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Generating Some Symmetric Semi-classical
Orthogonal Polynomials

Mohamed Zaatra

Abstract. We show that if v is a regular semi-classical form (linear functional), then the symmetric
form u defined by the relation x2σu = −λv, where (σ f )(x) = f (x2) and the odd moments of u are 0,
is also regular and semi-classical form for every complex λ except for a discrete set of numbers depend-
ing on v. We give explicitly the three-term recurrence relation and the structure relation coefficients of
the orthogonal polynomials sequence associated with u and the class of the form u knowing that of v.
We conclude with an illustrative example.

1 Introduction

Let P be the vector space of polynomials with coefficients in C and let P′ be its dual.
We denote by 〈v, f 〉 the action of v ∈ P′ on f ∈ P and by S(v)(z) the formal Stieltjes
function of v defined by

(1.1) S(v)(z) = −
∑
n≥0

(v)n

zn+1
,

where (v)n = 〈v, xn〉, n ≥ 0 , are the moments of v.
For any form v, any polynomial h and c ∈ C let Dv = v′, hv, δc and (x − c)−1v be

the forms defined by:

〈v′, f 〉 := −〈v, f ′〉, 〈hv, f 〉 := 〈v, h f 〉,
〈δc, f 〉 := f (c), 〈(x − c)−1v, f 〉 := 〈v, θc f 〉,

where (θc f )(x) = f (x)− f (c)
x−c , f ∈ P.

Then it is straightforward to prove that for v ∈ P′, we have [17]

x(x−1v) = v,(1.2)

x−1(xv) = v − (v)0δ0,(1.3)

x−2(x2v) = v − (v)0δ0 + (v)1δ
′

0.(1.4)
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Let us define the operator σ : P → P by (σ f )(x) = f (x2). Then we define the
even part, σv, by 〈σv, f 〉 := 〈v, σ f 〉. Therefore, we have [6, 16]

f (x)(σv) = σ( f (x2)v),

σv
′

= 2(σxv)
′
.

A form v is called regular if there exists a sequence of polynomials {Sn}n≥0 with
deg Sn = n, n ≥ 0, such that

〈v, SnSm〉 = rnδn,m , rn 6= 0, n ≥ 0.

We can always assume that each Sn is monic, i.e., Sn(x) = xn+lower degree terms. Then
the sequence {Sn}n≥0 is said to be orthogonal with respect to v (monic orthogonal
polynomial sequence (MOPS) in short). It is a very well known fact (see, for instance,
the monograph by Chihara [6]) that the sequence {Sn}n≥0 satisfies the three-term
recurrence relation

Sn+2(x) = (x − ξn+1)Sn+1(x)− ρn+1Sn(x), n ≥ 0,(1.5)

S1(x) = x − ξ0, S0(x) = 1.

with (ξn, ρn+1) ∈ C× (C− {0}), n ≥ 0. By convention we set ρ0 = (v)0 = 1.
In this case, let {S(1)

n }n≥0 be the associated sequence of first kind for the sequence
{Sn}n≥0 satisfying the three-term recurrence relation

S(1)
n+2(x) = (x − ξn+2)S(1)

n+1(x)− ρn+2S(1)
n (x), n ≥ 0,(1.6)

S(1)
1 (x) = x − ξ1, S(1)

0 (x) = 1,
(

S(1)
−1(x) = 0

)
.

Another important representation of S(1)
n (x) is, (see [7])

S(1)
n (x) :=

〈
v,

Sn+1(x)− Sn+1(ζ)

x − ζ

〉
= (vθ0Sn+1)(x),

where the right-multiplication of a form by a polynomial is defined by

(v f )(x) :=
〈

v,
x f (x)− ζ f (ζ)

x − ζ

〉
=

n∑
m=0

( n∑
j=m

a j(v) j−m

)
xm, f (x) =

n∑
j=0

a jx
j .

Also, let {Sn( · , µ)}n≥0 be co-recursive polynomials for the sequence {Sn}n≥0 sat-
isfying [6]

(1.7) Sn(x, µ) = Sn(x)− µS(1)
n−1, n ≥ 0.

