
1 Learning Power Grid Topologies
Guido Cavraro, Vassilis Kekatos, Liang Zhang, and Georgios B. Giannakis

1.1 Introduction

To perform any meaningful grid optimization task, distribution utilities need to know
the topology and line impedances of their grid assets. One may distinguish two major
topology learning tasks: (i) In topology detection, the utility knows the existing line
infrastructure and impedances, and wants to find which lines are energized; and (ii)
in topology identification, the utility aims at identifying both the connectivity and line
impedances; hence, it is a harder task.

Grid topology learning oftentimes relies on second-order statistics from smart meter
data [1–3]. Nonetheless, sample statistics converge to their ensemble values only after a
large amount of grid data has been collected. Detecting which lines are energized can be
posed as a maximum likelihood detection task [4]; sparse linear regression [5, 6]; or as
a spanning tree recovery task using the notion of graph cycles [7]. Line impedances are
estimated using a total least-squares fit in [8]. In [9], deep neural networks are trained
to detect which lines are energized; nevertheless, the data set feeding the classifiers may
not be available in distribution grids. A Kron-reduced admittance matrix is recovered
using a low rank-plus-sparse decomposition in [10], though the deployment of micro-
phasor measurement units presumed there occurs at a slower pace in distribution grids.

This chapter presents a gamut of statistical tools for learning the topology of dis-
tribution grids. Toward this end, utilities could rely on smart meter data polled from
customers’ sites. In addition to passively collecting data, this chapter puts forth an active
data acquisition paradigm that we term grid probing using smart inverters. The rest
of the chapter is organized as follows. Section 1.2 reviews an approximate grid model.
Assuming smart meter data, Section 1.3 poses topology detection as a statistical learning
task. The method of partial correlations is extended to the nonlinear setting to detect
meshed grid topologies in Section 1.4. Section 1.5 puts forth the novel data acquisition
paradigm of grid probing through smart inverters. Section 1.6 provides conditions on
inverter placement to ensure topology identifiability. Once specific blocks of the inverse
Laplacian matrix have been recovered from probing data, a radial grid topology can
be identified using the graph algorithms of Section 1.7. Because these algorithms may
become impractical under low signal-to-noise ratios, the grid topology can be identified
using the convex relaxation approach of Section 1.8. The different algorithmic alterna-
tives for topology identifiability using probing data are tested in Section 1.9. The chapter
is concluded in Section 1.10.
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Regarding notation, lower- (upper-) case boldface letters denote column vectors
(matrices), and calligraphic letters are reserved for sets. Vectors 0, 1, and en denote,
respectively, the all-zero, all-one, and the n-th canonical vectors. The superscript T

stands for transposition and T r(X) is the trace of X. The operator dg(x) returns a
diagonal matrix with x on its main diagonal. For W � 0, define the norm ‖X‖2

W :=
T r(X�WX) = ‖W1/2X‖2

F , where ‖X‖F is the Frobenius norm of X. The pseudo-norm
‖X‖0,off counts the number of nonzero off-diagonal entries of X.

1.2 Grid Modeling

We build upon an approximate distribution grid model briefly reviewed next. A radial
single-phase grid having N + 1 buses can be represented by a tree graph G = (No,L),
whose nodes No := {0, . . . ,N} correspond to buses and its edges L to lines. The tree is
rooted at the substation indexed by n = 0. Let pn+ jqn be the complex power injection
and vne

jφn the complex voltage phasor at bus n ∈ N . Collect the voltage magnitudes
and phases and power injections of buses in N in the vectors v, φ, p, and q, respectively.
The impedance of line � : (m,n) ∈ L is denoted by r� + jx� or rmn + jxmn, depending
on the context. The grid connectivity is captured by the branch-bus incidence matrix
Ã ∈ {0, ± 1}L×(N+1); which can be partitioned into the first and the rest of its columns
as Ã = [a0 A]. For a radial grid (L = N ), the reduced incidence matrix A is square and
invertible [11].

The complex power injections are nonlinear functions of voltages. Nonetheless, the
power flow equations are oftentimes linearized at the flat voltage profile of vn = 1 and
φn = 0 for all n, to yield the linearized grid model [12–14]

pn =
∑

(n,m)∈L
gnm(vn − vm)+ bnm(φn − φm) (1.1a)

qn =
∑

(n,m)∈L
bnm(vn − vm)− gnm(φn − φm). (1.1b)

where gnm + jbnm := 1/(rnm + jxnm) is the admittance of line (n,m). The model
in (1.1) constitutes a system of 2N linear equations of 2N unknowns, namely the voltage
magnitudes and phases. The system can be inverted to obtain[

v
φ

]
=
[

R X
X −R

] [
p
q

]
+
[

1
0

]
. (1.2)

where the N ×N matrices R and X are defined as

R := (A�dg−1(r)A)−1 and X := (A�dg−1(x)A)−1. (1.3)

It is worth mentioning that the widely used linearized distribution flow (LDF) model
originally proposed by [12], involves the squared voltage magnitudes rather than the
voltage magnitudes in (1.2). For this reason, the matrices R and X appearing in LDF
take the values of (1.3) divided by a factor of 2; see also [13]. Note finally that, different
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from (1.2), the LDF model does not provide a linearized model to approximate voltage
angles by complex power injections.

The topology learning schemes presented later in this chapter do not consider voltage
phases. This is because, despite the recent developments of phasor measurement unity
(PMU) for distribution grids, smart meters report to utilities only voltage magnitudes,
henceforth simply referred to as voltages.

Voltage samples are collected at a sampling period of Ts and indexed by t = 0, . . . ,T .
Upon applying (1.2) over two consecutive voltage samples, the changes in voltages
caused by changes in power injections p̃t := pt − pt−1 and q̃t := qt − qt−1 can be
modeled as

ṽt := vt − vt−1 = Rp̃t + Xq̃t + nt (1.4)

where nt captures measurement noise; the approximation error introduced by the lin-
earized grid model; and unmodeled load dynamics. There are two advantages of using
the differential model of (1.4) over (1.2): When dealing with smart meter data, the
operator may be observing some or none of the entries of (pt,qt ), so then one can only
exploit the second-order moments of (p̃t,q̃t ) using blind signal processing techniques
(see Section 1.3). With active data collection, power injections can be intentionally
perturbed over short intervals, so that (p̃t,q̃t ) take zero entries for nonactuated buses
and known nonzero entries for actuated buses. Then, topology learning can be cast as a
system identification task; see Section 1.5.

1.3 Topology Detection Using Smart Meter Data

Feeders are built with redundancy in line infrastructure. This redundancy improves
system reliability against failures or during scheduled maintenance, while grids are
reconfigured for loss minimization [12]: at each time, not all existing lines in L are
energized. We will be considering a period of operation where the subset of energized
lines E ⊂ L with |E | = Le remains constant, yet unknown.

