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Abstract
Dropping subjects based on the results of amanipulation check following treatment assignment is common
practice across the social sciences, presumably to restrict estimates to a subpopulation of subjects who
understand theexperimental prompt.Weshowthat thispractice can lead to seriousbiasandargue for a focus
on what is revealed without discarding subjects. Generalizing results developed in Zhang and Rubin (2003)
and Lee (2009) to the case of multiple treatments, we provide sharp bounds for potential outcomes among
those who would pass a manipulation check regardless of treatment assignment. These bounds may have
large or infinitewidth, implying that this inferential target is o�enout of reach. As anapplication,we replicate
Press, Sagan, and Valentino (2013) with a design that does not drop subjects that failed the manipulation
check and show that the findings are likely stronger than originally reported. We conclude with suggestions
for practice, namely alterations to the experimental design.

Keywords: causal inference, survey experiments, randomized experiments

1 Introduction
Manipulation checks are a valuable means of assessing the robustness of experimental results
in studies based on subjects’ attention to treatments, for instance, treatment frames presented
in survey experiments. In some studies, researchers may be inclined to exclude those subjects
who fail the manipulation check from further analysis. This practice is common across the social
sciences: we found 59 articles and 36 dissertations that we verified to have dropped subjects
a�er a manipulation (or other posttreatment) check.1 Articles including this practice have been
published in top journals inmultiple disciplines over recent years, including the American Political
Science Review, the Journal of Personality and Social Psychology, Psychological Science, and the
Journal ofMarketing.2 Nominally, the goal of removing subjects is tomake sure thatwe restrict our

Authors’ note: Peter M. Aronow is Assistant Professor, Departments of Political Science and Biostatistics, Yale University,
77 Prospect St., New Haven, CT 06520, USA (Email: peter.aronow@yale.edu). Jonathon Baron is Doctoral Student,
Department of Political Science, Yale University, 115 Prospect St., New Haven, CT 06511, USA. Lauren Pinson is Doctoral
Student, Department of Political Science, Yale University, 115 Prospect St., New Haven, CT 06511, USA. Author names are
in alphabetical order and do not reflect relative contributions, which the authors consider to be equal. We thank Allan
Dafoe, Don Green, Daniel Masterson, Ben Miller, Molly O�er-Westort, and Betsy Levy Paluck for helpful comments and
conversations. Special thanks to Daryl Press, Scott Sagan, and Ben Valentino for generous assistance and materials in
replication. We also thank the Yale Institution for Social and Policy Studies Summer Research Lunch group for valuable
feedback. Replication data are available in Aronow, Baron, and Pinson (2018).

1 The supplementary information provides an extensive bibliography of studies and dissertations that drop or otherwise
statistically condition on posttreatment manipulation checks. Articles were found using a series of searches on Google
Scholar for “experiment manipulation check,” “experiment manipulation attention check,” “experiment manipulation
attention check political science,” “‘manipulation check’ ‘attention check’ screen*,” “political science ‘manipulation
check’ ‘attention check’ screen*”; searches for dissertationswere performedonProQuest using “experimentmanipulation
attention check,” which was the most inclusive search on Google Scholar. Articles suspected to use manipulation or
posttreatment attention checks as a statistical conditioning strategy were then coded independently by two readers.
With the exception of dissertations, when either reader was unsure about how the study was conducted or the readers
disagreed, the authors of the article (starting with the corresponding author) were e-mailed for clarification. We sent
e-mails to authors regarding 42 articles, all of which received responses, and 28 of which were confirmed to drop subjects
based on amanipulation (or other posttreatment) check.

2 For recent examples in political science, see Maoz (2006), Small, Lerner, and Fischho� (2006), Turner (2007), De Oliveira,
Guimond, and Dambrun (2012), Crawford et al. (2013), and Ho�man et al. (2013).
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estimates to a population of subjectswho understand the experimental prompt (Wilson, Aronson,
andCarlsmith2010,p. 66) and follow instructionsdiligently (Oppenheimer,Meyvis, andDavidenko
2009). However, this practice may lead to serious bias in estimation, as dropping subjects may
induce an asymmetry across treatment arms.
In this note, we show that the practice of dropping subjects based on a manipulation check

should generally be avoided. We provide a number of statistical results establishing that doing so
can bias estimates or undermine identification of causal e�ects. We also show that this practice
is equivalent to inducing di�erential attrition across treatment arms, which may induce bias of
unknown sign and magnitude.3 We do not claim that our statistical formulations are particularly
novel—they follow from well-known results about conditioning on posttreatment variables and
attrition—but, given theprevalenceof thispractice,webelieve that the relationshipbetween these
findings and practice in experimentation is underappreciated.
Our contribution is not solely negative—we provide a number of positive results. First, we

reiterate the well-known result that the intent-to-treat e�ect is point identified: if subjects are
not discarded, a well-defined causal e�ect can be estimated consistently. Furthermore, we show
that when the result of themanipulation check does not depend on the treatment, an alternative
causal quantity—the average treatment e�ect among those who would pass the manipulation
check under all conditions—may be estimated dropping subjects. This condition can be ensured
in the design of an experiment, by conditioning solely on checks that are delivered before the
experimental treatment is administered. When this condition fails, we provide sharp bounds for
the average treatment e�ect among those who would pass the manipulation check under all
conditions. Taken together, our results suggest extreme caution in dropping subjects who fail a
manipulation check.
In elaborating the potential pitfalls of dropping subjects who fail a manipulation check, we

consider Press, Sagan, and Valentino (2013)’s (henceforth PSV) survey experiment on public
opinion about nuclear weapons. We provide a number of results from an augmented replication
of PSV that does not drop subjects that failed the manipulation check.4 Our findings do not
contradict the primary substantive findings of PSV, but instead reinforce its claims: we find that
study’s exclusion of subjects who failed the manipulation check produced weaker findings than
would likely have been returned by a full sample. We then conclude with recommendations for
applied practice, namely a focus on what is revealed without discarding subjects.

