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That we cannot give a justification 
- or sufficient reasons - for our 
guesses does not mean that we may 
not have guessed the truth. 

K.R. Popper1 

§1 

If studied in detail, the mass flows from the stars appear to be vari­
able. "Mere inspection of solar wind data reveals large variations on 
a time scale of several days" (Hundhausen, 1972). Also, "it is obvious 
that mass loss from hot stars is not a stationary phenomenon but that 
variations on short timescale occur" (de Jager et. al., 1979). And a 
cool supergiant has "a photosphere fluctuating in both brightness and 
radial velocity, (and) an expanding chromosphere ... uncoupled from 
motions in the photosphere" (Goldberg, 1979). 

The idea that fluctuations in the mass flow are as significant as 
the very existence of the flow has led to the development of a fluctu­
ation theory of the stellar mass loss. A general theory for fluctu­
ations in non-equilibrium systems - and such are stellar atmospheres 
(Pecker et al., 1973) - has been developed long ago (cf. Becker, 1961, 
or Landau and Lifshitz, 1969). In developing the general theory to a 
specific stellar theory, however, the arguments have not come up in 
their logical order (Andriesse, 1979, 1980a, 1980b). The present sketch 
of this theory improves on that order and is offered as a framework for 
further study. 

1 Objective Knowledge, Clarendon Press (Oxford, 1972) p. 30. Truth is meant to be corre­
spondence with the facts, the only idea of truth which makes rational criticism poss­
ible. In the field of science opposite ideas are still alive. For example, professor M. 
Kuperus, who has criticized some assumptions in the present theory as unfounded, denies 
that the correct description of the facts, to which they lead, says anything in favour 
of their correctness. 
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§2 

Our starting point is the concept of thermodynamic fluctuations. Landau 
and Lifshitz (1969) introduce it as follows: 

"Let us assume that there is a quantity x such that, if it has a 
definite value (considerably different from its mean fluctuation), a 
definite state of partial equilibrium can be described by it. In other 
words, the relaxation time for the Establishment of partial equilibrium 
for a given value of x is assumed to be much less than the relaxation 
time required to reach the equilibrium value of x itself. This condi­
tion is satisfied by a wide class of quantities of physical interest. 
We shall call the fluctuations of such quantities thermodynamic fluctu­
ations2 ." 

In a stellar atmosphere we discern between two relaxation times, 
which in general are much different. There is a local short timescale 
Tj, describing the dynamical processes at the stellar surface, and an 
overall long timescale xt, describing the relaxation of the stellar 
body to thermal equilibrium. They are obtained from 

xd = (3Y - 4)"^(R
3/GM)S (1) 

where y.is the adiabatic exponent (5/3 for an ideal particle gas and 
4/3 for a pure photon gas; the bar denotes a special mean, cf. Baker, 
1972), G is the gravitational constant and R and M are the radius and 
mass of the star; and 

xt = |fi|/L, (2) 

where L is the luminosity of the star and fl its potential energy given 
by 

R 

G dr 4-rrr p (r) 

oJ o-

dx 4irx2 p (x) (3) 

if p(r) is the mass density. It is often possible to put y - 5/3, so 
that Tjj - (R3/GM)5, and, for stars where p is only mildly peaking to­
wards the centre, to put 0, - - GM2/R, so that xt - GM

2/(RL). 
The fact that TJ << Tt implies that the stellar atmosphere can 

reach a partial equilibrium, different from thermodynamic equilibrium. 
The quantity of interest, describing this state of partial equilibrium, 
is the mass loss rate M. We shall discuss it in the dimensionless form 
(first proposed by Williams, 1967), 

X = GMM/(RL), (4) 

which is the ratio of the mechanical power in the mass loss and the 
thermal power of the star. 

2 They should not be confused with the fluctuations about thermodynamic equilibrium, 
which are termed non-thermodynamic fluctuations, and to which e.g. the fluctuation-
dissipation theorem applies. 
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§3 

Why is A the relevant parameter and not another quantity describing 
the dynamical state of a stellar atmosphere, like e.g. the degree of 
turbulence? That is because the outward mass motion is the cause of 
most, if not all, nonthermal phenomena observed in stellar atmospheres 
(Thomas, 1979) and thus is fundamental3. It originates from the basic 
instability to an outward mass flow in the outer mantle of any star. 

Consider the force balance. In the presence of some velocity u we 
must add an inertial force mu and a frictional force mvu to the well 
known static force given by gravitation and pressure gradient; in this 
instance m is the mass-element considered, which we shall take to be 
4irr2pdr, and v is a friction constant, which shall be discussed below. 
Thus ™ 

9 , GMm ,,_. 
mu + mvu = Airr̂ dp + , (5) 

r2 

where dp is the pressure difference over the shell between r and 
r + dr, G the gravitational constant and M the stellar mass within r. 
To simplify the problem we may first study the steady state for which 
mu = 0. The friction constant v is, apart from a dimensionless constant 
5, the atomic collision frequency, or 

v = £q/X. = SqnZ = 5qp£/y, (6) 
i 

where q is the atomic velocity (kT/y)2, kT the thermal energy, y the 
atomic mass, i the mean free path, n the atomic density and I the 
atomic collision cross-section; Maxwell's relation for I in gases has 
been adopted. With this relation for v the steady-state value of pu is 
described by 