1.3.1 A Maximum Likelihood Approach

To capture the status of each line, introduce variable b� for line � taking values b� = 1
if line is energized (� ∈ Le); and b� = 0 otherwise. Collect the b�’s in the binary Le–
length vector b. To verify grid topologies using smart meter data, parameterize (R,X)
from (1.3) as

R(b) =
(∑

�∈L

b�

r�
a�a��

)−1

and X(b) =
(∑

�∈L

b�

x�

a�a��

)−1

(1.5)

where a�� is the �-th row of A. By slightly abusing notation, matrix A here has been
augmented to include both energized and nonenergized lines. Under this representation,
verifying the grid topology entails finding b from grid data.
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The utility collects voltage readings, but power injections are described only through
their first- and second-order moments. Smart meter data comprise voltages and
(re)active powers. Nonetheless, a smart meter monitors a single household, which
may not necessarily correspond to a bus. The nodes of low-voltage grids are typically
mapped to pole transformers, each one serving 5–10 residential costumers. Hence,
power readings from meters may not be useful. Interpreting powers and voltages as
system inputs and outputs, respectively, topology detection has to be posed as a blind
system identification problem where power injections (system inputs) are characterized
only statistically. To this end, we postulate the ensuing statistical model; see also
[2, 14, 15].

assumption 1.1 Differential injection data (p̃t,q̃t ) are zero-mean random vectors
with covariance matrices Σp := E[p̃t p̃�t ]; Σq := E[q̃t q̃�t ]; and Σpq := E[p̃t q̃�t ]. Noise
nt is a zero-mean independent identically distributed (iid) Gaussian random vector with
covariance matrix σ2

nIN .

Under Assumption 1.1 and from (1.4)–(1.5), the differential voltages {ṽt } (termed
voltage data for brevity) are zero-mean with covariance matrix parameterized as

Σ(b) = R(b)ΣpR(b)+ X(b)ΣqX(b)+ R(b)ΣpqX(b)+ X(b)Σ�pqR(b)+ σ2
nIN .

We postulate that the probability density function (pdf) of each random vector ṽt

converges asymptotically in N to a multivariate Gaussian pdf, even if (p̃t,q̃t ) are not
Gaussian; this stems from contemporary variants of the central limit theorem as detailed
in [16]. Statistical tests on actual data validate this assumption [16]. Thus, the pdf of ṽt

for each t can be approximated as

p(ṽt ;b) = |Σ(b)|−1/2

(2π)N/2
exp

(
−1

2
ṽ�t Σ

−1(b)ṽt

)
.

To fully characterize the collected voltage data {ṽt }Tt=1, their joint pdf should be pro-
vided. It has been demonstrated that voltage data are relatively uncorrelated across time,
especially for sampling periods larger than Ts = 5 min; see [16, figure 3]. Due to
Gaussianity, uncorrelatedness implies independence. Therefore, the joint pdf for the
entire voltage data set becomes

p({ṽt }Tt=1;b) =
T∏

t=1

p(ṽt ;b) = |Σ(b)|−T/2

(2π)NT/2
exp

(
−1

2

T∑
t=1

ṽ�t Σ
−1(b)ṽt

)
. (1.6)

From the preceding modeling, topology detection amounts to finding the subset E
given: the line infrastructure, that is {r�,x�,a�}�∈L; the covariance matrices Σp, Σq , Σpq ;
and voltage data {ṽt }Tt=1. Upon observing {ṽt }Tt=1, function (1.6) becomes the likelihood
function of the line indicator vector b. After ignoring constant terms and adopting a
maximum likelihood (ML) approach, vector b can be found as the minimizer of the
negative log-likelihood function

b̂ := arg min
b

{
f (b) : b ∈ {0,1}L,1�b = N

}
(1.7)
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where f (b) := log |Σ(b)| + T r(Σ−1(b)Σ̂); the operator | · | is the matrix determinant;
and Σ̂ := 1

T

∑T
t=1 ṽt ṽ�t is the sample covariance of voltage data. The second summand

in f (b) aggregates the information from data, while the first one acts as a regularizer
guarding Σ(b) within the positive definite matrix cone and away from singularity [17].
The constraint 1�b = N ensures a tree structure.

Solving (1.7) is nontrivial due to the binary variables and the nonlinear objective.
A lower bound can be obtained by solving the box relaxation of (1.7)

b̌ := arg min
b

{
f (b) : b ∈ [0,1]L,1�b = N

}
. (1.8)

Because f (b) is nonconvex in general, one may only be able to find a local minimum
of (1.8). Consistent with the properties of the MLE, the true indicator vector minimizes
(1.7) and (1.8), when the number of data T grows to infinity.

proposition 1.1 ([16]) Let bo be the true line indicator vector. If the sample covari-
ance Σ̂ has converged to the ensemble covariance Σ(bo), then bo is a stationary point
of f (b) and global minimizer for (1.7) and (1.8).

To obtain a feasible b, one may apply a heuristic on b̌, such as selecting the lines
corresponding to the L largest entries of b̌; or finding the minimum spanning tree on
a graph having b̌ as edge weights. Obviously, f � ≤ f (b̂) and f (b̌) ≤ f (b̂). Even
though b̂ yields reasonable detection performance (see Section 1.9), vector b̌ may not
be a global minimizer of (1.8).

The issues with the nonconvexity of f (b) can be alleviated by resorting to two sim-
plifying assumptions: a1) the resistance-to-reactance ratios are identical or r�/x� = α
for all lines � ∈ L; and a2) the noise term nt is negligible. In this case, the voltage data
model of (1.4) simplifies as ṽt = αXp̃t + Xq̃t , and the ensemble covariance of voltage
data becomes

Σ(b) := X(b)(α2Σp + Σq + α(Σpq + Σ�pq )X(b).

Under a1)–a2), the original negative log-likelihood is surrogated by

f̃ (b) := −2 log |X−1(b)| + T r
(

X−1(b)Σ−1
α X−1(b)Σ̂

−1)
.

Interestingly, function f̃ (b) is convex and so (1.8) becomes a convex program [16].