2 Results
Suppose we have an i.i.d. sample from (Y , S , Z ), where Y denotes the subject’s response, S
denotes the result of a manipulation check (1 if the subject passed, 0 if the subject failed), and
Z denotes the subject’s treatment assignment (1 for treatment 1, 2 for treatment 2, . . .). Without
loss of generality, assume that the support of Z is {1, . . . ,K }, where K is finite.
We make three assumptions to proceed. First, we assume that both potential responses and

potential results from the manipulation check are stable, by invoking SUTVA (Rubin 1980), which
impliesbothno interferencebetweenunits andnomultipleunobservedversionsof the treatment.

ASSUMPTION 1 (SUTVA). Y =
∑K
z=1Y (z )I(Z = z ) and S =

∑K
z=1 S (z )I(Z = z ).

Second, we assume that the treatment is not systematically related to potential outcomes
or potential manipulation check results, as would be ensured by random assignment of the
treatment.

3 The point has been made before, but has not to our knowledge been formalized. For example, Gerber and Green (2012,
p. 212) note that attrition may be induced when “[r]esearchers deliberately discard observations. Perhaps ill-advisedly,
laboratory researchers sometimes exclude from their analysis subjects who seem not to understand the instructions or
who fail to take the experimental situation seriously” but does not provide further discussion of this point.

4 Replication data are available from Aronow, Baron, and Pinson (2018).
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ASSUMPTION 2 (Ignorability). For all z ∈ {1, . . . ,K }, (Y (z ), S (z )) ⊥⊥ Z , with Pr(Z = z ) > 0.

Assumption 2 can be ensured at the design stage by randomizing treatment assignment across
subjects.
Finally, we require that at least some subjects pass the manipulation check in both treatment

and control.

ASSUMPTION 3 (Nonzero Passing Rates). For all z ∈ {1, . . . ,K }, Pr[S `Z = z ] > 0.

Note that Assumption 3 is verifiable from the experimental data.

2.1 Identification
Without discarding subjects, allmeanpotential outcomes arewell identified, and their di�erences
are also point identified. These di�erences are sometimes referred to as intent-to-treat e�ects
(Gerber and Green 2012). As we proceed, plug-in estimators will be consistent given suitable
regularity conditions (e.g., finite third moments, continuity), with the bootstrap providing a basis
for asymptotic inference.

LEMMA 1. E [Y `Z = z ] − E [Y `Z = z ′] = E [Y (z ) −Y (z ′)].

Aproof follows from linearity of expectations. Randomizationensures intent-to-treat e�ects are
point identified, and can be estimated simply by examining di�erences in means.
In order to assess the operating characteristics of dropping subjects, we must formalize the

presumed inferential target of a researcherwhochooses todrop subjects basedonamanipulation
check. Here we consider one possible target that seems natural: E [Y (z ) − Y (z ′)`S (1) = S (2) =
· · · = S (K ) = 1], or the average treatment e�ect among subjects who would pass under all
treatment conditions. This target parameter is logically equivalent to the complier average causal
e�ect (Angrist, Imbens, and Rubin 1996)when Supp (Z ) = {0, 1} and “take-up” is considered to be
D = SZ + (1− S )(1−Z ). However, Angrist, Imbens, and Rubin (1996)’s LATE Theorem, facilitating
identification of the target parameter using Z as an instrumental variable for D , is unlikely to
hold in this setting. The LATE Theorem requires an exclusion restriction—namely that the e�ect
of the treatment is completely mediated through take-up (e.g., the treatment may have e�ects
on the outcome even for subjects that fail the manipulation check). We thus recommend some
caution in instrumental variable-type strategies for utilizing manipulation checks: the validity of
the identifying assumptions is not directly verifiable from the experimental data nor can they
generally be ensured by design.
There is a condition under which dropping subjects who fail a manipulation check recovers

this quantity, namely that in which the treatment assigned to a subject is statistically unrelated to
whether or not that subject passes or fails the manipulation.

COROLLARY 1. If Pr[S (1) = S (2) = · · · = S (K )] = 1, then E [Y `S = 1, Z = z ] − E [Y `S = 1, Z =

z ′] = E [Y (z ) −Y (z ′)]`S (1) = S (2) = · · · = S (K ) = 1].

Corollary 1 implies su�icient conditions for discarding subjects to be unproblematic if the
inferential target is the average potential outcomes among those who pass the manipulation
check. In short, the treatment cannot a�ect whether or not a subject passes the manipulation
check (e.g., if the treatment impacts subjects’ ability to pass the manipulation check itself, for
instance by inducing variable degrees of stress, or even if subjects receive treatments for di�erent
lengths of time). Thuswecan find caseswheredropping subjects is acceptable: if a checkprecedes
treatment (e.g., apretreatmentattentioncheck), thendiscarding subjects is not aproblem,at least
for characterizing e�ects for a well-defined subpopulation of units.
Note that the condition in Corollary 1 has a testable implication.

COROLLARY 2. If Pr[S (1) = S (2) = · · · = S (K )] = 1, then S ⊥⊥ Z .
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A proof follows directly from Assumptions 1 and 2. That is, if the treatment does not a�ect
whether a subject passes the manipulation check, then it must be the case that passing will be
unrelated to the treatment condition. Thus, if S 6⊥⊥ Z (i.e., there is an e�ect of Z on S ), then
we know that the condition for Corollary 1 to hold (and dropping subjects to be unproblematic)
must be false.
However, the converse does not generally hold. In order to justify discarding subjects, it is not

su�icient to show that Z and S are unrelated.

COROLLARY 3. S ⊥⊥ Z does not imply that E [Y `S = 1, Z = z ] − E [Y `S = 1, Z = z ′] =

E [Y (z ) −Y (z ′)`S (1) = S (2) = · · · = S (K ) = 1].

