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We report direct numerical simulations of the flow around a spanwise-flexible wing in
forward flight. The simulations were performed at Re = 1000 for wings of aspect ratio
2 and 4 undergoing a heaving and pitching motion at Strouhal number Stc ≈ 0.5. We
have varied the effective stiffness of the wing Π1 while keeping the effective inertia
constant, Π0 = 0.1. It has been found that there is an optimal aerodynamic performance
of the wing linked to a damped resonance phenomenon, that occurs when the imposed
frequency of oscillation approaches the first natural frequency of the structure in the fluid,
ωn,f /ω ≈ 1. In that situation, the time-averaged thrust is maximum, increasing by factor
2 with respect to the rigid case with an increase in propulsive efficiency of approximately
15 %. This enhanced aerodynamic performance results from the combination of larger
effective angles of attack of the outboard wing sections and a delayed development of
the leading edge vortex. With increasing flexibility beyond the resonant frequency, the
aerodynamic performance drops significantly, in terms of both thrust production and
propulsive efficiency. The cause of this drop lies in the increasing phase lag between the
deflection of the wing and the heaving/pitching motion, which results in weaker leading
edge vortices, negative effective angles of attack in the outboard sections of the wing, and
drag generation in the first half of the stroke. Our results also show that flexible wings
with the same ωn,f /ω but different aspect ratio have the same aerodynamic performance,
emphasizing the importance of the structural properties of the wing for its aerodynamic
performance.
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1. Introduction

Micro-air vehicles (MAVs) are becoming increasingly important in society, being
demanded for security services, protection, surveillance, etc. Among the different
configurations being explored for those vehicles, the greatest potential in terms of
manoeuvrability and versatility is perhaps offered by bio-inspired configurations with
flapping wings, similar to insects or small birds (Shyy et al. 2013; Haider et al. 2021).
These configurations are also the most complex from a technical point of view, involving
unsteady aerodynamic mechanisms (i.e. leading edge vortex (LEV), rotational lift, wake
capture and clap-and-fling) that have been described in the literature (Dickinson, Lehmann
& Sane 1999; Ellington 1999; Sane 2003; Wang 2005; Platzer et al. 2008). However,
one aspect that is not yet properly understood is the effect of wing flexibility, despite
significant progress in recent years. The current understanding is that the aerodynamic
performance can be enhanced, provided that the wing kinematics and the structural
properties are selected adequately. Indeed, it has been shown that there exists an optimal
range of flexibility for propulsion (Shyy et al. 2010), and that wing flexibility can reduce
the energetic cost of flight for natural flyers (Reid et al. 2019). Other effects have
also been studied, like the influence of flexibility on the development and evolution
of coherent structures surrounding the wings (Gordnier et al. 2013). However, the
accumulated knowledge is not yet sufficient to significantly influence current MAV
designs. In fact, Haider et al. (2021) recently emphasized that the development of MAVs
with flexible flapping wings has not yet reached capabilities similar to those of natural
flyers.

The main problem that hinders further progress is the complexity of the interactions
between flexible, flapping wings and the surrounding fluid. There are some studies that
have tackled this problem, considering isotropic homogeneous wings (Hamamoto et al.
2007; Nakata & Liu 2012; Shahzad et al. 2018). Other authors have tried to make progress
by simplifying the problem, considering chordwise or spanwise flexibility in a separate
way. In fact, most of the available studies consider chordwise flexibility only, such as Alben
(2012), Moored et al. (2012), Quinn, Lauder & Smits (2014), Olivier & Dumas (2016),
Yeh & Alexeev (2016), Hoover et al. (2018), Arora et al. (2018) and Liu, Liu & Huang
(2022). The literature is vast, and additional references can be found in recent reviews
(Quinn & Lauder 2022; Wang, Tang & Zhang 2022). The two key questions addressed
in the literature of chordwise-flexible wings/aerofoils are whether there is a flexibility
(or a range of flexibilities) that leads to optimal propulsive performance, and what are
the mechanisms that explain that optimal performance. While there is broad agreement
on an affirmative answer for the first question, the literature proposes two non-exclusive
mechanisms contributing to the answer to the second question. The first mechanism is a
fluid–structure resonance, which results in maximum deflections of the trailing edge of the
chordwise-flexible wing (Michelin & Llewellyn Smith 2009; Paraz, Schouveiler & Eloy
2016; Floryan & Rowley 2018). The second mechanism is related to the phase lag between
actuation and deformation. When properly tuned, it can lead to an optimal bending of
the wing that projects the aerodynamic loads on the wing into the forward direction,
hence maximizing thrust (Ramananarivo, Godoy-Diana & Thiria 2011; Zhu, He & Zhang
2014). In this regard, it is important to recall that in damped harmonic oscillators, both
structural and damping nonlinearities affect the phase lag between forcing and response
at all frequencies (Nayfeh & Mook 2008), resulting in phase lags at resonance different
from the 90◦ phase lag obtained in linear oscillators. Indeed, Ramananarivo et al. (2011)
attributed the enhanced propulsive performance of chordwise-flexible wings to nonlinear
damping effects.
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Resonance in spanwise-flexible flapping wings

Obviously, the two mechanisms are not exclusive, and the optimal bending of a
particular wing/kinematic might occur at the resonant frequency. An example reconciling
these two mechanisms is by Goza, Floryan & Rowley (2020), who observed resonant
behaviour leading to optimal performance in numerical simulations of chordwise-flexible
two-dimensional aerofoils over a wide range of flexibilities. For large amplitudes of
excitation, they reported that both resonance and nonlinear effects played a role. In
particular, they observed that the peak in the structural response weakened and broadened
in frequency, a behaviour that they attributed to added mass and nonlinear effects, such
as flow separation and nonlinear vortex interaction. They also noted that this broader and
weaker frequency response for large-amplitude oscillations is consistent with the nonlinear
damping effects of a nonlinear oscillator, linking in this form their results to those of
Ramananarivo et al. (2011).

Comparatively, there are fewer studies analysing the effect of spanwise flexibility,
which are reviewed briefly below. One of the first studies available in the literature
was performed using a panel method by Liu & Bose (1997). They showed that the
propulsive efficiency of the planforms can be optimized by controlling the tip-to-root
relative motion. In a similar fashion, also using a potential flow model, Zhu (2007) reported
simulations studying the effect of spanwise flexibility on fluid-driven wings with low
effective inertia (Π0 ≈ O(10−4)) and inertia-driven wings with a typical effective inertia
of insects (Π0 ≈ O(10−1)). While fluid-driven flexible wings exhibited no enhancement
in performance with respect to rigid wings whichever the flexibility, thrust was greatly
increased for inertia-driven wings when increasing the flexibility up to an optimal value.
A corresponding increase in propulsive efficiency was not observed. This was followed by
an influential experiment reported by Heathcote, Wang & Gursul (2008). These authors
studied spanwise-flexible wings in heaving motion immersed on a free stream in the range
Re = 10 000–30 000, based on the incoming velocity. They found an increase in thrust for
a limited degree of flexibility, with little influence of the Reynolds number in the range
considered. The experiment of Heathcote et al. (2008) has been the subject of several
numerical simulations with various methods. For example, Chimakurthi et al. (2009),
Aono et al. (2009) and Kang et al. (2011) employed Reynolds-averaged Navier–Stokes
simulations with a nonlinear beam structural model, while Gordnier et al. (2013) used
a high-order implicit large eddy simulation to model the flow. These numerical studies
have shown a non-monotonic response of the mean thrust with respect to the wing
flexibility, and a sudden loss of performance for very flexible wings. Shyy et al. (2010)
suggest that the poor aerodynamic performance of the very flexible wings is related to
the cumulative effect of the effective angle of attack and to the role of the tip-to-root
relative motion, with large phase lags for the very flexible wings. Gordnier et al. (2013)
reported a detailed analysis of the phenomena that drive the fluid–structure interaction, for
a configuration corresponding to the Heathcote et al. (2008) experiments. They showed
that for the moderately flexible wings, higher effective angles of attack result in the
development of a stronger LEV. Due to the more rapid effective bend up and down
motion towards the tip of the wing, the convection of the LEV is inhibited, leading
to a superior aerodynamics performance. This further supports the idea that the phase
lag between tip and root motions is a key parameter in the fluid–structure interaction
of spanwise-flexible wings.