1.3.2 A Maximum a posteriori Probability Approach

In meshed grids, the utility may not know the exact number of energized lines L. How-
ever, prior information on individual lines being energized could be known through
the generalized state estimator or current readings on transformers. To cope with such
scenarios, a maximum a posteriori probability (MAP) approach can be adopted. The
indicator b� for line � is modeled as a Bernoulli random variable with given mean
E[b�] = π�. The prior probability mass function (pmf) for b� can be expressed as
Pr(b�) = πb�

� (1 − π�)1−b� . To derive a tractable statistical model, lines are assumed to
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be energized independently. Then, the joint pmf for b is Pr(b) = ∏
�∈Le

Pr(b�) up to a
normalization constant and then

− log Pr(b) =
∑
�∈Le

b�β� − log(1− π�) (1.9)

where β� := log
(

1−π�

π�

)
for all � ∈ Le. The MAP estimate for b is defined as the

maximizer of the posterior p(b|{ṽt }Tt=1). From Bayes’s rule, the latter is proportional to
the product p({ṽt }Tt=1;b) Pr(b), so that the MAP estimate can be found by minimizing

− log p(b|{ṽt }Tt=1) = − log p({ṽt }Tt=1;b)− log Pr(b).

Collecting β�’s in β and ignoring constants, the latter leads to the problem

bMAP := arg min
b∈{0,1}L

T
2 f (b)+ β�b (1.10)

Contrasted to (1.7), problem (1.10) leverages prior information: if line � is likely to be
energized, then π� > 1/2 and β� < 0. If line � is known to be energized, then π� = 1
and β� = −∞, thus forcing the �-th entry of bMAP to one. No prior information on line
� means π� = 1/2 and β� = 0. If π� = πo for � ∈ Le, then β�b = πo1�b, and
(1.10) takes a Lagrangian form of (1.7). Similar to (1.7), a box relaxation of (1.10) can
be pursued.

1.3.3 Numerical Tests on Topology Detection Using Smart Meter Data

The schemes were validated using the modified version of the IEEE 37-bus system
depicted in Figure 1.1 (a), in which additional lines were added. Data collected from the
Pecan Street project were used as power profiles [18]. Voltages were obtained through
a power flow solver and the measurement noise was modeled as zero-mean Gaussian
with a 3-sigma deviation matching 0.5% of the actual value [16]. The ML task (1.8) was
solved by a projected gradient (PGD) scheme over 50 Monte Carlo runs and a sampling
period of Ts = 5 min. The actual topology was randomly chosen. The solutions b̌
were projected onto the feasible set using randomization by treating b̌ as the mean of a
multivariate Bernoulli distribution [16]. The MAP approach (1.10) was tested using 50
Monte Carlo runs and solved by a PGD scheme too. The prior probabilities π� were set
to 0.5 for switches and 0.9 for lines. The entries of the solution were truncated to binary
upon thresholding. The line error probabilities for the two problems are depicted in
Figure 1.1 (b). It is worth emphasizing that reliable line detection can be obtained even
for T < N , when matrix Σ̂ is singular. Figure 1.1 (c) tests the effect of Ts on the line
status error probability achieved by the nonconvex ML task of (1.8). The performance
improves as Ts and the total collection time increase.
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Figure 1.1 (a) Line structure for the IEEE 37-bus feeder. (b) Line error probability for the ML
and the MAP task. (c) Line error probability for the ML task (1.10). (c) Effect of Ts on the line
status error probability for the ML task.

1.4 Topology Detection Using Partial Correlations

Collect the data associated with bus n for t = 1, . . . ,T , into vector xn := [xn[1] . . .
xn[T ]]�. For power network topology inference, vector xn may collect voltage readings
across time [2]. Given {xn}n∈N , we would like to recover the edge set L. To this
end, we adopt the method of Partial Correlations (PC), which is effective in capturing
unmediated linear influence between nodes [2, 19, 20]. Consider two buses {n,m} and
define the error vector εn|m = xn − x̂n|m, where x̂n|m is the estimate of xn based on {xi}
for i /∈ {n,m}. The empirical PC coefficient between xn and xm is given by [20]

ρnm := (εn|m − ε̄n|m)�(εm|n − ε̄m|n)

‖εn|m − ε̄n|m‖2 · ‖εm|n − ε̄m|n‖2
(1.11)

where ε̄n|m := 1
T
ε�n|m1T 1T . Having computed the PC coefficients ρnm’s for all pairs

(n,m) ∈ N ×N , determining whether node m is connected with n entails a hypothesis
test: an edge between m and n is declared present if |ρnm| ≥ τ > 0, where τ trades off
the relative true positive for the false positive decisions.

1.4.1 Nonlinear Partial Correlations

The PC method assumes that x̂n|m is a linear function of {xi}i /∈{n,m}. It is worth men-
tioning here that partial correlation coefficients are preferred over ordinary correlation
coefficients because they can reveal direct (nonmediated) links rather than mediated
ones, e.g., [20]. Nonetheless, the dependence of xn on {xi}i /∈{n,m} may be nonlinear.
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To accommodate that, an �2-norm-based multikernel partial correlation–based approach
has been studied in [19], which works as follows. Let vector χnm[t] collect the data
associated with time t and all buses except for {n,m}. By replacing χnm[t] with its
lifted image using a feature map φnm[t], a nonlinear data generation model can be
postulated as

xn[t] = 〈φnm[t],βnm〉 + en[t] (1.12)

where βnm is a parameter vector to learn and en[t] captures modeling inaccuracies.
Along the lines of ridge regression, βnm can be estimated as

β̂nm := arg min
β

C

N

∥∥ξn

∥∥2
2 +

1

2
‖β‖2

2 (1.13a)

s.to ξn = xn −Φ�nmβ (1.13b)

where matrix Φnm has φnm[t] for t = 1, . . . ,T as its columns, and C ≥ 0 is a given
constant. Because φnm[t] has high (potentially infinite) dimension, the dual of (1.13),
which has only T variables, will be used henceforth. Specifically, the dual of (1.13) can
be succinctly written as [21]

max
α
−μα�α + 2α�xn − α�Knmα (1.14)

where α ∈ RT denotes the Lagrange multiplier associated with (1.13b); constant μ :=
N/(2C); and Knm := Φ�nmΦnm. The maximizer of (1.14) can be found in closed form
as α̂n = (Knm + μIN )−1xn, and so x̂n|m is obtained as

x̂n|m =Φ�nmβ̂nm =Φ�nmΦnmα̂n = Knm(Knm + μIN )−1xn. (1.15)

The latter entails computing inner products between high-dimensional feature vectors
of the form 〈φnm[t],φnm[t ′]〉. Fortunately, such a costly computation can be reduced
by invoking the so-called kernel trick [22], which allows computing the wanted inner
products in (1.15) by evaluating a kernel function κ

(
φnm[t],φnm[t ′]

)
for all pairs (t,t ′).