Corollary 3 reinforces an important point: even if the failure rates are identical across
treatments, conditioning on amanipulation checkmay still induce bias. This is because the types
of subjects who fail the manipulation check under one treatment may not be the same as those
who fail under a di�erent treatment.
To this end, potential outcomes among those who would pass regardless of condition are

not generally point identified. In a generalization of Lee (2009) (which imposes a monotonicity
assumption) and Zhang and Rubin (2003), we derive sharp bounds on potential outcome means
E [Y (z )`S (1) = 1, S (2) = 1, . . . , S (K ) = 1].5

PROPOSITION 1. Suppose that Pr[S (1) = S (2) = · · · = S (K ) = 1] > 0 and thatY is continuous
with unbounded support. Let QY `Z=z ,S=1(.) denote the conditional quantile function ofY given
Z = z and S = 1. Then, sharp bounds for E [Y (z )`S (1) = S (2) = · · · = S (K ) = 1] are given by

E
[
Y `Y ≤ QY `Z=z ,S=1

(
1 −

∑
z ′∈{1,...,K }:z ′,z

Pr[S = 0`Z = z ′]

Pr[S = 1`Z = z ]

)
, Z = z

]

≤ E [Y (z )`S (1) = S (2) = · · · = S (K ) = 1] ≤

E
[
Y `Y ≥ QY `Z=z ,S=1

( ∑
z ′∈{1,...,K }:z ′,z

Pr[S = 0`Z = z ′]

Pr[S = 1`Z = z ]

)
, Z = z

]

when
∑
z ′∈{1,...,K }:z ′,z

Pr[S=0`Z=z ′]
Pr[S=1`Z=z ] < 1, else theseboundsaregivenby−∞ ≤ E [Y (z )`S (1) = S (2) =

· · · = S (K ) = 1] ≤ ∞.

Assuming that Pr[S (1) = S (2) = · · · = S (K ) = 1] > 0 ensures that E [Y (z )`S (1) = S (2) = · · · =
S (K ) = 1] exists and continuity ofY ensures that the quantile function is well defined. As with Lee
(2009)’s bounds, even whenY is discrete, then bounds can be constructed simply by trimming
the observations associated with the upper or lower

∑
z ′∈{1,...,K }:z ′,z

Pr[S=0`Z=z ′]
Pr[S=1`Z=z ] th proportions of

the empirical distributions of subjects who pass the manipulation check under treatment and
control. With weighted data, this entails using the weighted empirical distribution function. Note
that our boundsprovide informationabout thepotential for bias introducedbydropping subjects.
Di�erences between the asymptotic value of an estimator computed a�er dropping subjects and
the bounds for E [Y (z )`S (1) = S (2) = · · · = S (K ) = 1] provide a range of potential values for
asymptotic bias.

2.2 Simulations
In Appendix C, we provide full details and results of a set of simulations to evaluate the properties
of the di�erence-in-means estimator a�er dropping subjects and of the proposed bounds. We
summarize our setup and conclusions here.We assume a treatment Z with Supp (Z ) = {1, 2} and
Pr(Z = 1) = 1/2.Wegeneratedpotential outcomesY (1) =Y (2) = λ[S (2)−S (1)]+N (0,σ), and vary

5 We thank Ben Miller for helpful discussions regarding the formulation of Proposition 1.
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λ, σ , and the joint distribution of (S (1), S (2)). In short, we show, all else equal, that bias tends to
increase as the average potential outcomes of subjects who would pass the control manipulation
check diverge from those who would pass the treatment manipulation check and as failure rates
increase.We further show that thewidth of the bounds increases as failure rates increase, but also
as the variability of potential responses increases. Our results shed light on the conditions under
which dropping subjects ismost problematic, both in terms of the bias introduced and in terms of
the fundamental uncertainty about the target parameter.

2.3 Using Covariates for Diagnostics
Suppose that we had a vector of covariates X associated with each unit, so that we now have an
i.i.d. sample from (Y , S , Z , X). We can nowwrite an assumption analogous to Assumption 2.

ASSUMPTION 4 (Ignorability with Covariates). For all z ∈ {1, . . . ,K }, (Y (z ), S (z ), X) ⊥⊥ Z ,
with Pr(Z = z ) > 0.

Note that if Z is randomized and X is measured prior to administration of the treatment, then
Assumption 4 holds by construction. However, if X is measured posttreatment and Z has causal
e�ects on X, then Assumption 4may be violated.
These covariates can shed light on the plausibility of the condition for Corollary 1, Pr[S (1) =

S (2) = · · · = S (K )] = 1.

COROLLARY 4. If Pr[S (1) = S (2) = · · · = S (K )] = 1, then X ⊥⊥ Z `S .

A proof directly follows from Assumptions 1 and 4. One practical implication is that the
plausibility of the conditions for Corollary 1 canbe verified using abalance test. That is, ifX 6⊥⊥ Z `S ,
then it must be the case that Pr[S (1) = S (2) = · · · = S (K )] , 1.
Again, however, the converse does not hold. In order to justify discarding subjects, it is not

su�icient to have balance on the observed covariates.

COROLLARY 5. X ⊥⊥ Z `S does not imply that E [Y `S = 1, Z = z , X = x] − E [Y `S = 1, Z = z ′, X =

x] = E [Y (z ) −Y (z ′)`S (1) = S (2) = · · · = S (K ) = 1, X = x].

A proof directly follows from that of Corollary 3. So while covariates can help in testing
a particular identification condition that justifies dropping subjects, failure to reject the null
hypothesis of X ⊥⊥ Z `S (or even accepting said null hypothesis) need not imply that dropping
subjects is unproblematic.
Note that when Assumption 4 holds, tighter bounds can be obtained than those of

Proposition 1. Derivation of these bounds goes outside the scope of the current manuscript, but
we note that with even one continuous variable in X, nonparametric estimation of these bounds
will likely be practically di�icult, requiring estimation of an infinite-dimensional function.

2.4 Summary of Results
Taken together, our results establish the following: (i) Intent-to-treat e�ects are point identified.
(ii) Potential outcomes among those who would pass a manipulation check under all conditions
are not generally point identified. (iii) Sharp bounds for potential outcomes among those who
would pass amanipulation check under all conditionsmaynot have finitewidth. (iv) Showing that
equal proportions of subjects failed the manipulation check across all conditions is not su�icient
to justify dropping subjects, because the types of subjects that comprise those groups may di�er
between treatments. (v) If a check precedes treatment (e.g., a pretreatment attention check), or
if its result is otherwise unrelated to treatment assignment, dropping subjects who fail such a
check does not lead to bias in estimation of outcomes for thosewhowould pass themanipulation
check under all treatment conditions. (vi) As passing rates decrease, the risk of bias fromdropping
subjects increases, and the width of the bounds grows accordingly. (vii) Covariates may provide
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Figure 1. Results from Press, Sagan, and Valentino (2013) and Replication. Comparisons of original and
weighted replication data. Panel A presents results fromPSVwith subjects dropped; Panel B presents results
from the replication with subjects dropped; Panel C presents results from the replication using the full
sample; Panel D presents results imputing the lower bounds for all treatment conditions; Panel E presents
results imputing the upper bounds for all treatment conditions. Vertical bars represent 95% confidence
intervals on point estimates calculated using the bootstrap.

information about the consequences of dropping subjects, though their informative power is
limited.

