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The authors wish to thank Antoine Cerfon and Dimitrios Andriopoulos of the Courant
Institute at New York University for pointing out an error in our manuscript (Catto,
Pusztai & Krasheninnikov 2015). This mistake only affects the results when a toroidal
magnetic field is present. It arises because our Grad–Shafranov equation (3.11) should
be corrected to read

d2H
dµ2
+ α(α + 1)

1−µ2
H = α

{
β
[g

2
H−1/α −ω2(1−µ2)H2/α − (α + 2)

]

− (α + 1)b2e−χ

(1−µ2)H2/α

}
H1+4/αeχ , (3.11)

where the only change is to insert the missing e−χ multiplying the toroidal magnetic
field term proportional to b2 since it cannot have any density dependence. There is
also a typographical error in (3.6) since there, Bo should be replaced by BPo, with
BPo=−αψo/R2

o. The equations shown here and the material in quotes are the corrected
content. The references remain the same as in the publication.

The preceding change in the Grad–Shafranov equation (3.11) changes (3.17) and
the short sentence that follows to

α + 2= C2b2 − βω2e−g−ω2(1−C−1)

C3 +C2b2 +Cβe−g−ω2(1−C−1)
. (3.17)

‘Consequently, we expect α + 2 < 0 unless C2b2 > βω2e−g−ω2(1−C−1), with C = 1 if
g= 0’.

In § 4 the only change occurs in the penultimate sentence that becomes the
following ‘For example, we do not consider the limit C2b2eg+ω2(1−C−1) > βω2 ∼
βg/2� β� 1, which requires a toroidal magnetic field but allows the magnetic field
to vanish at infinity’.

There are a number of changes in § 5 where we keep the toroidal field. Equation
(5.1) through to the end of the paragraph including (5.3) should be corrected to read:
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(α − 1)(α + 2)
∫ 1

0
dµH + α(α + 1)b2

∫ 1

0
dµH1+2/α

= αβ
∫ 1

0
dµ (1−µ2)H1+4/α

[g
2

H−1/α −ω2(1−µ2)H2/α − (α + 2)
]

eχ . (5.1)

‘Using the vacuum magnetic field solution for the α=−2 root of H= 1−µ2, we find
that the b2 ∼ βg∼ βω2� 1∼ β corrections to that result must satisfy’

2(α − 1)(α + 2)
3

+ α(α + 1)b2 = αβ
∫ 1

0
dµ
[g

2

√
1−µ2 −ω2 − (α + 2)

]
e−g[1−

√
1−µ2].

(5.2)
‘For g�1 only a weak density departure from cylindrical symmetry is allowed, giving’

α '−2+ [b2 + β(πg/8)− βω2]/(1+ β). (5.3)

‘Based on (3.17) we expect b2 >βω2 is required for a solution that keeps 0>α>−2,
thereby making the poloidal magnetic field fall off at large distances and pinch in
slightly at the equatorial plane. Indeed, in this small g limit, finite b2 >βω2 seems to
be required to find a numerical solution for α >−2’.

Next, equation (5.4) and the remainder of the paragraph that it appears in should
be corrected to read as follows

α '−2+ b2 + β(g− 2ω2)(π/8g)1/2. (5.4)

‘These results are the same as in Catto & Krasheninnikov (2015) except the toroidal
field term has been retained and it further enhances the pinching in of the flux surfaces
at the equatorial plane. The disk thickness from e−gµ2/2 is as given by (4.10). Result
(5.4) is verified by a numerical solution which is imperceptibly different from that
shown in figure 6(a,b) for β = 0.001, g= 100, ω2= 40 and b2= 0.05. Analytically we
find α=−1.949 and ∆/R= 0.14 and a sensitive numerical solution is found for α=
−1.951214 and ∆/R= 0.12. We only need b2 >βω2 in this limit to satisfy α+ 2> 0
from (3.17) due to the exponential g factor and the use of the vacuum solution for H
away from the equatorial plane. Equation (5.4) remains valid in the strict Keplerian
case g= 2ω2� 1, where we can evaluate the integrals in (5.2) a little more carefully
to find α+ 2' b2/[1+β(π/2g)1/2], which is consistent with (5.4) when β� g1/2. The
numerical solution confirms that this strict Keplerian case is a valid limit’.

‘Catto & Krasheninnikov (2015) also find a disk solution localized to the equatorial
plane by considering g > 2ω2 and then allowing g − 2ω2 � 1 � β, so that the
exponential dependence eχ in the Grad–Shafranov equation provides the desired
localization about µ= 0 for the assumed small β terms. Therefore, we modify their
treatment to find disk solutions with strong poloidal variation, but with the toroidal
magnetic field retained to satisfy (3.17). This constraint was not considered in Catto
& Krasheninnikov (2015). To begin, we need to find a solution in the disk different
from the cylindrical solution H = (1−µ2)−α/2 valid outside the disk. We find this
inner disk solution by considering the approximate Grad–Shafranov equation’

d2H
dµ2
+ α(α + 1)b2e−(α+2)(1−H)/α ' αβ

[g
2
−ω2 − (α + 2)