To the best of our knowledge, Kodali et al. (2017) is the first work that explicitly
linked the enhancement in aerodynamic performance with a resonance phenomenon when
spanwise flexibility is considered. However, this fluid–structure resonance can also be
inferred from previous works, such as Zhu (2007) and Qi et al. (2010). Kodali et al.
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(2017) reported a two-way coupled aeroelastic model of a heaving, spanwise-flexible
wing in forward flight. The aerodynamics was modelled using two-dimensional, unsteady
potential flow, evaluated at each spanwise location, so that this represents a high Reynolds
number approximation. The structure was modelled using an Euler–Bernoulli beam
equation. The analysis was performed by changing the wing aspect ratio while keeping
constant the remaining structural parameters, thus varying the natural frequency of the
wing. They found the optimal aerodynamic performance (defined in terms of energy
requirements, not thrust production) when the natural frequency matched the oscillation
frequency, i.e. a resonance was observed as already mentioned. They also found that
the relative motion between the tip and root sections lagged by roughly 90◦ for the
optimal flexibility. A final observation was that the structural response was governed
by the first natural mode of the structure, with the remaining modes being barely
excited.

Note, however, that the use of linear models for aerodynamics (i.e. potential
aerodynamics) and structure (i.e. Euler–Bernoulli beam equations) somewhat limits
the scope of the work of Kodali et al. (2017), especially taking into account
the aforementioned role of nonlinearities in the aerodynamic performance of
chordwise-flexible aerofoils/wings. These limitations are not present in other studies. For
instance, Zhu (2007) uses a potential aerodynamic model in combination with a nonlinear
structural model, and Qi et al. (2010) use a lattice Boltzmann flexible particle method
(i.e. nonlinear aerodynamic and structural models) at very low Reynolds numbers (Re =
O(102)). Interestingly, while these three studies found optimal values for flexibility in the
inertia-driven range (Π0 ≈ O(10−1)), consistent with a fluid–structural resonance, they
show important differences in terms of mean thrust coefficients, propulsive efficiencies,
and phase lag between excitation and structural response (i.e. wing tip displacement).
The reasons for these discrepancies are not completely clear, given the differences in the
wing kinematics, flight conditions (forward flight versus hover flight), Reynolds number,
structural nonlinearities and fluid damping (linear versus nonlinear, leading edge vortex
effects, viscous versus inviscid).

In view of the above, we aim to characterize the role of fluid–structure resonance in
the enhancement of aerodynamic performance of spanwise-flexible wings. In particular,
we perform direct numerical simulations of the incompressible flow around heaving and
pitching flexible wings in forward flight at Re = 1000. We consider rectangular wings
with two different aspect ratios, and several values of the effective stiffness. This will
allow us to explore if the aspect ratio is important only as a structural parameter (i.e.
changing the natural frequency of the structure, as in the study of Kodali et al. 2017), or if
it is also relevant in terms of the generation of aerodynamic loads. Our study analyses
a Reynolds number that is intermediate to those available in the literature, which are
either much lower (Qi et al. 2010) or much higher (Liu & Bose 1997; Heathcote et al.
2008; Aono et al. 2009; Chimakurthi et al. 2009; Kang et al. 2011; Gordnier et al. 2013).
Contrary to previous works, direct numerical simulations of the flow allow us to represent
in detail the surrounding fluid, allowing a proper description of the nonlinear and viscous
character of the fluid damping at intermediate Reynolds numbers. The paper is structured
as follows. Section 2 presents the problem definition, followed by the numerical details of
the algorithms used to solve the fluid–structure interaction problem. Section 3 shows the
results of the simulations, characterizing the aerodynamic forces, the structural response
of the wing, and the mechanisms that explain the changes in the aerodynamic forces with
the wing’s flexibility. Finally, conclusions are presented in § 4.

964 A5-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

30
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.308


Resonance in spanwise-flexible flapping wings

h0/c θ0 Stc k φhp

0.388 26.19◦ 0.496 1.558 90◦

Table 1. Parameters of the kinematics imposed at the mid-section of the wing.

2. Methodology

2.1. Problem definition
A finite wing in forward flight immersed in a uniform and steady free stream of magnitude
U∞ is considered. The fluid has constant density and viscosity (ρf and μ), resulting in a
Reynolds number based on the chord of the wing, c, and the free-stream velocity, given by
Re = ρf U∞c/μ = 1000. The wing is a rectangular flat plate with finite aspect ratioA =
b/c, where b is the span of the wing, and the dimensionless thickness is h∗

s = hs/c = 0.02.
The wing is rigid in the chordwise direction, and flexible in the spanwise direction. To
study the effect of the wing span, two aspect ratios are considered,A = 2 and 4.

A heaving and pitching motion is imposed on the mid-span section of the wing. The rest
of the wing deforms passively. The kinematics is described by the laws

h(t) = h0 cos
(

2πt
T

)
, (2.1a)

θ(t) = θ0 cos
(

2πt
T

+ φhp

)
, (2.1b)

where h0 is the heaving amplitude, θ0 is the pitching amplitude, φhp is the phase difference
between heaving and pitching motions, and T is the oscillation period. We also define the
frequency of the imposed motion as f = 1/T , the angular frequency as ω = 2πf , and the
reduced frequency as k = πfc/U∞. The Strouhal number based on the chord of the wing
is defined as Stc = fc/U∞. The pivoting axis for pitching is placed at the mid-chord, x/c =
0.5. The kinematic parameters shown in table 1 have been selected to ensure positive thrust
and relatively strong LEVs, with flapping amplitude large enough to ensure non-negligible
nonlinear effects. Incidentally, these parameters yield optimal propulsive efficiency for a
system of two aerofoils arranged in horizontal tandem (for details, see Martínez-López
2019; Ortega-Casanova & Fernández-Feria 2019; Martínez-Muriel 2023), which will be
the subject of a follow-up study.