3 Application
We now discuss these findings in the context of PSV, which presents a survey conducted
using a representative sample of voting-age American citizens. PSV reports on whether public
opinion regarding nuclear weapons use is shaped primarily by ethical or strategic considerations.
PSV’s five treatment conditions detail a scenario in which an Al Qaeda nuclear weapons lab
in Syria obtains weapons-grade uranium intended for o�ensive use against the United States.
We focus on three of the treatments, which manipulate the relative expected e�ectiveness of a
nuclear or conventional strike on the Al Qaeda facility. The treatments describe the e�ectiveness
ratios of nuclear/conventional weapons at 90 percent/90 percent, 90 percent/70 percent, and
90 percent/45 percent, respectively (henceforth referred to as 90–90, 90–70, and 90–45). As
demonstrated in Panel A of Figure 1, PSV reports a strongly monotonic increase in subjects’
approval of and preference for nuclear weapons use as nuclear weapons’ e�ectiveness increases
relative to that of conventional weapons.
However, we will show that this finding—namely a strong monotonic increase—is partly

attributable to dropping subjects, and that, without dropping subjects, even stronger results
are obtained. PSV utilized a manipulation check following the treatment as a means of gauging
subjects’ attention to the treatmentarticles; subjectswho fail themanipulationcheckaredropped
from the analysis. This check asked subjects to choose from five options including whether the
treatment they had received had concluded that nuclear weapons would be equally e�ective,
moderately more e�ective, or much more e�ective than conventional weapons; these answers

P. M. Aronow et al. ` Political Analysis 577

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
9.

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2019.5


were intended to correspond to the 90–90, 90–70, and 90–45 comparisons, respectively. Subjects
who failed the manipulation check were given an opportunity to read the article a second time,
but their responses were dropped due to failure.
Weconducteda successful replicationofPSV, showing that theprimary findingsof the studyare

robust, including robustness to treatment variations not considered in the original article (details
are provided in Appendix B). One notable variation in our replication was that subjects were not
informed of whether they had passed or failed the manipulation check, and data were collected
regardless, allowing us to assess the consequences of dropping subjects. Our study used 2,733
subjects recruited fromAmazon.comMechanical Turk.6 Note that there is a goodbodyof evidence
to suggest that subjects onMechanical Turk tend to bemore attentive than other (representative)
samples (Hauser and Schwarz 2016), and thus it is possible that our passing rates are higher than
those of PSV. If so, then all else equal, the bias in our estimates a�er dropping subjects would
be smaller, and the width of our bounds would also be smaller than the bounds that would be
associated with the original data.
Subjectswere compensatedat $.50each,with theaddedchanceofwinninga$100bonus if they

passed the manipulation check. For our primary analysis, we used inverse probability weighting
(IPW) to adjust the replication sample to match the covariate distribution of the sample used in
PSV, and computed estimates a�er weighting.7 We then performed our analysis both including
and excluding subjects who failed the manipulation check.
The primary results of our replication are presented in Panels B and C of Figure 1. (Unweighted

analyses are presented in Figure 2.) PSV argues that a clear majority of subjects both approve
of and prefer a prospective nuclear strike in only 90–45. However, we show that these findings
are actually attenuated as a consequence of dropping the subjects who failed from the analysis.
Panel C demonstrates that including data from all subjects, regardless of performance on
the manipulation check, alters results substantially, rendering estimates in 90–70 and 90–45
practically indistinguishable. The discrepancy is notable in its substantive importance for the
results of PSV: subjects dropped from the analysis actually perceived a “moderate” decline
in conventional weapons’ relative e�ectiveness to be a “significant” decrease; including such
subjects in the analysis provides even stronger evidence against a nuclear-nonuse norm than PSV
depicts.
The replication also illustrates the importanceof Corollary 3: showing the equivalencebetween

failure rates under two conditions does not imply that the types of individuals who fail are
equivalent. Treatments 1 and 3 have statistically and substantively indistinguishable failure rates
(6.4% vs. 7.5%), and yet the covariate profiles of those who failed the manipulation check are
strikingly di�erent, as can be seen in Table 2 in Appendix D. For example, 63.7% of subjects who
fail themanipulation check under Treatment 3 are female, but only 24.9% of the subjects who fail
the manipulation check under Treatment 1 are female. Similar di�erences are found in political
party, religious importance, region, and racial composition.
We also report sharp bounds for the average potential outcomes among subjects who would

pass the manipulation check regardless of treatment assignment. We are unable to calculate
analogous bounds using the PSV data, because no informationwas available on the proportion of
subjectswhowere dropped. Panel D depicts our results imputing the lower bound, whereas Panel
E shows our estimates imputing the upper bound. We observe that the bounds for all treatment

6 Three subjects were omitted from analysis because of technical di�iculties that prevented us from verifying that they
completed the survey; 2,730 subjects are included in the analysis below.

7 Let R i = 1 if an observation i is in the replication study, else let R i = 0 if an observation was in the original data. We
performed a logistic regression of R i on the following covariates Xi : Education, Party, Religion, Political Interest, Income,
Gender, News Interest, Voter Registration, Birth Year, Region, Race, and Ideology (withmean-imputation for missingness).
Using the output of this logistic regression, we computed a predicted value pi = Pr[R i = 1`Xi ] for each observation i . To
reweight the replication study to the original study’s covariate profile, we weighted each observation in the replication
sample by pi

1−pi
.
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conditions have overlapping regions, in both outcome variables, making it impossible to fully
di�erentiate results across the treatments. The bounds are largely uninformative, suggesting the
fundamental uncertainty induced by attempting to estimate e�ects among the subpopulation of
subjectswhowould always pass themanipulation check. If these e�ects are indeed the inferential
target of the researcher, very little is revealed by the experimental data, and dropping subjects
may introduce serious bias of unknown sign andmagnitude (as any values within the range of the
bounds are compatible with the experimental data).