We recall that a form v is called symmetric if (v)2n+1 = 0, n ≥ 0. The conditions
(v)2n+1 = 0, n ≥ 0 are equivalent to the fact that the corresponding MOPS {Sn}n≥0

satisfies the recurrence relation (1.5) with ξn = 0, n ≥ 0 [6].
Let us recall that a form v is called semi-classical of class s when it is regular and

there exist two polynomials Φ, a monic polynomial, and Ψ, deg(Ψ) ≤ 1, such that(
Φ(x)v

) ′
+ Ψ(x)v = 0,

where ∏
c∈Z

(|Φ
′
(c) + Ψ(c)| + |〈v, θ2

c Φ + θcΨ〉|) 6= 0.
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Here, Z denotes the set of zeros of Φ and s = max(deg(Φ)− 2, deg(Ψ)− 1).
The corresponding MOPS {Sn}n≥0 is said to be semi-classical of class s. When

s = 0, v is a classical form (Hermite, Laguerre, Jacobi, or Bessel).
The semi-classical forms are a natural generalization of the classical forms. Since

the system corresponding to the problem of determining all the semi-classical forms
of class s ≥ 1 becomes non-linear, the problem can only be solved when the class
s = 1 and for some particular cases [1, 5, 12]. Thus, several authors use different
processes in order to obtain semi-classical forms of class s ≥ 1. For instance, we can
mention the adjunction of a finite number of Dirac masses and their derivatives to
classical forms [3, 9–11] and the product and the division of a form by a polynomial
[2, 4, 8, 14, 18, 19]. So, some examples of semi-classical forms are given in terms of
classical ones.

The whole idea of this paper is to build a new construction process of a semi-
classical form, which has not yet been treated in the literature on semi-classical poly-
nomials.

We study the form u related to a semi-classical form v by

x2σu = −λv, λ 6= 0, σ(xu) = 0.

The structure of the paper is as follows. In Section 2, an explicit, necessary, and
sufficient condition for the regularity of the new form is given. We will also give the
coefficients of the three-term recurrence relation satisfied by the new family of or-
thogonal polynomials. In the third section, we compute the exact class of the semi-
classical form obtained by the above modification, and the structure relation of the
orthogonal polynomials sequence relative to the form u will follow. In the final sec-
tion, we give a detailed study of an example. The regular form found in the example
is semi-classical of class four at most.

2 Algebraic Properties

Let v be a regular, normalized form (i.e., (v)0 = 1) and let {Sn}n≥0 be the corre-
sponding MOPS. For a λ ∈ C − {0}, we can define a new symmetric form u as
follows:

(2.1) x2σu = −λv, σxu = 0, (u)2 = (u)0 = 1.

From (1.2)–(1.4), we have

xσu = −λx−1v + δ0,(2.2)

σu = −λx−2v + δ0 − δ
′

0.(2.3)

Proposition 2.1 The form u is regular if and only if ∆nSn(0, λ) 6= 0, n ≥ 0, where

∆n = τn

(
λ +

n∑
ν=0

S2
ν(0, λ)

τν

)
, n ≥ 0,(2.4)

τn = 〈v, S2
n〉 =

n∏
ν=0

ρν , n ≥ 0.(2.5)

For the proof, we need the following lemma.
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Lemma 2.2 ([6, 16]) If the form v is symmetric, then v is regular if and only if σv
and xσv are both regular.

Proof of Proposition 2.1 Let u be given by (2.1). Since u is a symmetric form,
according to Lemma 2.2, u is regular if and only if xσu and σu are regular. But
xσu = −λx−1v + δ0 is regular if and only if Sn(0, λ) 6= 0, n ≥ 0 (see [18]). So u is
regular if and only if Sn(0, λ) 6= 0 and σu = −λx−2v + δ0 − δ

′

0 is regular. Or, it was
shown in [4] that the form−λx−2v+δ0−δ

′

0 is regular if and only if ∆n 6= 0 , n ≥ 0.
Then we deduce the desired result.

If u is regular, let {Zn}n≥0 be its corresponding sequence of polynomials satisfying
the three-term recurrence relation

Zn+2(x) = xZn+1(x)− γn+1Zn(x), n ≥ 0,(2.6)

Z1(x) = x, Z0(x) = 1.

Since {Zn}n≥0 is symmetric, let us consider its quadratic decomposition (see [16])

(2.7) Z2n(x) = Pn(x2), Z2n+1(x) = xRn(x2).

The sequences {Pn}n≥0 and {Rn}n≥0 are respectively orthogonal with respect to σu
and xσu.

We have, for instance,

Pn+2(x) = (x − γ2n+2 − γ2n+3)Pn+1(x)− γ2n+1γ2n+2Pn, n ≥ 0,

P1(x) = x − γ1, P0(x) = 1,

and

Rn+2(x) = (x − γ2n+3 − γ2n+4)Rn+1(x)− γ2n+2γ2n+3Rn(x), n ≥ 0,

R1(x) = x − γ1 − γ2, R0(x) = 1.