The material properties of the wing are varied in order to study the effect of spanwise
flexibility. As discussed in the next subsection, this is done by adjusting the first natural
frequency of the wing in vacuum,

ωnc
U∞

= β2
n

√
E∗h∗2

s

12ρ∗ , (2.2)

where βn is the first eigenvalue of the transcendental equation

cos(βiA/2) cosh(βiA/2) + 1 = 0, (2.3)

as described in Kodali et al. (2017). In (2.2), E∗ = E/ρf U2∞ is the normalized Young’s
modulus, and ρ∗ = ρs/ρf is the solid to fluid density ratio. Following Shyy et al. (2010),
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Id A ωn/ω ωn,f /ω Π1 Π1(2/A)4 Nomenclature c/�r CT Crms
L ηp

1 4 ∞ ∞ ∞ ∞ Rigid 96 0.416 2.331 0.217
2 4 3.6 2.22 66.3 4.14 Intermediate 96 0.552 2.618 0.235
3 4 1.8 1.11 16.6 1.04 Optimal 96 0.844 3.272 0.248
4 4 1.2 0.74 7.4 0.46 Sub-optimal 96 0.129 1.707 0.066
5 4 0.7 0.44 2.7 0.17 Sub-optimal 2 56 −0.02 0.668 −0.024

6 2 ∞ ∞ ∞ ∞ Rigid 96 0.330 2.183 0.178
7 2 17.5 10.75 96.25 96.25 — 56 0.348 2.195 0.181
8 2 9.3 5.7 27.2 27.2 — 56 0.366 2.213 0.186
9 2 4.6 2.82 6.7 6.7 Intermediate 56 0.471 2.458 0.212
10 2 3.25 2 3.3 3.3 — 56 0.621 2.674 0.234
11 2 2.3 1.41 1.7 1.7 Optimal 96 0.734 2.995 0.237
12 2 1.6 0.99 0.83 0.83 Sub-optimal 56 0.216 2.086 0.099
13 2 0.65 0.4 0.13 0.13 — 56 −0.05 0.507 −0.065

Table 2. Overview of problem parameters and simulation results:A is the aspect ratio, ωn/ω and ωn,f /ω are
the ratios of natural frequency in vacuum and in fluid, respectively, to the angular frequency of the flapping
motion, Π1 is the effective stiffness, c/�r is the grid resolution used in the refined zone of the domain, and
CT , CL

rms and ηp are the time-averaged thrust coefficient, the root-mean-square (r.m.s.) of the lift coefficient,
and the propulsive efficiency, respectively.

we define the effective inertia and effective stiffness of the wings, respectively, as

Π0 = ρ∗h∗
s

(
k
π

)2

, Π1 = E∗h∗3
s

12
. (2.4a,b)

These two parameters, Π0 and Π1, serve to characterize the structural and inertia
properties of the wing.

In the present study, Π0 is kept constant while Π1 is varied to cover a wide range of
frequency ratios, ωn/ω, as shown in table 2.

A density ratio ρ∗ = 20 is selected such that ρ∗h∗
s = 0.4 and a value Π0 = 0.0984

are obtained. This value is of the same order of magnitude of the effective inertia of
insects (Hamamoto et al. 2007; Jongerius & Lentink 2010; Ren et al. 2013; Shyy et al.
2013) and birds (Kodali et al. 2017). The range of the effective stiffness considered here,
Π1 ∼ O(10−1)–O(102), is comparable to that considered in previous studies (Fu et al.
2018). In addition, a rigid wing (Π1 → ∞) is also included in the study to provide a
baseline for comparison.

2.2. Structural model
A lumped-torsional flexibility model is used to simulate the spanwise flexibility of the
wing. The wing is discretized into NB = 5A+ 1 rigid segments connected by torsional
springs, as depicted in figure 1(a). To avoid overlapping when the segments rotate relative
to each other, the segments are separated a distance e = hs when placed horizontally. Note
that a similar approach was employed by Arranz, Flores & Garcia-Villalba (2022a) to
simulate the chordwise flexibility of self-propelling plates.

Under this model, the wing can be considered as a multi-body system of NB bodies
with 1 + NB degrees of freedom; namely, the vertical displacement (h), the pitching angle
(θ ) and the relative rotation angles between each segment, φi, i = 1, . . . , NB − 1 (see
figure 1b).
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Torsional

springs

c

z

x
y

U∞

h(t)
θ(t)

φi

z
y

Segment i

Segment i −1

Segment i + 1

(a) (b)

Figure 1. (a) Sketch of the multi-body model to describe qualitatively the spanwise flexibility of a wing, where
the system of bodies is connected via torsional springs. (b) Sketch of the degrees of freedom (φi) between two
consecutive segments.

For the sake of brevity, only a summary of the most representative aspects of the method
is presented here; further details can be found in Arranz et al. (2022b). The governing
equations for the multi-body system can be cast in the form

H(q) q̈ + C(q, q̇) = ξ + ξh, (2.5)

where q = [h, θ, φ1, . . . , φNB−1] is the vector of generalized coordinates, H is the
generalized inertia matrix, C is the generalized bias force vector – which includes Coriolis
and centrifugal accelerations ξ = [0, 0, −Kφ1, . . . , −KφNB−1], where K is the torsional
spring constant – and ξh is the vector of hydrodynamic forces acting on the wing. In
order to compute the generalized inertia matrix H and the generalized bias force C, the
open-source Rigid Body Dynamics Library developed by Felis (2017) is used. The H
matrix is computed through the composite rigid-body algorithm, and the C vector is
computed through the recursive Newton–Euler algorithm. The stiffness of the torsional
springs K is adjusted by solving an eigenvalue problem as done by Arora et al. (2018), so
that the first natural frequency of the multi-body system matches the first natural frequency
of the corresponding flexible structure in vacuum, ωn.

2.3. Flow solver
The fluid solver employed in this work is TUCAN, a constant-density fluid solver that
uses the immersed boundary method (IBM) proposed by Uhlmann (2005) to model the
presence of the wing in the flow. The three-dimensional Navier–Stokes equations for an
incompressible flow modified for the IBM are used to describe the fluid dynamics:

∇ · u = 0, (2.6a)

∂u
∂t

+ (u · ∇)u = −∇p + ν ∇2u + f IBM, (2.6b)

u(x) = U∂Γ ∀x ∈ ∂Γ, (2.6c)

where u is the velocity field, p is the kinematic pressure (i.e. pressure over the fluid density
ρf ), ν = μ/ρf is the kinematic viscosity, and f IBM is the IBM forcing term that models the
presence of the wing. This forcing term ensures that the no-slip boundary condition (2.6c)
is satisfied at the solid boundaries (i.e. on the surface of the wing segments), where U∂Γ

is the velocity at the segments’ surface. To compute the velocity at the wing surface, (2.5)
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is solved together with (2.6). In particular, at every time step, the hydrodynamic forces are
computed and used to update the position and velocity of the segments according to (2.5).
Then the new hydrodynamic forces are computed from (2.6), leading to a weak coupling
between both systems of equations. This might result in a small incompatibility between
the flow field at the wing surface and the wing’s velocity at the end of the time step, which
in any case remains bounded and negligible over the simulation time. The weak coupling
between the equations is also known to lead to stability problems for density ratios below
1.2 (Uhlmann 2005). However, in the range of parameters considered in this study, no
stability issues have been observed (Arranz et al. 2022b). Two different meshes are
required. First, a staggered Cartesian grid is used to discretize the fluid variables, referred
to as the Eulerian mesh. The spatial derivatives appearing in (2.6) are approximated by
centred finite differences in the staggered grid defined by the Eulerian mesh. Second, the
surface of the wing’s segments (∂Γ ) is discretized with a Lagrangian mesh that follows
the active/passive motion of the solid body within the fluid. The boundary condition on the
wing surface (i.e. (2.6c)) is imposed on this Lagrangian mesh, which requires the use of
discrete delta functions to interpolate velocities and the IBM forcing term back and forth
between the Lagrangian and Eulerian meshes. A complete description of the fluid solver
implemented in TUCAN can be found in Moriche (2017).