4 Conclusion
We reiterate that our critiques do not apply to research designs that use pretreatment attention
checks to screen subjects, as established by Corollary 3. Attention checks placed before treatment
can be used to prune subjects from final analysis in a principled manner. Although screening
changes the inferential target from the whole population to a subpopulation of subjects who are
payingsu�icientattentionandhave theability topass theattentioncheck, it doesnot compromise
internal validity. The use of manipulation checks in the pilot stage can provide information for
improving the interpretability of treatments and manipulation checks to maximize passing rates
in the manipulation. The use of pretreatment checks and piloting may also improve estimates
by focusing only on the subpopulation of subjects who are able to pass and do so. Of course,
there is significant debate about best practices here (see, e.g., Peer, Vosgerau, and Acquisti
2014). As such, we recommend Oppenheimer, Meyvis, and Davidenko (2009)’s suggestions for
compelling experimental subjects to participatemore diligently; aswell as Berinsky,Margolis, and
Sances (2014)’s analysis of the benefits and drawbacks of screening, and recommendations for
practice. Oppenheimer, Meyvis, and Davidenko (2009) finds that forcing inattentive subjects to
repeat Instructional Manipulation Checks (IMCs) until the subjects read the checks thoroughly
homogenizes the subject group. We recognize the potential benefits of this approach when
performed prior to treatment, but we caution against the use of posttreatment IMCs as a
statistical conditioning strategy. Berinsky, Margolis, and Sances (2014)’s suggested use of screens
to assess subjects’ attentionona continuumalso represents a transparent approach topresenting
findings by showing the results conditional on each value of attention. However, doing so with a
posttreatment check would again introduce the issues discussed here.
In general, we stress the importance of manipulations that are su�iciently clear so as to

minimize the necessity to remove subjects based on a lack of comprehension. Although we have
proposed bounds for causal e�ects among the subjects whowould always pass themanipulation
check, these bounds will be uninformative in practice when failure rates are high. Pilot studies
may help to ensure that the treatments are understood by subjects as the researchers intended,
with the caveat that the pilot populationmay be unrepresentative of the final test population. We
underline that best practice shouldmaintain a focus on intent-to-treat e�ects, which are generally
point identified and have a clear substantive interpretation. The credibility of the experiment
ultimately rests on the quality of the manipulation, rather than post hoc statistical adjustments.
As ameans of validation,manipulation checks can help researchers to understandwhether or not
this criterion has been met. But dropping subjects who fail a manipulation check presented a�er
the intervention may introduce biases of unknown sign andmagnitude.

Supplementarymaterial
For supplementary material accompanying this paper, please visit
https://doi.org/10.1017/pan.2019.5.

Appendix A. Proofs
Proof of Corollary 1. Pr[S (1) = S (2) = · · · = S (K )] = 1 implies S = S (1) = S (2) =

· · · = S (K ), thus ensuring (Y (1),Y (2), . . . ,Y (K ), S ) ⊥⊥ Z . Joint independence implies that
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E [Y (z )`S = 1, Z = z ] − E [Y (z ′)`S = 1, Z = z ′] = E [Y (z )`S (1) = 1, S (2) = 1, . . . , S (K ) =
1] − E [Y (z ′)`S = 1]. �

Proof of Corollary 3. We prove the claim via a simple counterexample. Suppose Supp (Z ) =
{1, 2} and

f (Y (1),Y (2), S (1), S (2)) =




1/3 :Y (1) = 1,Y (2) = 1, S (1) = 0, S (2) = 1

1/3 :Y (1) = 0,Y (2) = 0, S (1) = 1, S (2) = 0

1/3 :Y (1) = 0,Y (2) = 0, S (1) = 1, S (2) = 1

0 : otherwise.

Note that E [S (2) − S (1)] = 0 and E [τ `S (1) = S (2) = 1] = E [τ `S (1) = 1, S (2) = 0] = E [τ `S (1) =
0, S (2) = 1] = 0. E [Y `S = 1, Z = 2] − E [Y `S = 1, Z = 1] = 0 − 1/2 = −1/2. �

Proof of Proposition 1. We will follow the general logic of Lee (2009), and technical details
carry through from the proof of Lee’s Proposition 1a. Without loss of generality, we consider
the upper bound for E [Y (1)`S (1) = S (2) = · · · = S (K ) = 1].
DefineU = 1 if S (2) = · · · = S (K ) = 1, else letU = 0. Then E [Y (1)`S (1) = S (2) = · · · = S (K )

= 1] = E [Y (1)`U = 1, S (1) = 1]. We do not observe the joint distribution of (Y (1),U )`S (1) =
1, as we never jointly observe Y (z ) and S (z ′), for z , z ′. Let pU 0 = Pr[U = 0`S (1) = 1].
Given continuity of Y (1), then among all possible joint distributions (Y (1),U )`S (1) = 1,
E [Y (1)`U = 1, S (1) = 1] is maximized when U = 1 for all Y (1) ≥ QY (1)(pU 0 ). By weak
monotonicity of the quantile function, it su�ices to maximize pU 0 to find a maximum for
E [Y (1)`U = 1, S (1) = 1].
Weagaindonotobserve the jointdistribution (U , S (1)). Byσ-additivity, a sharpupperbound

is obtained for Pr[U = 0] is obtained when the regions where S (2), S (3), . . . , S (K ) each equal
zero are disjoint, with

Pr[U = 0] ≤




K∑
k=2

Pr[S (k ) = 0] :
∑K
k=2 Pr[S (k ) = 0] < 1

1 :
K∑
k=2

Pr[S (k ) = 0] ≥ 1.

Thus, among all possible joint distributions (U , S (1)), Pr[U = 0`S (1) = 1] = pU 0 is maximized
when

pU 0 =




∑K
k=2 Pr[S (k ) = 0]

Pr[S (1) = 1]
:
∑K
k=2 Pr[S (k ) = 0]

Pr[S (1) = 1]
< 1

1 :
∑K
k=2 Pr[S (k ) = 0]

Pr[S (1) = 1]
≥ 1.

Thus if
∑K
k=2 Pr[S (k )=0]
Pr[S (1)=1] < 1, a sharp upper bound is given by E [Y (1)`U = 1, S (1) = 1] ≤

E [Y (1)`Y (1) ≤ QY (1)`S (1)=1(1 −
∑K
k=2

Pr[S (k )=0]
Pr[S (1)=1] )], else the upper bound is infinite.