Remarks (i) If w is the symmetrized form associated with the form v (i.e.,
(w)2n = (v)n and (w)2n+1 = 0, n ≥ 0), then (2.1) is equivalent to x4u = −λw.
Notice that w is not necessarily a regular form in the problem under study. In [13],
the authors have solved it only when w is regular.

(ii) From (2.2)–(2.3), we have ([4, 18])

Rn+1(x) = Sn+1(x) + anSn(x), n ≥ 0,(2.8)

Pn+2(x) = Sn+2(x) + cn+1Sn+1(x) + bnSn(x), n ≥ 0,(2.9)

P1(x) = S1(x) + c0S0(x),

where

an = −Sn+1(0, λ)

Sn(0, λ)
, n ≥ 0,(2.10)

bn =
∆n+1

∆n
, n ≥ 0,(2.11)

c0 = ξ0 − 1, cn+1 = ξn+1 −
Sn+1(0, λ)Sn(0, λ)

∆n
, n ≥ 0,
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and also we have ([18])

(2.12) ξn+1 + an − an+1 = γ2n+3 + γ2n+4, an(ξn − an) = γ2n+2γ2n+3, n ≥ 0.

(iii) From (2.7) and (2.8)–(2.9), we get

Z2n+3(x) = xSn+1(x2) + anxSn(x2), n ≥ 0,

Z2n+4(x) = Sn+2(x2) + cn+1Sn+1(x2) + bnSn(x2), n ≥ 0,

Z2(x) = S1(x2) + c0S0(x2).

Proposition 2.3 We may write

(2.13)


γ1 = 1, γ3 = λ

a0

λ + 1
, γ2n+5 = ρn+1

an+1

bn
,

γ2 = −λ− 1, γ2n+4 =
bn

an
, n ≥ 0.

For the proof, we use the following lemma.

Lemma 2.4

〈u, xZ1(x)〉 = 1, 〈u, x2n+3Z2n+3(x)〉 = −λτnan, n ≥ 0,(2.14)

〈u, x2Z2(x)〉 = −λ− 1 , 〈u, x2n+4Z2n+4(x)〉 = −λτnbn, n ≥ 0.(2.15)

Proof From (2.7), we have

〈u, x2n+3Z2n+3(x)〉 = 〈x2σu, xnRn+1(x)〉, n ≥ 0.

Taking (2.1), (2.5), and relation (2.8) into account, we get (2.14).
By applying the same process as we did to obtain (2.14) and using (2.7) and (2.9),

we can get (2.15). Finally, 〈u, x2Z2(x)〉 = (u)4 − (u)2 = −λ− 1.

Proof of Proposition 2.3 By (2.6) and the orthogonality of {Zn}n≥0, we get

γ2n+2 =
〈u, x2n+2Z2n+2(x)〉
〈u, x2n+1Z2n+1(x)〉

and γ2n+1 =
〈u, x2n+1Z2n+1(x)〉
〈u, x2nZ2n(x)〉

, n ≥ 0.

Then, from (2.14)–(2.15) and the above relations, we get (2.13).

Corollary 2.5 When the form v is symmetric, then u is regular if and only if

λ∆2n∆2n+1 6= 0, n ≥ 0,

with

∆2n = τ2n(λ2$n−1 + λ + 1 + ωn−1), n ≥ 0,(2.16)

∆2n+1 = τ2n+1(λ2$n + λ + 1 + ωn−1), n ≥ 0,(2.17)

ωn =
n∑
ν=0

τ o
ν

τ e
ν+1

, $n =
n∑
ν=0

τ e
ν

τ o
ν

, n ≥ 0, ω−1 = $−1 = 0,

τ e
n =

n∏
µ=0

ρ2µ, τ o
n =

n∏
µ=0

ρ2µ+1, n ≥ 0.
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Moreover, for n ≥ 0,

(2.18)



γ1 = 1, γ2 = −λ− 1, γ3 =
λ2

λ + 1
, γ4 =

λ2 + ρ1(λ + 1)

λ(λ + 1)
,

γ4n+5 = −λ−1 τ
o
n

τ e
n

$n−1λ
2 + λ + 1 + ωn−1

$nλ2 + λ + 1 + ωn−1
,

γ4n+6 = −λτ
e
n+1

τ o
n

$nλ
2 + λ + 1 + ωn

$nλ2 + λ + 1 + ωn−1
,

γ4n+7 = λ
τ e

n+1

τ o
n

$nλ
2 + λ + 1 + ωn−1

$nλ2 + λ + 1 + ωn
,

γ4n+8 = λ−1 τ
o
n+1

τ e
n+1

$n+1λ
2 + λ + 1 + ωn

$nλ2 + λ + 1 + ωn
.