TUCAN has already been employed successfully, for both two-dimensional (Moriche,
Flores & Garcia-Villalba 2017; Martínez-Muriel & Flores 2020) and three-dimensional
(Moriche, Flores & García-Villalba 2016; Arranz et al. 2018; Arranz, Flores &
Garcia-Villalba 2020; Moriche et al. 2021) aerodynamics problems, and also for cardiac
flows (García-Villalba et al. 2021; Gonzalo et al. 2022).

2.4. Computational set-up
Direct numerical simulations of the problem described in § 2.1 are performed using
TUCAN. The time step is selected such that the Courant–Friedrichs–Lewy (CFL)
number is lower than 0.3. The simulations are performed in a computational domain
with dimensions 14c × 11c × 7c in the streamwise, spanwise and vertical directions,
respectively. A refined zone is defined roughly at the middle of the domain with a uniform
grid spacing in all directions, �r. Outside this refined region, a constant stretching of 1 %
is applied to the grid in all directions. The wings are located in the refined zone, which
has size (2c × Ly,r × 3c), where Ly,r = (A+ 1)c depends on the aspect ratio of the wing,
leaving enough space for the boundaries not to have spurious effects on this refined zone,
and enough space downstream to develop the wake properly.

The origin of the reference system is located at the leading edge of the mid-span
section of the wing. The free-stream condition is modelled with an inflow velocity
at the inlet boundary (x/c = −4.75), while the outflow has been modelled with
an advective boundary condition (∂u/∂t + U∞ ∂u/∂x = 0) at the outlet (x/c = 9.25).
Free-slip boundary conditions are imposed in the lateral boundaries.

The simulations are started in a grid that uses a lower resolution, �r = c/56, in the
refined zone, which captures qualitatively the dynamics of the problem as shown in
Appendix B. These simulations are run for four cycles. Then, for selected configurations
(see table 2), two additional cycles are run at a higher resolution, �r = c/96. This higher
resolution is chosen based on the grid refinement study performed by Arranz et al. (2020)
for a similar problem at the same Reynolds number. We have checked that the numbers of
cycles run in all simulations are enough to ensure that aerodynamic forces and the flow
in the vicinity of the wing are periodic. The rigid segments that represent the Lagrangian
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Figure 2. Temporal evolution of (a) thrust coefficient CT , and (b) lift coefficient CL, ofA = 4 wings. Line
colours correspond as follows: blue solid line, 1 (rigid); magenta solid line, 2 (intermediate); red solid line,
3 (optimal); black solid line, 4 (sub-optimal); black dashed line, 5 (sub-optimal 2).

mesh are discretized using �l = c/96 irrespective of the resolution used for the Eulerian
grid.

Finally, note that the space between the segments, e, is larger than the Eulerian grid
spacing, allowing fluid to pass through these gaps. The effect of the gaps is negligible
to the global evolution of forces, as shown in Appendix A, although they leave a visible
footprint in the flow structures, as will be shown below.

3. Results

3.1. Force coefficients
First, thrust and lift coefficients, CT and CL, respectively, for cases with A = 4, are
presented as functions of time in figure 2. These coefficients are defined as

CT = −2F · ex

ρf U2∞S
, CL = 2F · ez

ρf U2∞S
, (3.1a,b)

where F is the total aerodynamic force and ek is the unitary vector in the k-axis direction.
Due to the symmetry of upstroke and downstroke motions, the time-averaged value of
the thrust coefficient is different from 0 in general, while the mean value of the lift
coefficient is 0. As expected, there is a clear influence of the wing flexibility on the
evolution of the forces. When moving from rigid to more flexible wings (i.e. decreasing
Π1), a non-monotonic behaviour of the maximum values of both CT and CL is observed, in
accordance with previous studies of heaving wings in forward flight (Heathcote et al. 2008)
and hovering wings (Qi et al. 2010). Focusing on CT , figure 2(a) shows that its maximum
value during the downstroke increases with the flexibility for cases 1, 2 and 3. Increasing
flexibility beyond case 3 results in a sudden drop in CT , as shown by cases 4 and 5.
Moreover, the time instant at which the peak in both force coefficients is produced depends
on the flexibility. For the rigid case, CT peaks at t/T ≈ 0.15, prior to mid-downstroke. For
case 3, the maximum occurs at t/T ≈ 0.3, after the mid-downstroke. A similar behaviour
can be observed in figure 2(b) for CL in terms of maximum values and times. The temporal
evolutions of CT and CL for the cases with A = 2, and their variation with the wing
flexibility, are qualitatively similar to those shown in figure 2 forA = 4, and are provided
as supplementary material available at https://doi.org/10.1017/jfm.2023.308.

Given the temporal evolution of the forces, we choose to characterize the aerodynamic
performance of the wings in terms of the mean thrust coefficient, CT , and the
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Figure 3. (a) Mean thrust coefficient CT , and (b) r.m.s. of lift coefficient Crms
L . Blue symbols are forA = 2;

magenta symbols are forA = 4.

root-mean-square (r.m.s.) of the lift coefficient, CL
rms. Note that we choose CL

rms instead
of CL, since the latter is zero for the wing kinematics considered here. Figure 3 shows
the variation of CT and CL

rms with the effective stiffness of the wing. The effect of the
aspect ratio of the wing in CT and CL

rms is captured by re-scaling the effective stiffness
(horizontal axis on the top) with the factor (2/A)4, as proposed by Kang et al. (2011).
Figure 3 suggests that this re-scaling is able to collapse into a single curve the force
coefficients of the flexible cases withA = 4 and 2, at least for values Π1(2/A)4 � 10.

Overall, figure 3 shows that the variabilities of CT and CL
rms with the wing’s effective

stiffness are qualitatively similar, presenting a monotonic increase from stiffer to more
flexible cases (i.e. decreasing Π1) until a peak is reached. Decreasing the effective stiffness
beyond this point results in a sudden drop of CT and CL

rms, as anticipated already when
discussing the temporal evolution of the coefficients. Figure 3(a) also allows us to analyse
the effect of A on the mean thrust coefficient. For the rigid wings, there is a factor
1.25 between the CT values forA = 2 andA = 4. For the flexible wings, changingA
implies changing the re-scaled effective stiffness, i.e. moving along the top horizontal
axis of figure 3(a). In particular, a change of A from 2 to 4 results in a shift of more
than a decade (a factor 1/16). For the range of flexibilities near the peak, this yields a
factor up to 2.25 in CT . This suggests that the effect of A on the structural properties
of flexible wings is dominant over its direct effect on the generation of aerodynamic
forces.

In the following, we loosely denote as optimal cases for each aspect ratio those that
correspond to the peak in the aerodynamic performance. We denote as sub-optimal cases
those that are beyond the sudden drop in performance (i.e. for smaller Π1 than the optimal
cases). We denote as intermediate cases those between the rigid and the optimal cases.
For reference, this terminology is included in table 2. The stereotypical cases selected
(somewhat arbitrarily) for analysis are cases with id 1, 2, 3, 4 forA = 4 and 6, 9, 11, 12
forA = 2, denoting them as rigid, intermediate, optimal and sub-optimal, respectively.

