the diagonal $\tau=g_{l} h$ and since there are only two positions in M which do not lie in $D(\tau)$, we may choose $\mu=g_{q}$ with $2 \nsucc(l-q)$. Applying the above argument to (3.2) we have $\prod_{i=1}^{n} b_{i \nu(i)}{ }^{\prime}=0$ if $\nu \neq \mu, \tau$. Since $2 \nsucc(l-q)$, $|D(\mu) \cap D(\tau)|=0$ and $\Pi_{i=1}^{n} b_{i r(i)}^{\prime}=0$. Hence $D_{n}{ }^{\lambda}\left(B^{\prime}\right)=\lambda(\mu) \neq 0$.

By Lemmas 2 and 3, we have
Lemma 4. If Z is a 0 -subspace for $D_{n}{ }^{\lambda}, n \geqq 5$, then for every $\sigma \in D_{n}$, $|D(\sigma) \cap M|=1$.

Lemma 5. Suppose $n \geqq 5$ and Z is a 0 -subspace for $D_{n}{ }^{\lambda}$. Then Z consists of all matrices with n fixed positions $\left\{\left(i_{1}, j_{1}\right), \ldots\left(i_{n}, j_{n}\right)\right\}=M$ equal to zero.

Proof. We need only to show that $c_{t}{ }^{i j}=0$ for all $(i, j) \notin M$ and $1 \leqq t \leqq n$. Suppose the contrary, i.e., $c_{t}{ }^{i j} \neq 0$ for some (i, j) and some t. Since $\left|D_{n}\left(i_{t}, j_{t}\right)\right|=2$ let $D_{n}\left(i_{t}, j_{t}\right)=\{\sigma, \nu\}$. Let x be an indeterminate over F.
(i) $\sigma(i) \neq j$. Let

$$
B(x)=\sum_{k \neq i_{i}} A_{k \sigma(k)}+x A_{i j}
$$

Then the $\left(i_{t}, j_{t}\right)$ entry of $B(x)$ is a nonzero polynomial of degree 1 in x so we may choose $c \in F$ so that the entry is nonzero. Let $B(c)=\left(b_{r s}\right)$. Then $b_{r s}=0$ if $(r, s) \notin M \cup D(\sigma) \cup\{(i, j)\}$ and $b_{i \sigma(i)} \neq 0, i=1,2, \ldots, n$. Now

$$
D_{n}^{\lambda}(B(c))=\lambda(\sigma) \prod_{k=1}^{n} b_{k \sigma(k)}+\sum_{\mu \neq \sigma} \lambda(\mu) \prod_{k=1}^{n} b_{k \mu(k)} .
$$

If $\mu \neq \sigma$, then there exist $p \neq q$ such that $\mu(p) \neq \sigma(p), \mu(q) \neq \sigma(q)$ and hence $|D(\sigma) \cap D(\mu)| \leqq n-2$. If there exists $\mu \neq \sigma$ and $\prod_{k=1}^{n} b_{k \mu(k)} \neq 0$ then $D(\mu) \subseteq M \cup D(\sigma) \cup\{(i, j)\}$. Since by Lemma $4,|D(\mu) \cap M|=1$, it follows that $|D(\sigma) \cap D(\mu)|=n-2$. If $n \geqq 5$, this is impossible since by Lemma 1 , $|D(\sigma) \cap D(\mu)|=0,1$ or 2 . Hence $D_{n}^{\lambda}(B(c))=\lambda(\sigma) \prod_{k=1}^{n} b_{k \sigma(k)} \neq 0$ and $B(c) \in Z$, a contradiction.
(ii) $\sigma(i)=j$ and $|F|>2$. Let

$$
B(x)=\sum_{k \neq i_{t}, i} A_{k \sigma(k)}+x A_{i \sigma(i)} .
$$

Then we may choose $c \in F^{*}$ so that the $\left(i_{t}, j_{t}\right)$ entry of $B(c)$ is nonzero. Again set $B(c)=\left(b_{r s}\right)$. Then $b_{r s}=0$ if $(r, s) \notin M \cup D(\sigma)$ and $b_{i \sigma(i)} \neq 0, i=1$, $2, \ldots, n$. Since $|D(\mu) \cap M|=1$ for $\mu \in D_{n}$ it follows that $D_{n}{ }^{\lambda}(B(c))=\lambda(\sigma)$ $\prod_{k=1}^{n} b_{k \sigma(k)} \neq 0$ and $B(c) \in Z$, a contradiction.
(iii) $\sigma(i)=j$ and $F=\{0,1\}$. Let $\left(b_{r s}\right)=B=\sum_{k \neq i t} A_{k \sigma(k)}$. If $b_{i t j t}=1$ then $D_{n}{ }^{\lambda}(B)=\lambda(\sigma) \neq 0$ and $B \in Z$, a contradiction. Hence assume $b_{i_{t}, j t}=0$. Then $c_{t}{ }^{i^{\prime} j^{\prime}}=1$ for some $\left(i^{\prime}, j^{\prime}\right) \notin M, i^{\prime} \neq i$ and $\sigma\left(i^{\prime}\right)=j^{\prime}$. Since $\mid D(\sigma) \cap$ $D(\nu) \mid \leqq 2$, it follows that at least one of $(i, j),\left(i^{\prime}, j^{\prime}\right)$ is not in $D(\nu)$. This reduces to case (i) with σ replaced by ν.