Proof Taking into account (1.5)–(1.6), with ξn = 0, we get Sn+2(0) = −ρn+1Sn(0)
and S(1)

n+2(0) = −ρn+2S(1)
n (0). Then

S2n+1(0) = 0, S2n+2(0) = (−1)n+1
n∏

v=0
ρ2v+1, n ≥ 0,(2.19)

S(1)
2n+1(0) = 0, S(1)

2n (0) = (−1)n
n∏

v=0
ρ2v, n ≥ 0.(2.20)

Therefore S2n+1(0, λ) = −λS(1)
2n (0) 6= 0 and S2n+2(0, λ) = S2n+2(0) 6= 0. Hence, from

(2.19)–(2.20) and (2.4) we get (2.16)–(2.17).
By virtue of (2.16)–(2.17), (2.13) becomes (2.18).

3 The Semi-classical Case

Definition 3.1 ([17]) The form v is called semi-classical when it is regular and its
formal Stieltjes function satisfies the Riccati equation

(3.1) Φ(z)S′(v)(z) = C0(z)S(v)(z) + D0(z),

where Φ monic, C0, and D0 are polynomials .

It was shown in [17] that equation (3.1) is equivalent to

(3.2)
(

Φ(x)v
) ′

+ Ψ(x)v = 0.

with Ψ(x) = −Φ′(x)−C0(x).

Proposition 3.2 ([15]) Define r = deg(Φ) and p = deg(Ψ). The semi-classical
form v satisfying (3.2) is of class s = max(r − 2, p − 1) if and only if

(3.3)
∏

c∈Z

(
|Φ

′
(c) + Ψ(c)| + |〈v, θ2

c Φ + θcΨ〉|
)
6= 0,

where Z denotes the set of zeros of Φ.
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Corollary 3.3 ([1]) The form v satisfying (3.1) is of class s if and only if

(3.4)
∏

c∈Z

(
|C0(c)| + |D0(c)|

)
6= 0.

In the sequel, the form v will be assumed to be semi-classical of class s satisfying (3.1)
and (3.2).

Proposition 3.4 If v is a semi-classical form and satisfies (3.1), then the form u de-
fined by (2.1) is semi-classical. It satisfies

(3.5) Φ̃(z)S′(u)(z) = C̃0(z)S
(

u
)

(z) + D̃0(z),

where

(3.6)


Φ̃(z) = z2Φ(z2),

C̃0(z) = 2z3C0(z2)− 3zΦ(z2),

D̃0(z) = 2(z2 + 1)C0(z2)− 2Φ(z2)− 2λD0(z2).

Moreover, the class of u depends only on the zero x = 0 of Φ.

Proof From (1.1) and (2.1), we obtain

(3.7) S(v)(z2) = −z3λ−1S(u)(z)− λ−1z2 − λ−1.

Make a change of variable z → z2 in (3.1); multiply by −2λz and substitute (3.7)
in the obtained equation, we get (3.5)–(3.6).

From (3.6), the zeros of Φ̃ are 0 and those of Φ.
Let c2 be any zero of Φ. Then, from (3.6), we get

(3.8) C̃0(c) = 2c3C0(c2), D̃0(c) = 2(c2 + 1)C0(c2) + 2λD0(c2).

Now, if c 6= 0 and C0(c2) = 0, from (3.8), we have D̃0(c) 6= 0, since v is semi-classical
of class s and so satisfies (3.4), and if c 6= 0 and C0(c2) 6= 0, from (3.8), we have
C̃0(c) 6= 0.

Thus, we cannot simplify the irreducible equation (3.5)–(3.6) by z−c if c 6= 0.

The form u satisfies the distributional equation

(3.9)
(

Φ̃(x)u
) ′

+ Ψ̃u = 0,

where Φ̃ is the polynomial defined by (3.6) and

(3.10) Ψ̃(x) = −Φ̃′(x)− C̃0(x) = 2x3Ψ(x2) + xΦ(x2).