The aerodynamic force coefficients in figure 3 are also plotted as functions of the ratio
of natural frequency in fluid over the frequency of the motion, ωn,f /ω (see horizontal axis
on the bottom).
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The natural frequency in fluid is computed as in Moore (2015) and Arora et al. (2018),

ωn,f

ω
= ωn/ω√

1 + Ia
= β2

n

2π

√
Π1

Π0(1 + Ia)
= a

2π

√
Π1(2/A)4

Π0(1 + Ia)
, (3.2)

where the dimensionless parameter Ia represents the additional moment of inertia of the
wing due to the added mass term (Arora et al. 2018), and the solution to (2.3) has been
expressed as β2

n = a(2/A)2, with a equal to a positive constant. Since in the present
study Π0 and Ia are held constant for all cases, (3.2) yields a linear relationship between
log10(ωn,f /ω) and log10(Π1(2/A)4), allowing the use of two horizontal axes in figure 3.
Indeed, given the straightforward physical interpretation of ωn,f /ω, in the following we
will use this quantity to characterize the wing’s flexibility, instead of Π1(2/A)4. Finally,
the natural frequency in fluid given by (3.2) approximates well that obtained from a linear
stability analysis of the coupled fluid–structure system (Goza et al. 2020). For example,
the value of ωn,f using (3.2) for the cases with Π1 = 20 in Goza et al. (2020) is ωn,f ≈
6.1πU∞/c, while the one obtained from the linear stability analysis is ωn,f ≈ 6.2πU∞/c.

The results in figure 3 show that the optimal flexibility is found for values of ωn,f /ω
slightly above 1 (see also table 2 for the precise values). For ωn,f /ω < 1, the drop in
performance is observed, for both wing aspect ratios. Similar observations can be inferred
from the works of Zhu et al. (2014) and Qi et al. (2010), although for different kinematics
and Reynolds number. We also analyse the effect of flexibility on the power requirements
and the propulsive efficiency of the wings. The propulsive efficiency of the wing is
computed as

ηp = CT

P̄
, (3.3)

where P̄ is the time-averaged non-dimensional input power of the wing. The instantaneous
non-dimensional input power is computed similarly as in Arranz et al. (2022a), by using
the reaction forces and moments on the segment whose motion is imposed.

The reaction force on the vertical direction is denoted Rz, and the reaction pitching
moment is denoted Rθ . Then the instantaneous non-dimensional power for the flexible
wings is computed as

P(t) = 2
ρf U3∞S

(
max(Rz(t) ḣ(t), 0) + max(Rθ (t) θ̇(t), 0)

)
. (3.4)

Note that the definition for the power is such that no extraction of energy from the fluid is
considered (Berman & Wang 2007; Vejdani et al. 2018; Jurado et al. 2022).

Figure 4(a) shows the temporal evolution of the required input power for the four
stereotypical cases withA = 4. The peak power input for the intermediate and optimal
cases withA = 4 is roughly twice that for the rigid case. Thus, not surprisingly, producing
more thrust requires more power to move the wing. When comparing the intermediate and
rigid cases, the increase in power input for the intermediate case occurs only during the
first half of each stroke. For the optimal case, whose thrust peak is delayed (see figure 2a),
the increase in required power extends to 80 % of each half-cycle. Note that although the
peak thrust of the optimal case is approximately 50 % higher than the peak thrust of the
intermediate case (see figure 2a), the peak power inputs for these two cases are not that
different. For the sub-optimal case, the power input drops significantly, reaching a level
similar to that in the rigid case.
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Figure 4. (a) Power requirements forA = 4 cases. Line colours correspond as follows: blue solid line, rigid;
magenta solid line, intermediate; red solid line, optimal; black solid line, sub-optimal. (b) Propulsive efficiency
ηp for rigid, intermediate, optimal and sub-optimal cases for both aspect ratios.

(a) (b) (c)

z

y

Figure 5. Deflection of the mid-chord line of the wing during the cycle. Only half the wing is shown, from
root (left) to tip (right). Solid (dashed) lines correspond to the downstroke (upstroke). The following cases for
A = 4 are shown: (a) intermediate (magenta solid line); (b) optimal (red solid line); (c) sub-optimal (black
solid line).

Figure 4(b) shows the propulsive efficiency for all cases considered (including both
aspect ratios), as a function of the frequency ratio. When comparing the optimal case
with the rigid case, we observe a small increase in the efficiency (for A = 4 from
η = 0.217 to 0.248, and forA = 2 from η = 0.177 to 0.237). The propulsive efficiencies
of intermediate and optimal cases are very similar, even if the optimal case has a net thrust
coefficient that is approximately 45 % larger than that reported by the intermediate case.
Beyond the optimal case, the drop in efficiency is noticeable, analogous to the behaviour
observed for CT and CL

rms in figure 3. The differences between the propulsive efficiency
of flexible wings withA = 2 and 4 are small, and become significant only in the limit of
a rigid wing.

3.2. Structural response
As seen in the previous subsection, the optimal aerodynamic performance of the wings
is reached when the frequency of the imposed motion, ω, approaches the first natural
frequency of the structure in the fluid, ωn,f . This hints to the occurrence of a resonance
phenomenon, which we try to characterize now, starting with the analysis of the structural
response. We first provide a qualitative view of the wing deformation for three of the
cases withA = 4. Figure 5 compares the deflection patterns of the intermediate, optimal
and sub-optimal cases. Each line in the figure corresponds to the projection of the
instantaneous mid-chord line of the wing (i.e. the pivoting axis of the wing) in the ( y, z)
plane of the inertial reference system displayed in figure 1.
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Figure 6. Time evolution of (a) the mid-chord vertical position of the tip Ztip, and (b) the tip-to-root vertical
relative position Ztr, for A = 4. Rigid case, blue solid line; intermediate case, magenta solid line; optimal
case, red solid line; sub-optimal case, black solid line.

The networks of lines form envelopes, which illustrate the differences among the cases.
In the intermediate case, the deviations with respect to the rigid motion (i.e. horizontal
lines) are small, resulting in an envelope with a mildly diverging pattern from root to tip
(figure 5a). With increasing flexibility, the tip-to-root deflections are more pronounced,
and consequently the diverging pattern is accentuated (see figure 5b for the optimal case).
Note that the diverging pattern implies that the heaving amplitude of any section along the
span increases with respect to the heaving amplitude of the rigid case. In contrast, a further
increase of flexibility beyond the optimal case leads to even larger tip-to-root deflections;
however, the various deflection lines form a convergent–divergent pattern (see figure 5c for
the sub-optimal case). Thus for the sub-optimal case, despite a larger tip-to-root deflection,
the heaving amplitude of any section along the span decreases with respect to the heaving
amplitude of the rigid case.