The accuracy of the estimates in (1.15) depends on the selected kernel function
κ(·,·) [22]. To choose a suitable kernel, multikernel ridge regression (MKRR) is invoked
here [23], which seeks κ(·,·) as a conic combination of user-defined kernel functions;
that is, κ(·,·) := ∑M

i=1 θiκi(·,·). The coefficients {θi ≥ 0}Mi=1 can be deciphered from
data by solving [23]

θ∗ := arg min
θ∈Θp

max
α∈RN

−μα�α + 2α�xn −
M∑
i=1

θiα�Ki
nmα (1.16)

where the (t,t ′)-th entry of the kernel matrix is κi

(
χnm[t],χnm[t ′]

)
, and the constraint

set Θp is defined as Θp := {θ ∈ RM | θ ≥ 0, ‖θ‖p ≤ Λ} with p ≥ 1 and Λ > 0 is a
preselected constant. Define the optimal value of the inner optimization (maximization
over α) as F (θ). Then, the problem in (1.16) can be compactly expressed as

θ∗ := arg min
θ∈Θp

F (θ) (1.17)
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where F (θ) := x�n
(
μI + ∑M

m=1 θmKi
nm

)−1xn. Upon obtaining θ∗ and Knm =∑M
m=1 θ

∗
mKi

nm, we get from (1.15)

x̂nm = Knm

(
μI+Knm

)−1 xn. (1.18)

This formulation generalizes the nonlinear estimator in [19] beyond p = 2. This gener-
alization is well motivated because ‖εn|m‖2 can be reduced for p �= 2; see [24].

Returning to the grid topology inference task at hand, let vector xn collect the volt-
age angles φn[t] for t = 1, . . . ,T . Given data {xn}n∈N , the goal is to infer the con-
nectivity between buses. For each bus pair (n,m), we follow the ensuing procedure.
Having selected candidate kernel functions {κi}Mi=1, one first forms the kernel matrices

{Ki
nm}Mi=1, and learns the best kernel combination Knm = ∑M

i=1 θ
∗
i Ki

nm by solving
(1.17). The next step is to obtain the nonlinear estimators x̂n|m = Knm(μI+Knm)−1xn,
and likewise for x̂m|n. The PC coefficient ρnm is found from (1.11), and an edge between
buses n and m is claimed to be present if |ρnm| > τ. This pairwise hypotheses test is
repeated for all pairs (n,m). We next present an algorithm for solving (1.17).

1.4.2 A Frank–Wolfe–Based Solver

Though the �p-norm-based MKRR (1.17) can lead to improved estimation accuracy,
solving it may not be easy unless p = 1 or 2; see [24, 25]. For this reason, we put
forward an efficient solver by leveraging the Frank–Wolfe or conditional gradient
method [26]. The latter algorithm targets the convex problem

y∗ ∈ arg min
y∈Y

F (y) (1.19)

where F is differentiable and Y is compact. The Frank–Wolfe solver starts with an
arbitrary point y0, and iterates between the updates [27]

sk ∈ arg min
s∈Y

s�∇F (yk) (1.20a)

yk+1 := yk + ηk(sk − yk) (1.20b)

where ηk = 2/(k + 2). The iterates {yk} remain feasible for all k because η0 = 1,
y1 = s0 ∈ Y , and sk ∈ Y; see [26].

Because the cost in (1.17) is convex and differentiable, and set Θp is convex and
compact, problem (1.17) complies with the form in (1.19). The negative gradient of
F (θ) can be computed as

−∇F (θ) = [α̂�K1
nmα̂ · · · α̂�KM

nmα̂]� (1.21)

where α̂ depends on θ through

α̂ =
(
μI+

M∑
i=1

θiKi
mn

)−1

xn. (1.22)
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Because Ki
nm� 0 for all i, it follows that gk :=−∇F (θk)≥ 0 for all θk ∈Θp. Applying

(1.20a) to (1.17) yields

sk ∈ arg max
s∈Θp

s�gk . (1.23)

By Hölder’s inequality and for all s ∈ Θp, it holds that s�gk ≤ ‖s‖p‖gk‖q ≤ Λ‖gk‖q
for any (p,q) with 1/p + 1/q = 1. Because gk = −∇F (θk) ≥ 0, it can be deduced
that the solution to (1.23) satisfies the previous inequalities with equalities, and so

sk
i = Λ

(
gk

i

)q−1

‖gk‖q−1
q

, i = 1, . . . ,M . (1.24)

The Frank–Wolfe solver of (1.17) is summarized next: the algorithm is initialized at
θ0 = 0. At iteration k, α̂k is found from (1.22); the negative gradient gk is updated
from (1.21); the direction sk is found from (1.24); and the sought vector is updated as
θk+1 = θk + ηk(sk − θk). The algorithm converges to θ∗ at sublinear rate, that is
F (θk)− F (θ∗) ≤ O (1/k); see [26].

1.4.3 Numerical Tests on Topology Detection Using Partial Correlations

The performance of the proposed method was evaluated based on voltage angles from
the IEEE 14-bus benchmark system, using real load data from [28]. Specifically, the
first 10-day loads of zones 114 were normalized to match the scale of active demands in
the benchmark, and then corrupted by noise. Voltage angle measurements φn[t] across
T = 240 times were found by solving the AC power flow equations. We employed a
total of M = 20 kernels to form the dictionary, which consists of 10 polynomial kernels
of orders varying by 1 from 1 to 10, as well as 10 Gaussian kernels with variances
distributed uniformly from 0.5 to 5. The regularization coefficients in (1.16) were set as
μ = 1 and Λ = 3.

The first test assesses the convergence and computational performance of the Frank–
Wolfe solver. To serve as a benchmark, problem (1.17) is first reformulated as a semidef-
inite program (SDP) and solved by SeDuMi [29]; see [25]. The left panel of Figure 1.2
depicts the evolution of the relative error (F (θk)− F (θ∗))/F (θ∗) of (1.17) with
p = 1.5 and p = 2, where {xn}2n=1 and {xn}14

n=5 were used to predict x3. The solver
converged roughly at rate O(1/k).

We next tested the topology recovery performance of the proposed scheme for
p = 1.5 and p = 2, against the linear PC- and concentration matrix–based meth-
ods [30]. The right panel of Figure 1.2 depicts the obtained empirical receiver operating
characteristics (ROC). For our scheme and its linear PC counterpart, the ROC curves
were obtained using |ρnm|’s as test statistics. For the concentration matrix–based
method, entries of the negative concentration matrix were used as test statistics. The
area under the curve for our scheme with p = 1.5 and p = 2, the linear PC-based,
and the concentration matrix–based methods were 0.755, 0.743, 0.646, and 0.604,
accordingly. The results demonstrate the improved recovery performance of the novel
scheme, and the advantage of selecting p �= 2.
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Figure 1.2 Topology recovery for the IEEE 14-bus system. Left: convergence speed for the
devised Frank–Wolfe iterations; right: ROC curves for line detection.