By randomassignmentandSUTVA, theconditionaldistributionofY (1)`S (1) = 1 is equivalent
to the conditional distribution ofY `S = 1, Z = 1, and the marginal distributions of S (k ) are
each equivalent to S `Z = k . Thus a sharp upper bound is given by E [Y (1)`U = 1, S (1) = 1] ≤

E [Y `Y ≥ QY `Z=1,S=1(
∑K
k=2

Pr[S=0`Z=k ]
Pr[S=1`Z=k ] ), Z = 1]when

∑K
k=2

Pr[S=0`Z=k ]
Pr[S=1`Z=k ] < 1, else theupper bound

is infinite. Theboundsare invariant to indexingof treatmentsZ , thus yielding thegeneral upper
bound in Proposition 1. Analogous calculations yield lower bounds. �
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Appendix B. Details of Replication of Press, Sagan, and Valentino (2013)
Our replication andpreanalysis plan are hosted at EGAP (ID: 20150131AA). Our replication included
three major variations, the analysis of which underlines the robustness of PSV. We list these
analyses in turn below.
First, because the original experiment was performed prior to the onset of the Syrian civil

war, we sought to assess whether the results were invariant to shi�s in time and context (i.e.,
whether the resultsmightdi�er inour replication, given thepolitical changes thathaveoccurred in
Syria).We thus randomizedwhether treatment framespresented the scenario in Syria or Lebanon,
which was used as an analog to pre-civil-war Syria; treatments were assigned through a 2 × 5

factorial design.We foundno statistically or substantively significant di�erencebetweenSyria and
Lebanon treatment frames, demonstrating that the results presented in PSV are robust to these
temporal and contextual changes.
Second, we analyzedwhether the PSV study’s use of posttreatment covariates introduced bias.

Weaddedanother treatment (renderingour augmented replication a2×2×5 factorial design) that
randomized whether subjects answered these questions before or a�er treatment. This analysis
failed to reveal any statistically or substantively significant results.
Third, as noted above, we performed weighting on our survey sample to approximate the

experimental population used by PSV. Our subjects were recruited from Mechanical Turk, and
likely constituted an unrepresentative sample. As noted in the main text, we used logistic
regression and IPW to assign treatment probabilities and corresponding weights for each
subject. We did observe di�erences between the weighted and unweighted analyses, but neither
undermined the substantive findings of PSV.

Appendix C. Simulations
We assume a treatment Z with Supp (Z ) = {1, 2} and Pr(Z = 1) = 1/2. We generated potential
outcomes Y (1) = Y (2) = λ[S (2) − S (1)] + N (0,σ), and vary λ, σ , and the joint distribution of
(S (1), S (2)). Note that in the simulation, we have assumed that there is no e�ect of the treatment
whatsoever, and the results would be invariant to the introduction of any constant treatment
e�ect. λ represents the divergence in potential outcomes between those who would pass and
those who would fail the manipulation check and σ represents the unexplained variability of
potential outcomes. To put our results in asymptopia, we assumeN = 1,000, and perform 100,000

simulations.
Table 1 presents the results of our simulations. We first discuss the bias of the di�erence-in-

meansestimator a�erdropping subjects.We show thatbias tends to increaseasλ—thedivergence
between the average potential outcomes of subjects who would pass the control manipulation
check and that of those who would pass the treatment manipulation check—increases. See, e.g.,
row 1 vs. 2. As failure rates increase, not necessarily di�erentially across treatment arms, we
also see that bias increases; compare rows 1–4 to 5–8 to 9–12. Furthermore, as ρ(S (1), S (2))—
the correlation between potential responses to the manipulation check—decreases, bias also
increases, as evidenced by, e.g., row 4 vs. row 1.
The width of the bounds also depends on multiple factors. As the variability of potential

outcomes increases (characterized by σ , and to a lesser extent λ), the width of the bounds
increases, as evidenced by comparing, e.g., row 1 vs. 2 vs. 3. The width of the bounds also
depends on failure rates; again compare rows 1–4 to 5–8 to 9–12. The bounds do not depend on
any unobservable features of the joint distributions of potential outcomes and responses to the
manipulation check. To wit, the width of the bounds does not change as ρ(S (1), S (2)) is varied;
compare, e.g., row 1 to row 4.
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Table 1. Simulations demonstrating the e�ects of dropping. Simulations performed with N = 1,000 and
100,000 simulations; bound widths are presented as averages over all simulations.

λ Pr[S (1) = 1] Pr[S (2) = 1] ρ(S (1), S (2)) σ Bias BoundWidth

1 1 0.8 0.8 0.25 1 0.300 1.753
2 10 0.8 0.8 0.25 1 3.005 5.070
3 1 0.8 0.8 0.25 10 0.298 16.543
4 1 0.8 0.8 0.50 1 0.200 1.723
5 1 0.6 0.8 0.25 1 0.456 1.613
6 10 0.6 0.8 0.25 1 4.561 3.403
7 1 0.6 0.8 0.25 10 0.459 15.247
8 1 0.6 0.8 0.50 1 0.315 1.569
9 1 0.6 0.6 0.25 1 0.598 4.692
10 10 0.6 0.6 0.25 1 5.973 19.712
11 1 0.6 0.6 0.25 10 0.598 42.635
12 1 0.6 0.6 0.50 1 0.398 4.589

Appendix D. Additional (Weighted) Summary Statistics
Below, we present distributions of the reweighted covariate profiles of subjects in our replication
study, disaggregated by treatment condition and performance on the manipulation checks.

Table 2. Weighted covariate distributions among subjects who failed the manipulation check.