This effect can be seen in a more quantitative way in figure 6, which shows the
temporal evolution of the vertical position (i.e. displacement) of the mid-chord tip,
Ztip(t) (figure 6a), and the temporal evolution of the mid-chord tip-to-root deflection,
Ztr = Ztip − h (figure 6b). As discussed above, the tip displacement increases when the
wing is made more flexible up to the optimal case. A further increase in flexibility
leads to a lower amplitude of Ztip for the sub-optimal cases (figure 6a), although the
tip-to-root deflection is larger (figure 6b). Furthermore, the time at which the maximum tip
displacement is found for flexible cases is delayed with respect to the rigid case. This phase
lag increases monotonically with the flexibility, in agreement with previous studies, such
as Heathcote et al. (2008), Kang et al. (2011) and Kodali et al. (2017) among many others.
Following Kodali et al. (2017), we may simplify the description assuming that Ztip follows
approximately a sinusoidal law with amplitude htip, and a phase lag with respect to the
imposed heaving motion φtip, i.e. Ztip(t/T) ≈ htip cos(2πt/T − φtip). With this definition,
the phase lag can be computed as

φtip = − tan−1
(

Ztip(0.25)

Ztip(0.5)

)
. (3.5)

Note that similar values of φtip are obtained with more sophisticated definitions of the
phase lag, for instance using the Fourier transform of Ztip(t).

We now analyse these two quantities: the semi-amplitude of the mid-chord vertical
position of the tip, htip = max(Ztip(t/T)), and the corresponding phase lag, φtip, as a
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Figure 7. (a) Semi-amplitude of the vertical position of the tip normalized with the heaving amplitude, htip/h0,
as a function of the frequency ratio in fluid, ωn,f /ω. (b) Phase lag of the tip displacement relative to the wing
root φtip, as a function of the frequency ratio in fluid, ωn,f /ω. (c) Time-averaged thrust coefficient CT as a
function of the phase lag φtip. Here,A = 2 for blue symbols,A = 4 for magenta symbols.

function of the frequency ratio in fluid, ωn,f /ω, for all cases in table 2. These quantities
are shown in figures 7(a,b).

First, the amplitude increases as the frequency of oscillation approaches the resonant
frequency, reaching a ratio of tip-to-root amplitudes htip/h0 ≈ 1.5. This amplification
factor is not very large. For comparison, Kodali et al. (2017) report values of htip/h0 ≈
10. Note that the values of h0/c considered by Kodali et al. (2017) are significantly
smaller than the present one, so that an amplification of 10 is not realizable in our
configuration. The maximum amplitude in figure 7(a) is found for a value of ωn,f /ω
slightly beyond 1. Second, the shape of the phase lag plot is also rather standard, with
a gradual transition from 0 to 180 ◦ occurring near the resonant frequency. For the
optimal cases (i.e. maximum CT as shown in figure 7c), a phase lag slightly less than
45◦ is found. This result is consistent with the behaviour reported by Qi et al. (2010)
at lower Reynolds numbers, but not with Kodali et al. (2017), who found a phase lag
of approximately 90◦ at resonance. These discrepancies in amplification and phase lag
are probably related to the linear/nonlinear character of the system. Kodali et al. (2017)
use a linear Euler–Bernoulli beam and a potential aerodynamic model, and their results
are consistent with a weakly-damped linear oscillator (with large amplification and phase
shift 90◦). Our results and those of Qi et al. (2010), based on a nonlinear structure and
nonlinear aerodynamics, are consistent with a nonlinear damped oscillator, which exhibits
phase shifts at resonance different than 90◦.

Summarizing, the results presented in this subsection show that the optimum in
propulsive performance (CT and ηp) reported in § 3.1 is linked to a fluid–structure
resonance. However, as discussed in the Introduction, the resonant mechanism is
not incompatible with a second mechanism based on nonlinearities tuning the phase
lag between actuation and deformation to maximize aerodynamic forces (i.e. as in
Ramananarivo et al. 2011). In the next subsection, we will discuss the role of this second
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Figure 8. Time evolution of sectional thrust coefficient ct forA = 4 wings: (a) 2y/b = 0, (b) 2y/b = 0.2,
(c) 2y/b = 0.6, (d) 2y/b = 0.8. Rigid case, blue solid line; intermediate case, magenta solid line; optimal case,
red solid line; sub-optimal case, black solid line.

mechanism, by analysing how the wing deformation affects flow structures and force
generation.

3.3. Flow analysis
The optimal aerodynamic performance of the resonant wings with ωn,f /ω ≈ 1 is linked to
their larger heaving amplitudes of the wing tip, shown in figure 5. Then, since the heaving
amplitude varies along the span, we analyse the sectional thrust coefficient at selected
locations along the span to assess this effect. The sectional force coefficient is defined as

ct( y, t) = −2f ( y, t) · ex

ρf U2∞c
, (3.6)

where f ( y, t) is the sectional aerodynamic force. Figure 8 shows the time evolution of
ct at selected spanwise locations, 2y/b = 0, 0.2, 0.6, 0.8. The figure includes the rigid,
intermediate, optimal and sub-optimal cases withA = 4. Compared to the rigid case, the
flexible wings with ωn,f /ω ≥ 1 show larger peak values of ct at all spanwise sections. For
the intermediate case, ct departs from the rigid case values only around the mid-strokes.
In the optimal case, ct shows more marked differences with respect to the rigid case,
with a delayed maximum with higher peak values. The closer to the tip, the stronger
this effect becomes (compare figures 8(c) and 8(d), for 2y/b = 0.6 and 0.8, respectively).
The sub-optimal case presents two markedly different regions, the central part and the
outboard part. In the central part (2y/b = 0 and 0.2 in figures 8a,b), ct of the sub-optimal
wing presents a trend similar to that of the rest of the cases, although with somewhat
lower values. In the outboard part (2y/b = 0.6 and 0.8 in figures 8c,d), ct displays an
out-of-phase behaviour, with negative values of ct (i.e. drag) during the first half of the
stroke. This behaviour occurs because the combined effect of the bending deformation of
the wing and the pitching motion are out of phase (see figures 6 and 7c), resulting in a
counter-productive interaction and a reduced aerodynamic performance.

Indeed, it is important to note that when the total force is decomposed into contributions
normal and tangential to the wing surface, the normal contribution is dominant (not
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Figure 9. Effective angle of attack αe as a function of the spanwise coordinate 2y/b and time t/T , for cases
withA = 4: (a) rigid, (b) intermediate, (c) optimal, (d) sub-optimal.

shown here). This implies that the aerodynamic forces are produced mostly by pressure
forces, and consequently the pitching angle of the wing controls whether a given pressure
difference between the upper and lower surfaces of the wings produces thrust or drag. For
the kinematics of the present study, suction in the upper surface of the wing can produce
thrust only during the downstroke, i.e. when the pitching angle is negative.

In order to try to explain the larger sectional forces of the optimal case, we turn our
attention to the effective angle of attack of the wing, defined as

αe( y, t) = θ(t) − tan−1
(

Uz,p( y)
U∞ − Ux,p( y)

)
, (3.7)

where Ux,p( y) and Uz,p( y) are the streamwise and vertical velocities of the mid-chord line,
respectively.Figure 9 shows αe as a function of the spanwise coordinate and time for the
four cases ofA = 4. It is possible to see how larger values of the effective angles of attack
are reached near the tips as the wings become more flexible. The peak values near the tips
appear delayed with respect to the peak values at the mid-span. For the sub-optimal case
(figure 9d), αe has opposite signs near the wing tips compared to the mid-span during most
of the stroke, which explains the drag generation (i.e. ct < 0) in figures 8(c,d).