1.5 Grid Probing for Topology Learning

Existing topology processing schemes rely on passively collected smart meter data. We
next put forth an active data acquisition approach to topology learning. The idea is
to leverage the actuation and sensing capabilities of smart inverters. An inverter can
be commanded to shed solar generation, (dis)-charge a battery, or change its power
factor within milliseconds. The distribution feeder as an electric circuit responds within
a second and reaches a different steady-state voltage profile. This enables a new data
collection paradigm, where the operator purposefully probes a grid by changing inverter
injections and measuring the circuit response to identify the grid topology. Rather than
processing smart meter data on a 15-minute basis, probing actively senses voltages on a
per-second basis.

The buses hosting controllable inverters are collected in P ⊆ N with P := |P|.
Consider the probing action at time t . Each bus m ∈ P perturbs its active injection by
δm(t). Vector δ(t) collects all inverter perturbations at time t . The incurred perturbation
in voltage magnitudes is expressed from (1.4) as

ṽ(t) = RIPδ(t)+ ε(t) (1.25)

where the N×P matrix IP collects the canonical vectors associated with P and basically
selects the rows of R related to inverters. Vector ε(t) captures measurement noise,
modeling errors, and voltage deviations attributed to possible load variations during
probing.

The grid is perturbed over T probing periods. Stacking the probing actions {δ(t)}Tt=1,
the measured voltage deviations {ṽ(t)}Tt=1, and the error terms {ε(t)}Tt=1 as columns of
matrices Δ, Ṽ, and E accordingly, yields

Ṽ = RIPΔ+ E. (1.26)
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Define the weighted Laplacian matrix Θ̃ = Ã�dg−1(r)Ã and the reduced weighted
LaplacianΘ as

Θ := R−1 = (A�dg(r)A)−1. (1.27)

The grid topology is equivalently captured by the reduced weighted Laplacian and the
nonreduced Laplacian matrix Θ̃ = Ã�dg−1(r)Ã. To see this, note that the two matrices
are related through the linear mappingΦ : SN → SN+1 as

Θ̃ =Φ(Θ) :=
[

1�Θ1 −1�Θ
−Θ1 Θ

]
. (1.28)

Topology identification can be now posed as the system identification task of findingΘ
given (Ṽ,Δ) from (1.26). This is a major advantage over the blind schemes of Section
1.3 and [1, 2]. Albeit we have so far considered perturbing active power injections, the
developments carry over to reactive ones too.

1.6 Identifiability Analysis of Grid Probing

This section studies whether the actual topology can be uniquely recovered by probing
the buses in P [31, 32]. We first review some graph theory background. Let G = (N ,L)
be an undirected tree graph, where N is the set of nodes and L the set of edges
L := {(m,n) : m,n ∈ N }. A tree is termed rooted if one of its nodes, henceforth
indexed by 0, is designated as the root.

In a tree graph, a path is the unique sequence of edges connecting two nodes. The set
of nodes adjacent to the edges forming the path between nodes n and m will be denoted
by Pn,m. The nodes belonging to Am := P0,m are termed the ancestors of node m. If
n ∈ Am, then m is a descendant of node n. Reversely, if n ∈ Am, m is a descendant
of node n. The descendants of node m comprise the set Dm. By convention, m ∈ Am

and m ∈ Dm. If n ∈ Am and (m,n) ∈ E , node n is the parent of m. A node without
descendants is called a leaf or terminal node. Leaf nodes are collected in the set F ,
while nonleaf nodes will be termed internal nodes; see Figure 1.3. The depth dm of
node m is defined as the number of its ancestors, i.e., dm := |Am|. The depth of the
entire tree is dG := maxm∈N dm. If n ∈ Am and dn = k, node n is the unique k-depth
ancestor of node m and will be denoted by αk

m for k = 0, . . . ,dm. Let also T k
m denote

the subset of the nodes belonging to the subtree of G rooted at the k-depth node m and
containing all the descendants of m. Finally, the k-th level set1 of node m is defined as
[31, 32]

N k
m :=

{
Dαk

m
\Dαk+1

m
, k = 0, . . . ,dm − 1

Dm , k = dm.
(1.29)

1 The notion of level sets has been used in [33] to derive a meter placement strategy for detecting which
switches are energized.
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Figure 1.3 Node s is a leaf node, while m is an internal node of the left graph. The ancestor (Am)
and descendant (Dm) sets for node m are also shown. The level set N 1

m consists of α1
m and the

subtrees rooted at α1
m excluding the subtree containing m.

The concept of the level set is illustrated in Figure 1.3. In essence, the level set N k
m

consists of node αk
m and all the subtrees rooted at αk

m excluding the one containing
node m.

The entries of the reduced Laplacian inverses (R,X) can also be defined exploiting
graphical quantities. If Rm,n is the (m,n)-th entry of R, then [14]

Rmn =
∑

�=(c,d)∈L
c,d∈Am∩An

r�. (1.30)

The entry Rm,n can be equivalently interpreted as the voltage drop between the substa-
tion and bus m when a unitary active power is injected as bus n and the remaining buses
are unloaded. Through this interpretation, the entries of R relate to the levels sets in G
as follows.

lemma 1.1 ([31]) Let m, n, s be nodes in a radial grid.

(i) if m ∈ F , then Rmm > Rnm for all n �= m;
(ii) n,s ∈ N k

m for a k if and only if Rnm = Rsm; and
(iii) if n′ ∈ N k−1

m , s ∈ N k
m, then Rsm = Rmn′ + rαk−1

m ,αk
m

.

We next provide conditions on inverter placement under which the topology of a
radial grid can be identified. We consider the case in which voltages are collected at all
buses (complete data), or only at probed buses (partial data).

1.6.1 Topology Identifiability with Complete Voltage Data

As customary in identifiability analysis, probing data are considered noiseless (E = 0),
so that (1.26) yields

Ṽ = RPΔ (1.31)

where RP := RIP . It is convenient to design Δ ∈ RC×T to be full row-rank. For
example, one can set T = C andΔ1 := dg({δm}) with δm �= 0 for all m ∈ C. A diagonal
Δ requires simple synchronization because each m ∈ C probes the grid at different time
slots. Another practical choice is Δ2 := dg({δm})⊗[+1 −1], where⊗ is the Kronecker

https://doi.org/10.1017/9781108859806.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108859806.003


16 Guido Cavraro, Vassilis Kekatos, Liang Zhang, and Georgios B. Giannakis

product. In this case, T = 2C and each inverter induces two probing actions: it first
drops its generation to zero, yielding a perturbation of δm, and then resumes generation
at its nominal value, thus incurring a perturbation of −δm. The process is repeated over
all C inverters.