]
e(g−2ω2)(1−H)/α, (5.5)

‘where now both rotation and gravity enter the exponential density dependence, for
which we use’

H1/α = e(1/α) ln H ' e(1/α)(H−1) ' 1+ (H − 1)/α + · · · . (5.6)
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‘When g − 2ω2� 1 ∼ α + 2 > 0 we obtain strong exponential decay away from the
equatorial plane. Very near the equatorial plane d2H/dµ2 < 0 in (5.5) if g/2> ω2 +
α + 2 > 0 with α < 0, but once the right-hand side of (5.5) decays away then the
b2 term can grow. For α + 2∼ 1 and b2 not too large this growth occurs far enough
away from the equatorial plane that the b2 term may be ignored in the disk. These
observations suggest, in agreement with Catto & Krasheninnikov (2015), that solutions
that are strongly localized to the equatorial plane in the presence of gravity are not
possible for g< 2ω2 and 0> α >−2 since the rotation is too strong for the plasma
to be gravitationally confined’.

‘Continuing as in Catto & Krasheninnikov (2015), we multiply (5.5) (with the b2

term ignored) by dH/dµ and integrate from H = 1 (at µ= 0) to H < 1 (for µ2 > 0)
to find for α + 2∼ 1’

dH
dµ
' α

√
β[1− e(g−2ω2)(1−H)/α], (5.7)

‘where we select the negative root to make dH/dµ < 0. Using
∫

dx/
√

1− e−x =
2 tanh−1√1− e−x we obtain’

g− 2ω2

α
(H − 1)= x=− ln[1− tanh2(σµ/2)]→

{
(σµ/2)2 + · · · σ |µ|/2� 1
∓σµ− ln 4+ · · · σ |µ|/2 & 1,

(5.8)
‘where σ ≡ (g− 2ω2)

√
β and the upper (lower) sign is for µ> 0 (µ< 0). A solution

strongly localized at the equatorial plane is found for −x= (g− 2ω2)(1− H)/α� 1
that results in only a small departure from the gravity free solution H = (1−µ2)−α/2

that remains an adequate approximation in the outer region. The behaviour x≈∓σµ≈
∓σ z/R implies a disk width ∆= R/σ so that σ � 1 is required’.

‘Using (5.7) and (5.8) on the right-hand side of the integral constraint (5.1), with
the cylindrical solution H = (1−µ2)−α/2 inserted on the left-hand side, yields the
approximate result’

α + 2 ' b2

1+ b2
+√β −O(βω2)' b2

1+ b2
. (5.9)

‘Gravity is assumed negligible outside the disk in this β� 1 limit, where the solution
becomes cylindrical (with C ' 1). Then (5.9) is in agreement with (3.14) provided
we assume 1 ∼ b2� βω2 ∼ √β so the outer solution is well approximated by H =
(1−µ2)−α/2. The plasma disk width is given by’

∆/R = 1/[β1/2(g− 2ω2)]� 1, (5.10)

‘requiring 1/(g− 2ω2)2� β� 1. Strict Keplerian motion is not allowed in this low β
thin disk limit’.

‘The new figure 7(a,b) shows the flux surfaces, density contours and H for β =
0.01, g= 120, ω2= 10 and b2= 1, for which the analytic results give ∆/R= 0.1 and
α = −1.5. The numerical solution gives ∆/R = 0.0938 and α = −1.4715. In (b) we
also plot H= (1−µ2)−α/2 for reference. In this case the density decreases with radius
(since α > −1.5). For the same parameters but with b2 = 1 we find α = −1.33 and
∆/R= 0.1 versus the numerical values of α=−1.314 and ∆/R= 0.094. We have not
found solutions for α→ 0, as claimed in Catto & Krasheninnikov (2015), even for
finite b2’.
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(a)

(b)

FIGURE 7. Parameters g= 120, ω2 = 10, β = 0.01 and b2 = 1, giving α =−1.4715. (a)
Magnetic surfaces (red curves) and density (colour shading) as functions of R and Z. The
density is normalized to unity at R= 1 and Z= 0. (b) The solution H(µ) is plotted versus
µ. The numerical result is shown as the solid curve and (1−µ2)−α/2 is shown dashed for
reference.

Acknowledgements
Work supported by the US Department of Energy grants DE-FG02-91ER-54109 at

MIT and DE-FG02-04ER54739 at UCSD and by the International Career Grant of
Vetenskapsrådet (Dnr. 330-2014-631).

REFERENCES

CATTO, P. J. & KRASHENINNIKOV, S. I. 2015 A rotating and magnetized three-dimensional hot
plasma equilibrium in a gravitating field. J. Plasma Phys. 81, 105810301.

CATTO, P. J., PUSZTAI, I. & KRASHENINNIKOV, S. I. 2015 Axisymmetric global gravitational
equilibrium for magnetized, rotating hot plasma. J. Plasma Phys. 81, 515810603.

https://doi.org/10.1017/S0022377817000484 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377817000484

	Axisymmetric global gravitational equilibrium for magnetized, rotating hot plasma - Corrigendum
	Acknowledgements
	References