As in previous works (Gordnier et al. 2013; Gonzalo et al. 2018), the effective angle
of attack helps to explain some of the features associated with the aerodynamic forces
generated by the rigid and flexible wings. However, it does not provide a complete
picture. For example, in figure 8(d), the peak value of ct for the optimal case occurs
at t/T ≈ 0.3, while the peak value of αe in figure 9(c) occurs at later times, closer to
t/T ≈ 0.4. Moreover, by definition, αe of all cases is the same at the mid-section (y = 0),
yet figure 8(a) shows significant differences between the cases. The missing piece is related
to development of the LEV on the suction surface of flapping wings, and its role in the
development of unsteady aerodynamic forces (Eldredge & Jones 2019).

In order to characterize the effect of the wing flexibility on the development of the
LEV, figure 10 provides flow visualizations of the rigid, optimal and sub-optimal cases
withA = 4. Vortical structures are visualized by iso-contours of Q, the second invariant
of the velocity gradient tensor. Three time instants during the wing’s downstroke are
shown, namely during the initial phase of downstroke, t/T = 1/8, the mid-downstroke,
t/T = 2/8, and the end of the downstroke, t/T = 4/8. For additional information, the
supplementary material contains movies with the complete evolution of the vortical
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(g) (h) (i)

Figure 10. Flow visualization using iso-surfaces of the second invariant of the velocity gradient tensor, Q,
for cases withA = 4: (a,d,g) rigid case, (b,e,h) optimal case. (c, f,i) sub-optimal case. Values of t/T are (a–c)
1/8, (d–f ) 2/8, (g–i) 4/8. Transparent iso-surfaces correspond to Q = 6ω2, where ω = 2πf . Filled iso-surfaces
correspond to Q = 15ω2. Iso-surfaces are coloured with the spanwise vorticity ωy. The arrows in (h) highlight
the LEV and trailing edge vortex (TEV) formed during the downstroke of the wing (LEV1 and TEV1), and the
LEV formed during the previous upstroke of the wing (LEV2).

structures of the four selected cases with A = 4. Qualitatively similar evolutions are
observed for the wings withA = 2.

At the beginning of the downstroke (t/T = 1/8), figures 10(a–c) show that the three
wings start to develop an LEV. For the rigid wing, the LEV is uniform along the spanwise
direction, covering the whole span of the wing. For the wing with optimal flexibility, the
LEV is stronger near the mid-section than near the wing tips, while for the sub-optimal
case, the LEV is apparent only in the central part of the wing. As the wing moves down,
the intensity of the LEVs grows, while the LEV is advected downstream (figures 10d–f ).
At the end of the downstroke (figures 10g–i), the LEVs generated by the rigid, optimal and
sub-optimal wings are very different. In the rigid case, the LEV is a quasi-two-dimensional
structure aligned with the spanwise direction, with a clear pattern of braid vortices. The
spacing of these braids coincides with the spacing of the gaps between the wing panels,
although the effect of the gaps on the aerodynamic performance of the wing is rather small
(see Appendix A). For the optimal case, the LEV is inclined with respect to the spanwise
direction, having moved further downstream at the mid-span section than near the wing
tips. The braids are also present, although they seem to be less intense than over the rigid
wing. For the sub-optimal case, the LEV generated in the central part of the wing is mostly
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Figure 11. (a–d) Velocity tangent to the wing computed as ut = ux cos(θ) − uz sin(θ). (e–h) Pressure
coefficient cp = 2( p − p∞)/(ρU2∞). Blue means suction. (a,c,e,g) Spanwise mid-section, 2y/b = 0; (b,d, f,h)
spanwise section at 2y/b = 0.6. The vertical black line represents the end of the downstroke. The yellow dashed
line is x/c = 0.1 + t/T .

broken, and two new LEVs are starting to develop near the wing tips. These tip LEVs are
developing when the αe in figure 9(d) is beginning to grow, and just before the pitching
angle changes sign, which may explain the relatively large drag contributions near the
wing tips of the sub-optimal cases at the beginning of each stroke.

Overall, we can extract two important ideas from figure 10 that help us to understand
the aerodynamic performance of these three cases. First, in the sub-optimal case, the
out-of-phase motion of the tips prevents the development of coherent LEV vortices over
the wing, resulting in lower aerodynamic loads at all spanwise sections. Second, the LEV
of the optimal case seems to have a delayed development when compared to the LEV of
the rigid wing. This fact is apparent when looking in figures 10(g–i) at the coherence of
the vortex LEV2 (i.e. the LEV shed in the previous upstroke of the wing), which is visible
clearly only for the optimal wing.

The differences in LEV development between optimal and rigid cases that have been
shown qualitatively in figure 10 are explored further now in a more quantitative manner.
Figure 11 shows the chordwise velocity component ut and the pressure coefficient cp =
2( p − p∞)/(ρU2∞), both measured at distance 3�r from the upper surface of the wing.
Both variables are plotted as a function of the chordwise coordinate (x/c) and time, at two
spanwise positions (i.e. mid-span and 2y/b = 0.6).

We first focus on the plots of ut(x, t) (figures 11a–d). The oblique bands of negative
(blue) ut(x, t) correspond to the regions of counterflow generated below the LEV, and serve
as an indication of the chordwise position of the LEV. These bands have been highlighted
in the figure with a yellow dashed line. The slope of this line represents the advection
speed of the LEV, which is approximately equal to c/T = 0.496U∞. The alternative
positive/negative bands upstream of the LEV correspond to the secondary vortices that
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form near the leading edge of the wing (Li et al. 2020). Figures 11(a,b) show that the
LEV of the rigid case moves downstream at roughly the same velocity at both spanwise
positions, 2y/b = 0 and 0.6. The LEV of the optimal case seems to form later than in
the rigid case (i.e. ut at t/T = 0 is less intense for the optimal case than for the rigid
case). Moreover, the LEV of the optimal case moves downstream more slowly during
the downstroke at 2y/b = 0.6 (figure 11d) than at the mid-span section (figure 11c), in
agreement with the flow visualizations provided in figure 10. Interestingly, the LEVs of
the rigid and optimal cases move at approximately the same speed at the mid-span section
of the wing.

The delayed evolution of the LEV has an effect on the pressure distribution on the
surface of the flexible wings. For the rigid cases, the separation of the LEV occurs at
approximately t/T ≈ 0.33 at all spanwise locations, indicated in figures 11(e, f ) by the
change of the sign of cp in the region between the leading edge of the wing and the LEV
(i.e. below the yellow line). For the optimal case, the LEV separation occurs at t/T ≈ 0.4
at the mid-span section (figure 11g), and at t/T ≈ 0.46 at 2y/b = 0.6 (figure 11f ). The
pressure distributions of the rigid and optimal cases also differ downstream of the LEV,
although it is difficult to say if these differences are due to the evolution of the LEV
itself, or to the generation of a stronger TEV in the optimal case (i.e. vortex TEV1 in
figures 10g–i). In summary, the delayed development of the LEV in the optimal case most
likely explains the delayed peaks and higher maximum values of ct for the optimal case
compared to the rigid case (see figure 8), and the overall better aerodynamic performance
of the optimal case.