Treatment 1 Treatment 2 Treatment 3

Mean (SE) Mean (SE) Mean (SE)

Education 2.931 0.178 3.236 0.213 2.801 0.168
Democrat 0.336 0.135 0.545 0.086 0.390 0.114
Republican 0.424 0.186 0.355 0.082 0.237 0.088
Independent 0.172 0.103 0.072 0.027 0.168 0.092
Other party 0.042 0.031 0.015 0.008 0.032 0.023
Political interest (5-point scale) 3.542 0.195 3.782 0.114 3.090 0.277
Income 7.558 0.692 6.253 0.491 7.192 0.616
Age (continuous) 40.960 5.781 52.658 3.535 39.028 3.592
Age (1st quartile) 0.470 0.170 0.231 0.049 0.611 0.126
Age (2nd quartile) 0.242 0.127 0.171 0.044 0.107 0.080
Age (3rd quartile) 0.000 0.000 0.214 0.063 0.180 0.107
Age (4th quartile) 0.287 0.203 0.384 0.104 0.102 0.090
Female 0.249 0.114 0.688 0.069 0.637 0.102
Ideology (5-point scale) 3.116 0.318 3.019 0.145 2.874 0.202
News interest (4-point scale) 1.959 0.290 1.636 0.113 2.458 0.265
Registered to vote 0.746 0.119 0.919 0.041 0.832 0.092
White 0.630 0.141 0.867 0.035 0.733 0.095
Black 0.292 0.125 0.053 0.020 0.036 0.027
Other race 0.078 0.048 0.080 0.025 0.231 0.093
Religious importance 4.680 0.457 4.623 0.257 3.774 0.391
Northeast 0.034 0.023 0.121 0.037 0.217 0.104
Midwest 0.056 0.035 0.404 0.099 0.183 0.093
South 0.406 0.149 0.326 0.074 0.511 0.111
West 0.504 0.166 0.149 0.041 0.089 0.042
Elite 0.089 0.073 0.076 0.046 0.059 0.037
Observations N = 35 N = 182 N = 40
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Table 3. Weighted covariate distributions among subjects who passed the manipulation check.

Treatment 1 Treatment 2 Treatment 3

Mean (SE) Mean (SE) Mean (SE)

Education 3.620 0.123 3.579 0.138 3.583 0.127
Democrat 0.538 0.045 0.415 0.053 0.466 0.052
Republican 0.275 0.039 0.436 0.058 0.371 0.055
Independent 0.137 0.027 0.095 0.030 0.122 0.026
Other party 0.041 0.023 0.045 0.021 0.023 0.007
Political interest (5-point scale) 3.649 0.096 3.785 0.103 3.764 0.092
Income 7.867 0.261 7.608 0.403 8.064 0.315
Age (continuous) 47.926 1.328 50.823 1.639 49.849 1.617
Age (1st quartile) 0.310 0.032 0.245 0.032 0.267 0.032
Age (2nd quartile) 0.163 0.028 0.141 0.028 0.162 0.025
Age (3rd quartile) 0.240 0.044 0.266 0.049 0.249 0.044
Age (4th quartile) 0.287 0.050 0.348 0.063 0.321 0.062
Female 0.583 0.043 0.656 0.048 0.594 0.046
Ideology (5-point scale) 2.853 0.101 3.154 0.106 3.091 0.127
News interest (4-point scale) 1.798 0.072 1.788 0.071 1.724 0.078
Registered to vote 0.927 0.024 0.906 0.026 0.927 0.020
White 0.761 0.035 0.817 0.042 0.768 0.045
Black 0.076 0.017 0.079 0.037 0.125 0.039
Other race 0.163 0.031 0.104 0.028 0.107 0.030
Religious importance 3.707 0.161 3.837 0.193 4.285 0.177
Northeast 0.168 0.034 0.196 0.042 0.121 0.023
Midwest 0.230 0.041 0.232 0.052 0.215 0.040
South 0.322 0.040 0.302 0.052 0.493 0.053
West 0.280 0.042 0.270 0.047 0.171 0.030
Elite 0.086 0.030 0.055 0.014 0.091 0.028
Observations N = 509 N = 356 N = 493
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Table 4. Weighted covariate distributions for all subjects.

Treatment 1 Treatment 2 Treatment 3

Mean (SE) Mean (SE) Mean (SE)

Education 3.576 0.113 3.450 0.124 3.535 0.119
Democrat 0.525 0.044 0.464 0.049 0.461 0.050
Republican 0.285 0.040 0.406 0.048 0.363 0.051
Independent 0.139 0.027 0.086 0.021 0.125 0.025
Other party 0.041 0.022 0.034 0.014 0.023 0.007
Political interest (5-point scale) 3.642 0.090 3.784 0.078 3.723 0.090
Income 7.847 0.245 7.098 0.324 8.010 0.298
Age (continuous) 47.480 1.295 51.514 1.725 49.184 1.576
Age (1st quartile) 0.320 0.031 0.239 0.027 0.288 0.032
Age (2nd quartile) 0.168 0.027 0.153 0.024 0.159 0.024
Age (3rd quartile) 0.224 0.041 0.247 0.040 0.245 0.043
Age (4th quartile) 0.287 0.050 0.361 0.056 0.307 0.059
Female 0.562 0.043 0.668 0.039 0.597 0.043
Ideology (5-point scale) 2.870 0.097 3.103 0.088 3.077 0.122
News interest (4-point scale) 1.808 0.070 1.731 0.065 1.769 0.078
Registered to vote 0.916 0.024 0.911 0.023 0.921 0.019
White 0.753 0.034 0.836 0.030 0.766 0.043
Black 0.089 0.018 0.069 0.025 0.119 0.036
Other race 0.158 0.030 0.095 0.020 0.114 0.029
Religious importance 3.769 0.156 4.133 0.167 4.254 0.168
Northeast 0.159 0.033 0.168 0.030 0.127 0.023
Midwest 0.219 0.039 0.297 0.053 0.213 0.039
South 0.328 0.038 0.311 0.043 0.494 0.050
West 0.294 0.042 0.224 0.034 0.166 0.028
Elite 0.086 0.028 0.063 0.019 0.089 0.027
Observations N = 544 N = 538 N = 533
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Appendix E. Additional (Unweighted) Summary Statistics
Below, we present distributions of the unweighted covariate profiles of subjects in our replication
study, disaggregated by treatment condition and performance on the manipulation checks.

Figure 2. Unweighted Results from Press, Sagan, and Valentino (2013) and Replication. Comparisons of
original and unweighted replication data. Panel A presents results from PSV with subjects dropped; Panel
B presents results from the replication with subjects dropped; Panel C presents results from the replication
using the full sample; Panel D presents results imputing the lower bounds for all treatment conditions;
Panel E presents results imputing the upper bounds for all treatment conditions. Vertical bars represent 95%
confidence intervals on point estimates calculated using the bootstrap.
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Table 5. Unweighted covariate distributions among subjects who failed the manipulation check.