Proposition 3.5 Let X(z) = C0(z)− Φ(z)− λD0(z) and Y (z) = 2C0(z)− 3Φ
′
(z),

where the polynomials Φ, C0, and D0 are defined by (3.1). For every λ ∈ C − {0}
such that ∆nSn(0, λ) 6= 0, n ≥ 0, the linear functional u defined by (2.1) is regular and
semi-classical of class s̃ satisfying (3.5). Moreover,

(i) if X(0) 6= 0, then s̃ = 2s + 4;
(ii) if X(0) = 0 and Φ(0) 6= 0, then s̃ = 2s + 3;
(iii) if X(0) = Φ(0) = 0 and X

′
(0) 6= 0, then s̃ = 2s + 2;

(iv) if X(0) = X
′
(0) = Φ(0) = 0 and Y (0) 6= 0, then s̃ = 2s + 1;
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(v) if X(0) = X
′
(0) = Φ(0) = Y (0) = 0, then s̃ = 2s.

Proof (i) If X(0) 6= 0, then from (3.6) we obtain D̃0(0) 6= 0. Therefore, it is not
possible to simplify (3.5)–(3.6). From (3.6) and (3.10), we have

deg(Φ̃) = 2r + 2 and deg(Ψ̃) ≤ max(2p + 3, 2r + 1).

Thus, s̃ = max(deg(Φ̃)− 2, deg(Ψ̃)− 1) = max(2r, 2p + 2) = 2s + 4.
(ii) If X(0) = 0, then from (3.6) we have C̃0(0) = D̃0(0) = 0; therefore, (3.5)–

(3.6) is divisible by z. Thus, u fulfils (3.5) with

(3.11)


Φ̃(z) = zΦ(z2),

C̃0(z) = 2z2C0(z2)− 3Φ(z2),

D̃0(z) = 2zC0(z2) + 2z
(
θ0(C0 − Φ− λD0)

)
(z2).

If Φ(0) 6= 0, it is not possible to simplify and thus the order of the class of u decreases
by one unit.

(iii) If Φ(0) = X(0) = 0, then it is possible to simplify (3.5)–(3.11), by z thus, u
fulfils (3.5) with

(3.12)


Φ̃(z) = Φ(z2),

C̃0(z) = 2zC0(z2)− 3z(θ0Φ)(z2),

D̃0(z) = 2C0(z2) + 2
(
θ0(C0 − Φ− λD0)

)
(z2).

Therefore, if C0(0) + X
′
(0) 6= 0, it is not possible to simplify, which means that the

class of u is s̃ = 2s + 2.
(iv) If Φ(0) = X(0) = C0(0) + X

′
(0) = 0, then it is possible to simplify (3.5)–

(3.12) by z. Thus u fulfils (3.5) with

(3.13)


Φ̃(z) = z(θ0Φ)(z2),

C̃0(z) = 2C0(z2)− 3(θ0Φ)(z2),

D̃0(z) = 2z(θ0C0)(z2) + 2z
(
θ2

0(C0 − Φ− λD0)
)

(z2).

If Y (0) 6= 0, it is not possible to simplify, which means that the class of u is s̃ = 2s + 1.
(v) If Φ(0) = X(0) = C0(0) + X

′
(0) = Y (0) = 0, then it is possible to simplify

(3.5)–(3.13) by z. Thus, u fulfils (3.5) with

(3.14)


Φ̃(z) = (θ0Φ)(z2),

C̃0(z) = 2z(θ0C0)(z2)− 3z(θ2
0Φ)(z2),

D̃0(z) = 2(θ0C0)(z2) + 2
(
θ2

0(C0 − Φ− λD0)
)

(z2).

Assuming that Φ̃(0) = Φ
′
(0) = 0, from the condition Y (0) = 0, we obtain C0(0) =

0. Thus, from the last result and the condition X(0) = Φ(0) = 0, we get D0(0) = 0,
which is a contradiction with (3.3). Then it is not possible to simplify (3.5)–(3.14),
which means the class of u is s̃ = 2s.
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Note that the sequence of orthogonal polynomials relative to a semi-classical form
has a structure relation [17]. Then if we consider that the form v is semi-classical,
its orthogonal polynomial sequence {Sn}n≥0 fulfils the following structure relation
(written in a compact form):

(3.15) Φ(x)S′n+1(x) =
1

2

(
Cn+1(x)−C0(x)

)
Sn+1(x)− ρn+1Dn+1(x)Sn(x), n ≥ 0,

where for n ≥ 0,

(3.16)


Cn+1(x) = −Cn(x) + 2(x − ξn)Dn(x),

ρn+1Dn+1(x) = −Φ(x) + ρnDn−1(x)− (x − ξn)Cn(x)

+ (x − ξn)2Dn(x).