4. Conclusions

We have presented direct numerical simulations of the flow around a spanwise-flexible
wing in forward flight. The simulations were performed at Re = 1000 for a wing
undergoing a heaving and pitching motion at Strouhal number Stc ≈ 0.5. We have
considered wings of two aspect ratios, A = 2 and 4. For both cases, we have varied
the material properties of the wing, keeping constant the effective inertia Π0 = 0.1,
and varying the effective stiffness Π1 in a broad range, including a rigid wing for
comparison (Π1 → ∞). The structural model of the wing consisted of a series of rigid
segments joined by torsional springs whose stiffness was adjusted to match the natural
frequencies in vacuum of a corresponding Euler–Bernoulli beam. It has been found that
there is an optimal aerodynamic performance of the wing linked to a fluid–structure
resonance phenomenon that occurs when the imposed frequency of oscillation approaches
the first natural frequency of the structure in the fluid, ωn,f /ω ≈ 1. In that situation, the
time-averaged thrust is maximum, increasing by a factor of 2 with respect to the rigid
case. The associated increase in propulsive efficiency is milder, approximately 3–6 % in
absolute terms, since the increase in thrust production is also linked to an increase in the
required power to maintain the wing motion. With increasing flexibility beyond the optimal
case, ωn,f /ω < 1, the aerodynamic performance drops significantly, in terms of both thrust
production and propulsive efficiency. The effect of the aspect ratio in the aerodynamic
performance of the flexible wings seems to be limited to its effect on determining the
natural frequency of the wing. Flexible wings with the same ωn,f /ω but different A
have very similar aerodynamic performances in terms of averaged thrust coefficients and
propulsive efficiencies, suggesting that the aerodynamic benefits of the resonance are
dominant over the aerodynamic benefits associated with largerA. This does not preclude
some (weak)A effects on the amplitude and phase lag of the structural response.
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In order to characterize the resonance phenomenon, we have started by analysing the
structural response of the wing. It has been found that for all cases considered, the
mid-chord line of the wing presents a bending pattern corresponding to the first bending
mode of an Euler–Bernoulli beam. This is not surprising, since there is a factor of
approximately 10 between the natural frequencies of the first and second modes of the
wings considered in this study. Hence the frequency ratios considered in this work are still
relatively far from the second mode. Thus the drop in aerodynamic performance cannot
be attributed to the excitation of a second bending mode. Instead, the analysis of the wing
tip motion compared to the root motion has shown a pattern consistent with the response
to periodic forcing of a nonlinear damped harmonic oscillator. Increasing the flexibility
from ωn,f /ω > 1 to ωn,f /ω < 1 results in increased tip-to-root deflections, with a sharp
transition of the amplitudes around ωn,f /ω ≈ 1 and a gradual transition in the phase lag
between the tip and root motions from 0 to 180◦. The fluid damping seems to be significant,
since the amplitude of the tip displacement is only ≈ 1.5 times larger than the amplitude
of the heaving motion. The phase lag at the resonance is φtip ≈ 45◦, far from the expected
value for linear oscillators (i.e. φtip ≈ 90◦).

The reason why the structural resonance results in an enhanced aerodynamic
performance is twofold. First, the increased amplitude of motion of the outboard wing
sections leads to larger effective angles of attack. Second, the motion of the outboard wing
sections is delayed with respect to the motion of the mid-span section of the wing. This
results in a delayed development of the leading edge vortex, which, together with the larger
effective angles of attack, explains the larger aerodynamic load in the outboard sections
of the optimal wing. This beneficial fluid–structure interaction holds while the bending
deformation and the pitching motion of the wing are synchronized. Indeed, the outboard
wing sections of the sub-optimal cases are out of phase, leading to drag generation during
the first half of each stroke. Overall, the coupling among deformation, force generation
and wing orientation (i.e. pitching angle) in our results is reminiscent of the streamlining
arguments of Ramananarivo et al. (2011) for chordwise-flexible wings, albeit there are
fundamental differences between both configurations.

Compared to the existing literature on spanwise-flexible wings, our results suggest
that the differences between Kodali et al. (2017), Zhu (2007) and Qi et al. (2010) can
be explained by the linear/nonlinear character of the structural model. Our results are
consistent with Qi et al. (2010), even if the Reynolds number and flow configuration
(forward flight versus hover) are different. This, together with the similarities with Zhu
(2007) (nonlinear structure and linear aerodynamics), seems to suggest a dominant role of
structural nonlinearities in determining the amplitude and phase shift at resonance.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2023.308.
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Figure 12. Time evolution of (a) thrust coefficient CT and (b) lift coefficient CL, for theA = 4 rigid wing
case. Model with gaps, blue solid line. Model without gaps, red solid line.
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Appendix A. Effect of gaps on aerodynamic performance

The flexible-wing model consists of several rigid segments joined with torsional springs.
The segments are separated by small gaps to avoid overlapping when the segments rotate
with respect to each other. In the rigid case, there is no risk of overlapping, so the rigid
case can be used to assess the influence of the gaps on the aerodynamic performance of
the wing. To this aim, we have performed an additional simulation of a rigid wing without
gaps, consisting of a a single segment of chord c and aspect ratioA = 4. Figure 12 shows
the time evolution of thrust and lift coefficients during half a cycle for both cases (i.e.
rigid wing with gaps and rigid wing without gaps). It is possible to see that the gaps do
not significantly affect the temporal evolution of the force coefficients, where changes in
CT are not higher than 3 %, while changes in CL are not higher than 0.7 %.

Appendix B. Analysis of grid resolution

The nominal grid resolution used in the present work, c/�r = 96, was selected based on
a grid refinement study performed in a previous study for a similar problem at the same
Reynolds number (Arranz et al. 2020). In order to generate additional data points at a
lower computational cost, some additional simulations were performed at a coarser grid
resolution, c/�r = 56, as reported in table 2. In this appendix, we quantify the differences
between the results obtained with both grid resolutions for the rigid, intermediate, optimal
and sub-optimal cases forA = 4. We proceed as in Gonzalo et al. (2018, Appendix A),
analysing the total force coefficient

CF = 2|F |
ρf U2∞S

. (B1)

Figure 13 shows the time evolution of CF and Ztip during the downstroke for the four
cases considered. Overall, the results obtained with the lower-resolution grid compare
reasonably well with the results obtained with the nominal grid resolution. In order to
provide a more quantitative comparison, for both quantities (CF and Ztip) we compute the
r.m.s. of the fluctuations with respect to the mean for both grid resolutions, and define the
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Figure 13. Time evolution of (a) total force coefficient CF and (b) mid-chord vertical position of the tip Ztip.
Solid lines, c/�r = 96. Dashed lines, c/�r = 56. Rigid case, blue solid line. Intermediate case, magenta solid
line. Optimal case, red solid line. Sub-optimal case, black solid line.

normalized differences

εF =

∣∣∣Crms
F,56 − Crms

F,96

∣∣∣
Crms

F,96
, εZ =

∣∣∣Zrms
tip,56 − Zrms

tip,96

∣∣∣
Zrms

tip,96
, (B2a,b)

where the subscripts 56 and 96 indicate the corresponding grid resolution. The maximum
value of εF is found for the intermediate case, and it is smaller than 3 %. The maximum
value of εZ is found for the sub-optimal case, and it is approximately equal to 5 %. Since
these differences are relatively small, we conclude that it is reasonable to include the
results obtained with the low-resolution grid in table 2 and figures 3, 4(b) and 7.
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