Proof of Proposition 1. By Lemma 4, $\left|D\left(g_{i}\right) \cap M\right|=1$ for $i=1,2, \ldots, n$. Hence the pairs $\left(i_{t}, j_{t}\right), t=1,2, \ldots, n$ may be arranged so that $g_{t}\left(i_{t}\right)=j_{t}$, $t=1,2, \ldots, n$. Since $\left|D\left(g_{i} h\right) \cap M\right|=1$ for $i=1,2, \ldots, n$ there exists a permutation α such that $g_{\alpha(t)} h\left(i_{t}\right)=j_{t}, t=1,2, \ldots, n$. If n is odd, it follows from $\left|D\left(g_{j}\right) \cap D\left(g_{k} h\right)\right|=1$ that $\alpha \in S_{n}$. Suppose n is even. By Lemma 1 , $\left|D\left(g_{j}\right) \cap D\left(g_{k} h\right)\right| \neq 0$ only if $2 \mid(j-k)$. Hence $2 \mid(t-\alpha(t))$ and $\alpha \in K_{n}$. By Lemma 5 the result follows.

Lemma 6. If $T \in \mathscr{T}\left(D_{n}, \lambda\right), n \geqq 3$, then T is nonsingular.
Proof. Suppose T is singular. Then $T(A)=0$ for some $A \neq 0$. Hence

$$
\begin{aligned}
D_{n}^{\lambda}(X-A)=D_{n}^{\lambda}(T(X-A))=D_{n}^{\lambda}(T(X) & -T(A)) \\
& =D_{n}^{\lambda}(T(X))=D_{n}^{\lambda}(X)
\end{aligned}
$$

for all X. If $A=\left(a_{i j}\right)$ then $a_{i j} \neq 0$ for some i, j. We know that $\left|D_{n}(i, j)\right|=2$ and let $\sigma \in D_{n}(i, j)$. Set

$$
c_{1}=\sum_{\nu \in D_{n}(t, j)} \lambda(\nu) \prod_{t=1}^{n} a_{t \nu(t)}, \quad c_{2}=\sum_{\nu \notin D_{n}(i, j)} \lambda(\nu) \prod_{t=1}^{n} a_{t \nu(t)} .
$$

Then $D_{n}{ }^{\lambda}(A)=c_{1}+c_{2}=0$ since $D_{n}{ }^{\lambda}(A)=D_{n}{ }^{\lambda}(T(A))=D_{n}{ }^{\lambda}(0)=0$. We consider two cases:
(i) $c_{1}=-c_{2} \neq 0$. Let $X=a_{i j} E_{i j}$. Then $D_{n}{ }^{\lambda}(X)=0$ and

$$
D_{n}^{\lambda}(X-A)=\sum_{v \in D_{n}(i, j)} \lambda(\nu) \prod_{t=1}^{n}\left(\delta_{j \nu(t)} a_{i j}-a_{t v(t)}\right)+c_{2}=0+c_{2} \neq 0
$$

since $\delta_{j \nu(i)} a_{i j}-a_{i v(i)}=0$. Hence we have $D_{n}{ }^{\lambda}(X-A) \neq D_{n}{ }^{\lambda}(X)$, a contradiction.
(ii) $c_{1}=c_{2}=0$. Let X be the matrix whose (r, s) entry is $a_{i j}$ if $\sigma(r)=s$ and zero elsewhere. Then $D_{n}{ }^{\lambda}(X)=\lambda(\sigma) a_{i, j}{ }^{n} \neq 0$. Write $B=X-A=\left(b_{i j}\right)$. Then
$D_{n}{ }^{\lambda}(B)=d_{1}+d_{2}$ where

$$
d_{1}=\sum_{\nu \in D_{n}(i, j)} \lambda(\nu) \prod_{i=1}^{n} b_{t \nu(t)}, \quad d_{2}=\sum_{\nu \notin D_{n}(i, j)} \lambda(\nu) \prod_{t=1}^{n} b_{t \nu(t)} .
$$

Since $b_{i j}=a_{i j}-a_{i j}=0$ we have $d_{1}=0$. If $d_{2}=0$ then $D_{n}{ }^{\lambda}(B)=0$ and $D_{n}{ }^{\lambda}(X-A) \neq D_{n}{ }^{\lambda}(X)$, a contradiction. Therefore we suppose $d_{2} \neq 0$. Since $c_{2} \neq d_{2}$ there exists $\mu \notin D_{n}(i, j)$ such that

$$
\begin{equation*}
\prod_{t=1}^{n} b_{t \mu(t)} \neq \prod_{t=1}^{n} a_{t \mu(t)} . \tag{3.3}
\end{equation*}
$$