Treatment 1 Treatment 2 Treatment 3

Mean (SE) Mean (SE) Mean (SE)

Education 2.931 0.178 3.236 0.213 2.801 0.168
Democrat 0.336 0.135 0.545 0.086 0.390 0.114
Republican 0.424 0.186 0.355 0.082 0.237 0.088
Independent 0.172 0.103 0.072 0.027 0.168 0.092
Other party 0.042 0.031 0.015 0.008 0.032 0.023
Political interest (5-point scale) 3.542 0.195 3.782 0.114 3.090 0.277
Income 7.558 0.692 6.253 0.491 7.192 0.616
Age (continuous) 40.960 5.781 52.658 3.535 39.028 3.592
Age (1st quartile) 0.470 0.170 0.231 0.049 0.611 0.126
Age (2nd quartile) 0.242 0.127 0.171 0.044 0.107 0.080
Age (3rd quartile) 0.000 0.000 0.214 0.063 0.180 0.107
Age (4th quartile) 0.287 0.203 0.384 0.104 0.102 0.090
Female 0.249 0.114 0.688 0.069 0.637 0.102
Ideology (5-point scale) 3.116 0.318 3.019 0.145 2.874 0.202
News interest (4-point scale) 1.959 0.290 1.636 0.113 2.458 0.265
Registered to vote 0.746 0.119 0.919 0.041 0.832 0.092
White 0.630 0.141 0.867 0.035 0.733 0.095
Black 0.292 0.125 0.053 0.020 0.036 0.027
Other race 0.078 0.048 0.080 0.025 0.231 0.093
Religious importance 4.680 0.457 4.623 0.257 3.774 0.391
Northeast 0.034 0.023 0.121 0.037 0.217 0.104
Midwest 0.056 0.035 0.404 0.099 0.183 0.093
South 0.406 0.149 0.326 0.074 0.511 0.111
West 0.504 0.166 0.149 0.041 0.089 0.042
Elite 0.089 0.073 0.076 0.046 0.059 0.037
Observations N = 35 N = 182 N = 40
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Table 6. Unweighted covariate distributions among subjects who passed the manipulation check.

Treatment 1 Treatment 2 Treatment 3

Mean (SE) Mean (SE) Mean (SE)

Education 4.175 0.055 4.099 0.066 4.201 0.055
Democrat 0.568 0.022 0.553 0.026 0.535 0.022
Republican 0.218 0.018 0.233 0.022 0.219 0.019
Independent 0.147 0.016 0.129 0.018 0.156 0.016
Other party 0.043 0.009 0.059 0.012 0.047 0.009
Political interest (5-point scale) 3.285 0.044 3.427 0.049 3.302 0.041
Income 7.214 0.147 7.607 0.177 7.659 0.156
Age (continuous) 33.900 0.530 34.963 0.680 34.572 0.523
Age (1st quartile) 0.739 0.020 0.688 0.025 0.708 0.020
Age (2nd quartile) 0.126 0.015 0.140 0.018 0.162 0.017
Age (3rd quartile) 0.079 0.012 0.101 0.016 0.079 0.012
Age (4th quartile) 0.057 0.010 0.070 0.013 0.051 0.010
Female 0.481 0.022 0.466 0.026 0.472 0.023
Ideology (5-point scale) 2.530 0.046 2.641 0.057 2.631 0.045
News interest (4-point scale) 2.114 0.040 2.037 0.046 2.150 0.042
Registered to vote 0.871 0.015 0.864 0.018 0.876 0.015
White 0.752 0.019 0.815 0.021 0.793 0.018
Black 0.077 0.012 0.045 0.011 0.073 0.012
Other race 0.172 0.017 0.140 0.018 0.134 0.015
Religious importance 2.680 0.084 2.640 0.099 2.828 0.086
Northeast 0.185 0.017 0.219 0.022 0.219 0.018
Midwest 0.238 0.019 0.222 0.022 0.219 0.019
South 0.340 0.021 0.320 0.025 0.337 0.021
West 0.238 0.019 0.239 0.023 0.225 0.019
Elite 0.081 0.012 0.110 0.017 0.099 0.014
Observations N = 509 N = 356 N = 493
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Table 7. Unweighted covariate distributions for all subjects.

Treatment 1 Treatment 2 Treatment 3

Mean (SE) Mean (SE) Mean (SE)

Education 4.129 0.054 4.076 0.054 4.131 0.053
Democrat 0.562 0.022 0.552 0.022 0.522 0.021
Republican 0.215 0.018 0.238 0.018 0.218 0.018
Independent 0.151 0.015 0.132 0.014 0.158 0.016
Other party 0.046 0.009 0.052 0.010 0.049 0.009
Political interest (5-point scale) 3.279 0.041 3.388 0.041 3.288 0.040
Income 7.216 0.142 7.210 0.148 7.595 0.148
Age (continuous) 33.557 0.509 35.277 0.550 34.285 0.507
Age (1st quartile) 0.746 0.019 0.682 0.020 0.719 0.019
Age (2nd quartile) 0.125 0.014 0.147 0.015 0.154 0.016
Age (3rd quartile) 0.074 0.011 0.100 0.013 0.079 0.012
Age (4th quartile) 0.055 0.010 0.071 0.011 0.049 0.009
Female 0.478 0.021 0.485 0.022 0.474 0.022
Ideology (5-point scale) 2.537 0.043 2.652 0.046 2.642 0.044
News interest (4-point scale) 2.132 0.039 2.058 0.038 2.164 0.040
Registered to vote 0.861 0.015 0.874 0.014 0.874 0.014
White 0.740 0.019 0.803 0.017 0.786 0.018
Black 0.090 0.012 0.056 0.010 0.071 0.011
Other race 0.170 0.016 0.141 0.015 0.143 0.015
Religious importance 2.711 0.081 2.835 0.082 2.846 0.084
Northeast 0.182 0.017 0.223 0.018 0.216 0.018
Midwest 0.233 0.018 0.214 0.018 0.216 0.018
South 0.344 0.020 0.344 0.020 0.348 0.021
West 0.241 0.018 0.219 0.018 0.220 0.018
Elite 0.079 0.012 0.087 0.012 0.099 0.013
Observations N = 544 N = 538 N = 533
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