The task of topology identification can be split into three stages:
s1) Finding RP from (1.31). If Δ is full row-rank, then matrix RP can be uniquely

recovered as ṼΔ+, where Δ+ is the pseudo-inverse of Δ. Under this setup, probing for
T = P times suffices to find RP .

s2) Recovering the level sets for all buses in P . Let rm be the m-th column of R.
Using Lemma 1.1, we can recover the level sets for each bus m ∈ P by grouping
together indices associated with the same entries of rm; see Lemma 1.1(ii). The depth
of each level set can be found by ranking the unique values of rm in increasing order;
see Lemma 1.1(iii).

s3) Recover the grid topology and resistances given the level sets for all m ∈ P .
The true Θ may not be identifiable from (1.31). A sufficient condition guaranteeing

identifiability is provided next.

theorem 1.1 Given probing data (Ṽ,Δ) where rank (Δ) = P , the resistive network
topology is identifiable if the grid is probed at all leaf nodes, that is F ⊆ P , and voltage
data are collected at all nodes.

Theorem 1.1 establishes that the topology is identifiable if the grid is probed at all
leaf nodes and voltages are collected at all nodes. Under this setup, one needs at least
T = |F |, which can be significantly smaller than N . When not all leaf nodes are probed,
a portion of the network may still be identifiable. Let PF be the set collecting the probing
buses who have only regular nodes as descendants, i.e., n ∈ PF if DN∩P = ∅. Consider
graph G′ obtained from G by removing the descendants of buses in PF . Theorem 1.1
ensures that the topology of G′ can be recovered if G′ is a tree whose leaf nodes are
exactly nodes in PF . That is, G can be reconstructed up to the descendants of nodes PF ,
see Figure 1.4.

Figure 1.4 The white (black) nodes represent probing (nonprobing) nodes. The dashed portion of
the network represent graph G′. Panel (a) represents the actual network. Panel (b) reports one of
the networks that can be identified when the three white nodes are chosen as probing buses. Note
that the topology is correctly identified down to the probing buses. Panel (c) shows one of the
erroneous topologies recovered if not all leaf nodes of G′ are probed.
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1.6.2 Topology Identifiability with Partial Voltage Data

Section 1.6.1 assumed that voltages are collected at all buses. This may be unrealistic in
grids where the operator can only access the probed buses of P . This section considers
probing under the next more realistic setup.

assumption 1.2 Voltage differences are metered only in P .

Under Assumption 1.2, the probing model (1.26) becomes

Ṽ = RPPΔ (1.32)

where now Ṽ is of dimension P × T and RPP := I�PRIP is obtained from R upon
maintaining only the rows and columns in P . Similar to (1.31), RPP is identifiable if
Δ is full row-rank. This is the equivalent of stage s1) in Section 1.5 under the partial
data setup.

Toward the equivalent of stage s2), because column rm is partially observed, only the
metered level sets of node m ∈ P defined as [32]

Mk
m(w) = N h

m(w) ∩O, (1.33)

can be found, where N h
m(w) is the k-th level set having at least one observed node, see

Figure 1.5. The metered level sets for node m can be obtained by grouping the indices
associated with the same values in the observed subvector of rm. Albeit the topology
cannot be fully recovered based on Mk

m’s, one can recover a reduced grid relying on
the concept of internally identifiable nodes; see Figure 1.6. The set I ⊂ N of internally
identifiable nodes consists of all buses in G having at least two children with each of one
of them being the ancestor of a probing bus.

The reduced grid induced by P is defined as the graph Gr := (N r,Lr ) with

• node set N r := P ∪ I;

• � = (m,n) ∈ Lr if m,n ∈ N r and all other nodes on the path from m to n in G do
not belong to N r ; and

• line � = (m,n) ∈ Lr resistance equals the effective resistance between m and n in G,
i.e., the sum of resistances across the m− n path [34].

Figure 1.5 White nodes represent metered nodes. The level sets and the metered level sets of node
m are reported in the left panel and in the right panel, respectively.
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Figure 1.6 (a) The original feeder; (b) its reduced equivalent; and (c) another feeder with the same
RPP . White nodes are probed; black and gray are not. Gray nodes are internally identifiable
nodes comprising I.

Let Rr be the inverse reduced Laplacian associated with Gr . From the properties of
effective resistances, it holds [34]

Rr
PP = RPP . (1.34)

Heed the grid Gr is not the only electric grid sharing RPP as the top-left block of its
R matrix with G: the (meshed) Kron reduction of G given P; and even grids having
extra nodes relative to N can yield the same RPP ; see Figure 1.6. However, Gr features
desirable properties: i) it is radial; ii) it satisfies (1.34) with the minimal number of
nodes; and iii) its resistances correspond to the effective resistances of G. Furthermore,
Gr conveys all the information needed to solve an optimal power flow task [35]. The
next result provides a sufficient condition for identifying Gr .

theorem 1.2 Let the tree G = (N ,L) represent a distribution grid, and let Assump-
tion 1.2 hold. Given probing data (Ṽ,Δ), where rank(Δ) = P , the resistive network
topology of its reduced graph Gr = (N r,Lr ) is identifiable if the grid is probed at all
leaf nodes, that is F ⊆ P .

1.7 Graph Algorithms for Topology Identification Using Probing

This section presents graph algorithms for identifying grid topologies using probing data
under the following assumption.

assumption 1.3 All leaf nodes are probed, that is F ⊆ P .

Note that although Assumption 1.3 ensures topology identifiability, it does not pro-
vide a solution for s3), which will be devised next.

1.7.1 Topology Identification with Complete Voltage Data

A recursive algorithm for topology identification is presented next [32]. The input to the
recursion is a depth k and a maximal subset of probing nodes Pk

n having the same (k−1)-
depth and k-depth ancestors and the level sets N k

m for all m ∈ Pk
n . The (k − 1)-depth
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ancestor αk−1
n is known. The k-depth ancestor n is known to exist, yet it is unknown for

now. The recursion proceeds in three steps.
The first step finds n as the unique intersection of the sets N k

m for all m ∈ Pk
n .

At the second step, node n is connected to node αk−1
n . Since n = αk

m ∈ N k
m and

αk−1
n = αk−1

m ∈ N k−1
m , the resistance of line (n,αk−1

n ) is given by

r(αk−1
n ,n) = r(αk−1

m ,αk
m) = Rαk

mm − Rαk−1
m m

(1.35)

for any m ∈ Pk
n ; see Lemma 1.1-(iii).

The third step partitions Pk
n \ {n} into subsets of buses sharing the same (k+1)-depth

ancestor. The buses forming one of these partitions Pk+1
s have the same k-depth and

(k+1)-depth ancestors. Node n was found to be the k-depth ancestor. The (k+1)-depth
ancestor is known to exist and is assigned the symbol s. The value of s is found by
invoking the recursion with new inputs the depth (k + 1), the set of buses Pk+1

s along
with their (k + 1)-depth level sets, and their common k-depth ancestor (node n).