Here, Φ, C0(x), and D0(x) are the same polynomials introduced in (3.1); ξn, ρn are
the coefficients of the three term recurrence relation (1.5). Notice that D−1(x) =
0, deg(Cn) ≤ s + 1 and deg(Dn) ≤ s, n ≥ 0 [17].

According to Proposition 3.4, the form u is also semi-classical and its orthogo-
nal polynomials sequence {Zn}n≥0 satisfies a structure relation. In general, {Zn}n≥0

fulfils

(3.17) Φ̃(x)Z′n+1(x) =
1

2

(
C̃n+1(x)− C̃0(x)

)
Zn+1(x)− γn+1D̃n+1(x)Zn(x), n ≥ 0,

with

(3.18)

{
γn+1D̃n+1(x) = −Φ̃(x) + γnD̃n−1(x)− xC̃n(x) + x2D̃n(x),

C̃n+1(x) = −C̃n(x) + 2xD̃n(x), , n ≥ 0,

where C̃0(x) , D̃0(x) are given by (3.6) and D̃−1(x) = 0.
We are going to establish the expression of C̃n and D̃n , n ≥ 0 in terms of those of

the sequence {Sn}n≥0.

Proposition 3.6 The sequence {Zn}n≥0 fulfills (3.17) with
C̃2n+3(x) = −xΦ(x2) + 2x(x2 + γ2n+3 − an)(Cn+1(x2) + 2anDn(x2))

+ 2x(γ2n+3 − an)(Cn+1(x2) + 2
ρn+1

an
Dn+1(x2)), n ≥ 0,

D̃2n+3(x) = 2x2(Cn+1(x2) + anDn(x2) +
ρn+1

an
Dn+1(x2)), n ≥ 0;

(3.19)



C̃2n+4(x) = xΦ(x2) + 2x(x2 + an − γ2n+3)(Cn+1(x2) + 2
ρn+1

an
Dn+1(x2))

+ 2x(an − γ2n+3)(Cn+1(x2) + 2anDn(x2)), n ≥ 0,

D̃2n+4(x) = (x2 + an − γ2n+3)(Cn+1(x2) + 2
ρn+1

an
Dn+1(x2))

+ (an − γ2n+3)(Cn+1(x2) + 2anDn(x2))

+ (x2 + γ2n+5 − an+1)(Cn+2(x2) + 2an+1Dn+1(x2))

+ (γ2n+5 − an+1)(Cn+2(x2) + 2
ρn+2

an+1
Dn+2(x2)), n ≥ 0;

(3.20)
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C̃1(x) = −xΦ(x2) + 2x(x2 + 2)C0(x2)− 4λxD0(x2),

C̃2(x) = xΦ(x2) + 2x(x2 − 2)C0(x2)− 4λx(x2 − 1)D0(x2),

D̃1(x) = 2x2(C0(x2)− λD0(x2)),

D̃2(x) = − 2

λ + 1
(Φ(x2) + (x2 − 1)C0(x2) + λ(x2 − 1)2D0(x2));

(3.21)

where C̃0(x) and D̃0(x) are given by (3.6) and γn+1 by (2.13).

To prove the above proposition, we need the following lemmas.

Lemma 3.7 ([18]) We have

(3.22) xSn(x) = Rn+1(x) + (ξn − an)Rn(x), n ≥ 0.

Lemma 3.8 We have

(3.23) x3Sn(x2) =
(

1− γ2n+3

an

)
Z2n+3(x) +

γ2n+3

an
Z2n+2(x), n ≥ 0.

Proof Change x → x2 in (3.22) and multiply by x; we obtain (3.23) by taking
(2.6)–(2.7) and (2.12) into account.

Proof of Proposition 3.6 From (1.5), (2.7), and (2.8), we have

(3.24) Z2n+3(x) = − an

ρn+1
xSn+2(x2) +

{
1 +

an

ρn+1
(x2 − ξn+1)

}
xSn+1(x2), n ≥ 0.

After a derivation of (3.24), multiplying by x3Φ(x2), and using (3.15)–(3.16), we get

x3Φ(x2)Z
′

2n+3(x) =
{

Φ(x2) + x2
(

2anDn(x2) + Cn+1(x2
)
−C0(x2))

}
x3Sn+1(x2)

+ {anΦ(x2)− anx2
(

Cn+1(x2) + C0(x2)
)
− 2ρn+1x2Dn+1(x2)}x3Sn(x2), n ≥ 0.

From (2.6), (2.12), and (3.23), we can write

x3Sn+1(x2) =
(

x2 + γ2n+3 − an

)
Z2n+3(x)− γ2n+3xZ2n+2(x), n ≥ 0.