Since A and B differ only at positions in $D(\sigma)$ we have $|D(\sigma) \cap D(\mu)| \neq 0$ and $|D(\sigma) \cap D(\mu)|=1$ or 2 depending on whether n is odd or even. If n is odd let $(k, l) \in D(\sigma) \cap D(\mu)$ and $X_{1}=a_{i j}\left(E_{i j}+E_{k l}\right)$. If n is even let (k, l), $\left(k^{\prime}, l^{\prime}\right) \in D(\sigma) \cap D(\mu)$ and $X_{1}=a_{i j}\left(E_{i j}+E_{k l}+E_{k^{\prime}} l^{\prime}\right)$. In both cases we have $D_{n}{ }^{\wedge}\left(X_{1}\right)=0$ since $n \geqq 3$. Now let $X_{1}-A=\left(b_{r s}{ }^{\prime}\right)$. Then $D_{n}{ }^{\lambda}\left(X_{1}-A\right)$ $=d_{1}{ }^{\prime}+d_{2}{ }^{\prime}$ with

$$
d_{1}^{\prime}=\sum_{\nu \in D_{n}(i, j)} \lambda(\nu) \prod_{t=1}^{n} b_{t \nu(t)^{\prime}}=0
$$

since $b_{i \nu(i)}{ }^{\prime}=b_{i j}{ }^{\prime}=a_{i j}-a_{i j}=0$ and

$$
d_{2}^{\prime}=\sum_{\nu \notin D_{n}(i, j) \cup} \cup_{D_{n}(k, l)} \lambda(\nu) \prod_{t=1}^{n} b_{t \nu(t)^{\prime}}+\lambda(\mu) \prod_{t=1}^{n} b_{t \mu(t)^{\prime}}
$$

since $D_{n}(k, l)=\{\sigma, \mu\}$. Note that $b_{t \nu(t)^{\prime}}=a_{\iota \nu(t)}$ if $\nu \forall D_{n}(i, j) \cup D_{n}(k, l)$ and $b_{t \mu(t)^{\prime}}=b_{t \mu(t)}$ for all $t=1,2, \ldots, n$. Hence

$$
\begin{aligned}
d_{2}{ }^{\prime} & =\sum_{\nu \notin D_{n}(i, j) \cup \cup D_{n}(k, l)} \lambda(\nu) \prod_{t=1}^{n} a_{t \nu(t)}+\lambda(\mu) \prod_{t=1}^{n} b_{t \mu(t)} \\
& =c_{2}-\lambda(\mu) \prod_{t=1}^{n} a_{t \mu(t)}+\lambda(\mu) \prod_{t=1}^{n} b_{t \mu(t)} .
\end{aligned}
$$

Now $c_{2}=0$ and by (3.3), $d_{2}{ }^{\prime} \neq 0$. Hence $D_{n}{ }^{\lambda}\left(X_{1}-A\right) \neq 0$ and $D_{n}{ }^{\lambda}\left(X_{1}-A\right)$ $\neq D_{n}{ }^{\lambda}\left(X_{1}\right)$, a contradiction.

Now suppose $T \in \mathscr{T}\left(D_{n}, \lambda\right)$. Then by Proposition 1 and Lemma 6 , applying the same argument as in $[\mathbf{2}]$, it can be shown that for each pair $1 \leqq i, j \leqq n$ there exist $1 \leqq p, q \leqq n$ and $a_{p q} \in F^{*}$ such that

$$
T\left(E_{i j}\right)=a_{p q} E_{p_{q}}
$$

and for distinct (i, j) we have distinct (p, q), i.e., the matrix representation of T with respect to the basis $\left\{E_{i j}: i, j=1,2, \ldots, n\right\}$ is a generalized permutation matrix.

For $\sigma \in D_{n}$, since $D_{n}{ }^{\lambda}(P(\sigma))=\lambda(\sigma) \neq 0$, it follows that $T(P(\sigma))=A * P(\mu)$ for some $\mu \in D_{n}$, i.e., T transforms diagonals to diagonals. Furthermore
since $D_{n}{ }^{\lambda}(T(P(\sigma)))=\lambda(\mu) \prod_{t=1}^{n} a_{i \mu(i)}$, we have $\prod_{i=1}^{n} a_{i \mu(i)}=\lambda(\sigma)(\lambda(\mu))^{-1}$. By minor modifications on the proofs in [5], Theorems 1 and 2 follow.

References

1. E. P. Botta, Linear transformations on matrices: the invariance of a class of general matrix functions, Can. J. Math. 19 (1967), 281-290.
2. Linear transformations on matrices: the invariance of a class of general matrix functions, II, Can. J. Math. 20 (1968), 739-748.
3. G. Frobenius, Über die Darstellung der endlichen Gruppen durch linear substitutionen: I, Sitzungsberichte der Preuss. Acad. Wiss. zu Berlin (1897), 994-1015.
4. M. Marcus and F. C. May, The permanent function, Can. J. Math. 14 (1962), 177-189.
5. Hock Ong, Linear transformations on matrices: the invariance of generalized permutation matrices - III, Linear Algebra and its Appl. 15 (1976), 119-151.

Tunku Abdul Rahman College, Kuala Lumpur, Malaysia

[^0]: Received August 20, 1976.