Algorithm 1.1 Topology Identification with Complete Data

Require: N , {N k
m}dm

k=0 for all m ∈ P .
1: Run Root& Branch(P,∅,0).

Ensure: Radial grid and line resistances over N .

Function Root&Branch(Pk
n,α

k−1
n ,k)

1: Identify the node n as the common k-depth ancestor for all buses in Pk
n .

2: if k > 0, then
3: Connect node n to αk−1

n with the resistance of (1.35).
4: end if
5: if Pk

n \ {n} �= ∅, then
6: Partition Pk

n \ {n} into groups of buses {Pk+1
s } having identical k-depth level sets.

7: Run Root&Branch(Pk+1
s ,n,k + 1) for all s.

8: end if

To initialize the recursion, set P0
n = P since every probing bus has the substation as

0-depth ancestor. At k = 0, the second step is skipped as the substation does not have
any ancestors to connect. The recursion terminates when Pk

n is a singleton {m}. In this
case, the first step identifies m as node n; the second step links m to its known ancestor
αk−1

m ; and the third step has no partition to accomplish. The recursion is tabulated as
Alg. 1.1.

1.7.2 Topology Identification with Partial Voltage Data

A three-step recursion operating on metered rather than ordinary level sets and aiming
at reconstructing the reduced grid is detailed next [32]. Suppose we are given the set
of probing nodes Pk

n having the same (k − 1)-depth and k-depth ancestors (known and
unknown, respectively), along with their k-depth metered level sets.
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At the first step, if there exists a node m ∈ Pk
n such that Mk

m = Pk
n , then the k-depth

ancestor n is set as m. Otherwise, a non-probing node is added and assigned to be the
k-depth ancestor.

At the second step, node n = αk
m is connected to node αk−1

n = αk−1
m . The line

resistance can be found through the modified version of (1.35)

r(αk−1
m ,αk

m) = Rαk
mm − Rαk−1

m m
= Rs′m − Rsm. (1.36)

At the third step, the set Pk
n \ {n} is partitioned into subsets of buses having the same

(k + 1)-depth ancestor, by comparing their k-depth metered level sets.
The recursion is tabulated as Alg. 1.2. It is initialized at k = 1, since the substation is

not probed and M0
m does not exist; and is terminated as in Section 1.6.

Algorithm 1.2 Topology Recovery with Partial Data

Require: M, {Mk
m}dm

k=1 for all m ∈ P .
1: Run Root&Branch-P(P,∅,1).

Ensure: Reduced grid Gr and resistances over Lr .

Function Root&Branch-P(Pk
n,α

k−1
n ,k)

1: if ∃ node n such that Mk
n = Pk

n , then
2: Set n as the parent node of subtree T k

n .
3: else
4: Add node n ∈ I and set it as the root of T k

n .
5: end if
6: if k > 1, then
7: Connect n to αk−1

n via a line with resistance (1.36).
8: end if
9: if Pk

n \ {n} �= ∅, then
10: Partition Pk

n \ {n} into groups of buses {Pk+1
s } having identical k-depth metered

level sets.
11: Run Root&Branch-P(Pk+1

s ,n,k + 1) for all s.
12: end if

1.7.3 Graph Algorithms Operating under Noisy Data

When measurements are corrupted by noise and loads are time varying, a least-squares
estimate of RP can be found as

R̂P := arg min
Θ
‖Ṽ−ΘΔ‖2

F = ṼΔ+. (1.37)

To facilitate its statistical characterization and implementation, assume the probing pro-
tocol Δ2. The m-th column of RP can be found as the scaled sample mean of voltage
differences obtained when node m was probed
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r̂m =
∑
t∈Tm

1

(−1)t−1δmTm

, Tm :=
{

m−1∑
τ=1

Tτ + 1, . . . ,
m∑
τ=1

Tτ

}
ṽ(t). (1.38)

Let Assumption 1.1 hold and, for simplicity, let {p̃(t),q̃(t),n(t)} have diagonal covari-
ances σ2

pI, σ2
qI, and σ2

nI. Hence, the error vector ε(t) is zero-mean with covariance

Σε := σ2
pR2 + σ2

qX2 + σ2
nI and the estimate r̂m can be approximated as zero-mean

Gaussian with covariance 1
δ2

mTm
Σε. By increasing Tm and/or δm, r̂m goes arbitrarily

close to rm and their distance can be bounded probabilistically using Σε. Note however,
that Σε depends on the unknown (R,X). To resolve this issue, suppose the spectral radii
ρ(R) and ρ(X), and the variances (σ2

p,σ2
q,σ

2
w) are known; see [35] for upper bounds.

Then, it holds that ρ(Σε) ≤ σ2, where σ2 := σ2
pρ

2(R) + σ2
qρ

2(X) + σ2
n. The standard

Gaussian concentration inequality bounds the deviation of the n-th entry of r̂m from its

actual value as Pr
(
|R̂nm − Rnm| ≥ 4σ

δm

√
Tm

)
≤ π0 := 6 · 10−5.

For s2), no two noisy entries of r̂m will be identical almost surely. The entries will
be concentrated around their actual values. To identify groups of similar values, sort
the entries of r̂m in increasing order, and take the differences of the successive sorted
entries. Lemma 1.1-(iii) guarantees that the minimum difference between the entries of
rm is larger or equal to the smallest line resistance rmin. Hence, if all estimates were
confined within |R̂nm − Rnm| ≤ rmin/4, a difference of sorted R̂nm’s larger than rmin/2
would pinpoint the boundary between two bus groups. In practice, if the operator knows
rmin and selects (Tm,δm) so that

δm

√
Tm ≥ 16 σ/rmin (1.39)

then |R̂nm−Rnm| ≤ rmin/4 will be satisfied with probability larger than 99.95%. Taking
the union bound, the probability of recovering all level sets is larger than 1−N2π0. The
argument carries over to RPP under the partial data setup.

1.8 Topology Identification Using Probing through Convex Relaxation

Section 1.7 first estimated a part of R, and then run a graph algorithm to identify the
grid topology. Because the latter algorithm may become impractical for low signal-to-
noise ratios, this section estimates Θ directly from probing data. From (1.3), it follows
that Θ � 0, since A is non-singular [36]. The off-diagonal terms ofΘ are non-positive,
while the diagonal ones are positive. Also, since the first column of Θ̃ has non-positive
off-diagonal entries and Θ̃1 = 0, it also follows that Θ1 ≥ 0. Finally, the grid operator
may know that two specific buses are definitely connected, e.g., through flow sensors or
line status indicators. To model known line statuses, introduce Γ̃ ∈ SN+1 with Γ̃mn = 0
if line (m,n) is known to be non-energized; and Γ̃mn = 1 if there is no prior information
for line (m,n). If there is no information for any line, then Γ̃ = 11�. Based on Γ̃, define
the set
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S(Γ̃) :=
{
Θ :

Θmn ≤ 0, if Γ̃mn = 1
Θmn = 0, if Γ̃mn = 0

m,n ∈ N ,m �= n

}
.