Then

(3.25) Φ̃(x)Z
′

2n+3(x) = Xn(x)Z2n+3(x)− γ2n+3Yn(x)Z2n+2(x), n ≥ 0,

with for n ≥ 0,

Xn(x) = xΦ(x2) + x(x2 + γ2n+3 − an)
(

Cn+1(x2) + 2anDn(x2)
)

+ x(γ2n+3 − an)(Cn+1(x2) + 2
ρn+1

an
Dn+1(x2)

and

Yn(x) = 2x2(Cn+1(x2) + anDn(x2) +
ρn+1

an
Dn+1(x2).

From (3.17) and (3.25), we have{
Xn(x)− 1

2

(
C̃2n+3(x)− C̃0(x)

)}
Z2n+3(x) =

γ2n+3

{
Yn(x)− D̃2n+3(x)

}
Z2n+2(x), n ≥ 0.
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Since Z2n+3(x) and Z2n+2(x) have no common roots, Z2n+3(x) divides Yn(x)−D̃2n+3(x),
which is a polynomial of degree at most equal to 2s+4. Therefore, we have necessarily
Yn(x)− D̃2n+3(x) = 0 for n ≥ s + 1, and also Xn(x) = 1

2 (C̃2n+3(x)− C̃0(x)), n ≥ s + 1.
Then, by (3.6), we get (3.19) for n ≥ s + 1.
By virtue of the recurrence relation (3.18) and (3.6), we can easily prove by in-

duction that the system (3.19) is valid for 0 ≤ n ≤ s. Hence, (3.19) is valid for
n ≥ 0.

Finally, using (3.6) and (3.18)–(3.19) we give (3.20)–(3.21).

4 Illustrative Example

We study the problem (2.1), with v = J(− 1
2 ,

1
2 ), where J is the Jacobi form. The

form v is classical, and it satisfies (3.2) with ([16])

(4.1) Φ(x) = x2 − 1, Ψ(x) = −2x − 1.

The sequence {Sn}n≥0 fulfils (1.5) with ([16])

(4.2) ξ0 = −1

2
, ξn+1 = 0, ρn+1 =

1

4
, n ≥ 0.

It also fulfils (3.15) with ([16])

(4.3) C0(x) = 1, Cn+1(x) = 2(n + 1)x, Dn(x) = 2n + 1, n ≥ 0.

First, we study the regularity of the form u.
From (1.5)–(1.6), and (4.2) , we can obtain the following by induction:

S2n(0) =
(−1)n

4n
, S2n+1(0) =

(−1)n

22n+1
, n ≥ 0,(4.4)

S(1)
2n (0) =

(−1)n

4n
, S(1)

2n+1(0) = 0, n ≥ 0.(4.5)

Then, from (1.7), we get for n ≥ 0,

(4.6) S2n(0, λ) =
(−1)n

4n
, S2n+1(0, λ) = (1− 2λ)

(−1)n

22n+1
.

Therefore, from (2.4) and (4.4), we have, for n ≥ 0,

∆2nS2n(0, λ) =
(−1)n

26n
(λ + 1 + nθ),

∆2n+1S2n+1(0, λ) =
(−1)n

26n+3
(1− 2λ)(λ + (n + 1)θ),

where θ = 1 + (2λ− 1)2. Then we distinguish the two following cases.

• θ = 0: The regularity means that we must have λ = 1±i
2 .

• θ 6= 0: ∆nSn(0, λ) 6= 0, n ≥ 0, means that we must have

λ + 1 + nθ 6= 0 and (1− 2λ)(λ + (n + 1)θ) 6= 0, n ≥ 0,

which gives

λ 6= 1

2
,

λ + 1

θ
6= −n,

λ + θ

θ
6= −n, n ≥ 0.
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Now, we give the coefficients of the second-order recurrence relation satisfied by
{Zn}n≥0. For this, first we calculate the coefficients an and bn, n ≥ 0, given by
(2.10)–(2.11) and (4.4)–(4.5):

a2n =
2λ− 1

2
, a2n+1 =

1

2(1− 2λ)
, n ≥ 0,

b2n =
λ + (n + 1)θ

4(λ + 1 + nθ)
, b2n+1 =

λ + 1 + (n + 1)θ

4(λ + (n + 1)θ)
, n ≥ 0.

Using the above results and (2.13), we obtain, for n ≥ 0,

γ1 = 1, γ2 = −λ− 1, γ3 =
λ(2λ− 1)

2(λ + 1)
,

γ4n+4 =
λ + (n + 1)θ

2(2λ− 1)(λ + 1 + nθ)
,

γ4n+5 =
λ + 1 + nθ

2(1− 2λ)(λ + (n + 1)θ)
,

γ4n+6 =
(1− 2λ)(λ + 1 + (n + 1)θ)

2(λ + (n + 1)θ)
,

γ4n+7 =
(2λ− 1)(λ + (n + 1)θ)

2(λ + 1 + (n + 1)θ)
.

Since v is classical, according to Proposition 3.4, the form u is semi-classical. It
satisfies (3.5) and (3.9) with

Φ̃(x) = x2(x4 − 1), Ψ̃(x) = −x(3x4 + x2 + 1),

C̃0(x) = x(−3x4 + 2x2 + 3), D̃0(x) = 2(−x4 + x2 + 2− λ).

From (4.1) and (4.3), we have Φ(0) = −1, X(0) = 2− λ. Now we can use Propo-
sition 3.5 to obtain the following:

• If λ 6= 2, then the class of u is s̃ = 4.
• If λ = 2, then the class of u is s̃ = 3.

Finally, according to Proposition 3.6 and using (4.3), (4.6), we give the elements of
the structure relation of the sequence {Zn}n≥0.

C̃0 = x(−3x4 + 2x2 + 3),

C̃1 = x(−x4 + 2x2 + 5− 4λ),

C̃2 = x
(

x4 + 2(1− 2λ)x2 + 4λ− 5
)
,

D̃0 = −2x4 + 2x2 + 2(2− λ),

D̃1 = 2(1− λ)x2,

D̃2 = 2x4 +
2

λ + 1

(
(1− 2λ)x2 + λ− 2

)
,
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C̃2n+3 = (4n + 3)x5 + 4
(

(2n + 1)an + 2(n + 1)(γ2n+3 − an)
)

x3

+
(

1 + 4(2n + 1)(γ2n+3 − an)an +
2n + 3

an

)
x,

C̃2n+4 = (4n + 5)x5 +
(

8(n + 1)(an − γ2n+3) +
2n + 3

an

)
x3

+
(

(an − γ2n+3)
(

4(2n + 1)an +
2n + 3

an

)
− 1
)

x,

D̃2n+3 = 2x2
(

2(n + 1)x2 + (2n + 1)an +
2n + 3

an

)
,

D̃2n+4 = 2(2n + 3)x4 +
((

2n + 3)(2an+1 +
1

2an

)
+ 4(n + 2)(γ2n+5 − an+1)

+ 4(an − γ2n+3)
)

x2 + (γ2n+5 − an+1)
(

2(2n + 3)an+1 +
2n + 5

2an+1

)
+ (an − γ2n+3)

(
2(2n + 1)an +

2n + 3

2an

)
.
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semi-classique. Ann. Mat. Pura Appl. (4) 162(1992), 1–22.
http://dx.doi.org/10.1007/BF01759996

[12] P. Maroni and M. Mejri, Some semi-classical orthogonal polynomials of class one. Eurasian Math. J.
2(2011), 108–128.

https://doi.org/10.4153/CMB-2015-041-9 Published online by Cambridge University Press

http://dx.doi.org/10.1080/10652469608819117
http://dx.doi.org/10.1016/S0019-3577(04)90001-8
http://dx.doi.org/10.1016/S0377-0427(97)00227-6
http://dx.doi.org/10.1080/10652460701511269
http://dx.doi.org/10.1090/S0002-9939-1957-0092015-5
http://dx.doi.org/10.1080/00036810008840828
http://dx.doi.org/10.1016/S0019-3577(97)83352-6
http://dx.doi.org/10.1007/BF01759996
https://doi.org/10.4153/CMB-2015-041-9


890 M. Zaatra

[13] P. Maroni and I. Nicolau, On the inverse problem of product of a form by a monomial: the case n = 4.
I. Integral Transforms Spec. Funct. 21(2010), no. 1–2, 35–56.

http://dx.doi.org/10.1080/10652460903016117
[14] , On the inverse problem of the product of a form by a polynomial: The cubic case. Appl.

Numer. Math. 45(2003), no. 4, 419–451.
http://dx.doi.org/10.1016/S0168-9274(02)00250-7

[15] P. Maroni, Variations around classical orthogonal polynomials. Connected problems. In: Proceedings
of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA)
(Granada, 1991), J. Comput. Appl. Math. 48(1993), no. 1–2, 133–155.

http://dx.doi.org/10.1016/0377-0427(93)90319-7
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