The set S(Γ̃) ignores possible prior information on lines fed directly by the substation.
This information is encoded on the zero-th column of Γ̃. In particular, if Γ̃0n = 1, then
Θ̃0n ≤ 0 and

∑N
m=1Θmn ≥ 0. Otherwise, it holds that Θ̃0n =

∑N
m=1Θmn = 0. The

two properties pertaining to lines directly connected to the substation are captured by
the set

S0(Γ̃) :=
{
Θ :

e�nΘ1 ≥ 0, if Γ̃0n = 1
e�nΘ1 = 0, if Γ̃0n = 0

,n ∈ N
}

.

Summarizing, the set of admissible reduced Laplacian matrices for arbitrary graphs
with prior edge information Γ̃ is

C :=
{
Θ : Θ ∈ S(Γ̃) ∩ S0(Γ̃),Θ = Θ�

}
. (1.40)

By invoking the Gershgorin’s disc theorem, it can be shown that Θ � 0 for all Θ ∈ C,
that is C ⊆ S+. The reduced Laplacian matrices included in C correspond to possibly
meshed and/or disconnected graphs. Enforcing two additional properties can render Θ
a proper reduced Laplacian of a tree: First, matrix Φ(Θ) should have exactly 2N non-
zero off-diagonal entries. Second, matrixΘ should be strictly positive definite since the
graph is connected. Then, define the set

T := {
Θ : ‖Φ(Θ)‖0,off = 2N,Θ � 0

}
. (1.41)

Back to topology identification using (1.26), matrix Θ can be estimated via a
(weighted) least-squares (LS) fit of the probing data under Laplacian constraints

min
Θ∈C∩T

f (Θ) := 1

2
‖ΘṼ− ICΔ‖2

W. (1.42)

Albeit its objective and set C are convex, the optimization in (1.42) is challenging
because T is non-convex and open. To arrive at a practical solution, we surrogate
T by adding two penalties in the objective of (1.42). Heed that the property Θ � 0
is equivalent to enforcing a finite lower bound on log |Θ|. On the other hand, the non-
convex pseudo-norm ‖Φ(Θ)‖0,off can be relaxed by its convex envelope ‖Φ(Θ)‖1,off :=∑

m,n �=m |Φ(Θ)mn|; see also [37–39] for related approaches aiming to recover sparse

inverse covariance or Laplacian matrices. By defining Π := I + 11�, ‖Φ(Θ)‖1,off can
be rewritten as

‖Φ(Θ)‖1,off = T r(ΘΠ)

Upon dualizing the constraints comprising T , (1.42) can be convexified as

Θ̂ := arg min
Θ∈C

1

2
‖ΘṼ− ICΔ‖2

W + λT r(ΘΠ)− μ log |Θ| (1.43)

where λ,μ > 0 are tunable parameters. Since the minimizer of (1.43) does not neces-
sarily belong to T , one may invoke heuristics to convert it to the reduced Laplacian of a
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tree graph. As suggested in [2], a Laplacian Θ̃ belonging to T can be found by running
a minimum spanning tree algorithm for the graph defined byΦ(Θ̂). Problem (1.43) can
be solved using the alternating direction method of multipliers (ADMM).

Before closing this section, two comments are in order: i) beyond identification,
probing can be used for topology detection as well [31]; and ii) Instead of the convex
relaxation proposed here, topology identification using probing can be solved exactly
via the mixed-integer linear program (MILP) formulation of [40].

1.9 Numerical Tests on Topology Identification Using Probing

Our probing algorithms were validated on the IEEE 37-bus feeder, see also Section
1.3.3. Figures 1.7(a) and 1.7(b) show the actual and reduced topologies. Probing buses
were equipped with inverters having the same rating as the related load. Loads were
generated by adding a zero-mean Gaussian variation to the benchmark data, with stan-
dard deviation 0.067 times the average of nominal loads. Voltages were obtained via a
power flow solver, and then corrupted by zero-mean Gaussian noise with 3σ deviation
of 0.01% per unit (pu). Probing actions were performed using the probing protocol Δ2.
The algorithms were tested through 200 Monte Carlo tests. At every run, the actual
topology was randomly drawn.

Firstly, the graph algorithms of Section 1.7 were tested. For the 37-bus feeder, rmin =
0.0014 pu. From the rated δm’s; the rmin; and (1.39), the number of probing actions was
set as Tm = 90. In the partial data case, the smallest effective resistance was 0.0021 pu,
yielding Tm = 39. Level sets obtained using the procedure described in Sec. 1.7.3 were
given as inputs to Alg. 1.1 and 1.2. Table 1.1 demonstrates that the error probability (EP)
in topology recovery and the mean percentage error (MPE) of line resistances decay as
Tm increases.

Secondly, the identification problem in (1.42) was solved for λ = 5 · 10−3, μ = 1,
and W = I. No prior information on line statuses was assumed (Γ̃ = 11�). Kruskal’s
algorithm was used to obtain a Laplacian matrix Θ̃ corresponding to a radial grid. The

Figure 1.7 Line infrastructure for the IEEE 37-bus feeder benchmark.
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Table 1.1 Numerical tests under complete and partial noisy data

Tm 1 10 40 90 1 5 20 39

EP [%] 98.5 55.3 3.1 0.2 97.2 45.8 18.9 0.1

MPE [%] 35.1 32.5 30.9 28.5 97.2 45.8 18.9 0.1

Alg. 1.1 Alg. 1.2

Table 1.2 Probability of detecting a wrong topology via (1.42)

Tm 1 2 5 10

Topology error prob. [%] 5.1 3.9 3.7 2.6

connectivity of Θ̃ was compared against the actual one. The average number of line
status errors, including both the energized lines not detected and the non-energized lines
detected, are reported in Table 1.2.

1.10 Conclusion

This chapter has put forth a grid topology learning toolbox. If the operator collects data
passively, grid topology can be identified using ML, MAP, or partial correlation-based
schemes. To accelerate learning, the operator may perturb inverter injections and collect
voltage responses to infer the grid topology. We have provided conditions under which
the grid topology can be correctly identified by probing. Computationally, under high
SNR setups, the topology can be revealed using a recursive graph algorithm. For lower
SNR setups and complete data, a convex relaxation approach has been suggested instead.
The presented works motivate several interesting questions such as extending these
results to multiphase setups; using the tap changes of voltage regulators and capacitor
banks as a means for active topology learning; and combining actively and passively
collected grid data. Additional directions include active semi-blind approaches along
the lines of passive ones dealt with for a general graph in [41].
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