V 
pu = 

CqS 

J_ d£ GM 

p dr r2 
(7) 

which, as we see, is not conserved (constant). 
Consider next the flow m = 4irr2pu - which has no direct relation 

with the mass loss rate M - and determine the sign of dm/dr. If this 
sign is negative, the star is unstable to an inward flow, if positive, 
to an outward flow. In calculating dm/dr the following substitutions 
can be made: 

pq2, or 
dq = _ 1 _ 
dr 2qp 

dp 2 dp_ 
dr 4 dr 

Y dp P dp 
p , or -f- = y - :r-

dr p dr 

(8) 

This point of view is not shared by the authors of other theories of the stellar mass 
loss, where stellar winds appear as products rather than as producers of those non­
thermal phenomena, like acoustic waves (Fusi-Pecci and Renzini, 1975) or coronas (Hearn, 
1975, 1979), or as products of the radiation pressure on atmospheric particles, like 
ions (Castor et al., 1975) or grains (Gilman, 1972). But as the winds have to be fed by 
material from the stellar body, there has to be a motor to bring this material up to the 
atmospheric level where the supposed mechanisms start to work. So these theories treat 
the tail of the problem rather than the head. 
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It is thus assumed that the radiation pressure can be neglected. It can 
further be assumed that, to a first approximation, d2p/dr2 = 0. Simple 
algebra then leads to 

dm _ 27TYqii d In p 
dr ££ d In r 

with the scale height h = r2kT/(GMu). As dlnp/dlnr is negative, the 
sign of dm/dr is positive when 

^JL-Ll> 4 - Y i ^ , (10) 
Y h d In r 

which then is the condition for instability to an outward flow. For 
stellar mantles we have dlnp/dlnr in between -1 and -2, say -3/2, 
whereas y - 5/3, so that instability occurs when h/r < 4/65. The value 
of r where this limit is reached, rc, lies far below the photosphere 
(in the photosphere itself h/r ^ 10- 3). 

It can be concluded that, whether or not the criterion is satis­
fied for a convective rather than a radiative transport of energy from 
the core to the surface, there should be a transport of matter to the 
surface in the outer mantle of any star. 

§4 

A complete analysis of the outward flow has to include the inertial 
force and appropriate timescales, as well as the interaction with the 
radiation field and, as we have to do with a plasma, with eventual mag­
netic fields. In view of the tremendous complexity of the problem, the 
solution may not be expected soon. 

In the absence of a complete analysis, observations and their 
qualitative interpretation may be a guide. Of the various dynamical 
phenomena in the solar photosphere and chromosphere, the spicules could 
be the most relevant tracers of outflow (Kiepenheuer, 1968). These 
small surges become visible in Ha when, in the lower chromosphere, they 
reach the local sound speed q of about 30 km s-1. In some way or other 
they extract energy from the radiation field, streaming up along the 
(locally) almost vertical magnetic field lines. Without discarding the 
possibility that other, larger structures carry more mass away from the 
(sub)photosphere, we may take them as hints for the development of the 
above instabilities to an outward mass flow. They come and go, randomly 
spread (around centres of magnetic activity) over the solar surface, in 
a dynamical time TJ of about 1 hour. So the outward mass motions may 
well be of a stochastic nature. This fits in the notion that they orig­
inate from an instability to fluctuations (of u above zero) and also 
with the fact that the mass loss, to which they sometimes lead, is a 
fluctuating phenomenon. These surges, considered as events, are initial­
ly subsonic, but are amplified outward by virtue of some coupling to 
the radiation field, reach the sound velocity q in the lower chromo-

d In p 
d lnr (9) 
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sphere and are transsonically heated from there on (Cannon and Thomas, 
1977), whereas some of them are sufficiently amplified further that 
they surpass the escape velocity v. 

Without having a complete analysis of the surges, we may find the aver­
age value to which u is amplified from the principle that the free 
energy of any system tends to a minimum. The free energy contains the 
potential energy Q, given by (3); the thermal energy H, given by 

R 

dr 4irr2 p(r) kT(r)/y, (11) 

k being Boltzmann's constant, T(r) the absolute temperature and u the 
mean atomic mass; the kinetic energy K, given by 

K = 

0 

R 

dr 4irr2 p(r) <u2(r)>/2; (12) 

and the magnetic energy, which we shall neglect here. 
Looking for a minimum in the atmosphere at the stellar radius R 

- this minimum will be reached somewhere in the chromosphere and thus 
at a distance which is slightly farther out than the photospheric R -
we require that 

^ + ^ + ^ = 0 . (13) 
dR dR dR y J 

This leads to 

| <u2(R)> = M S I - M W = i v2 _ m*±, ( ! 4 ) 
2 R u 2 u 

i 

so that the average value of u, <u2(R)>2, lies below the escape veloc-
city v - but only just. We find that the difference v - <u2(R)>5 = 
h(R)/x(j, with h(R) the atmospheric scale height, which only is a modest 
velocity. Therefore, relatively small fluctuations of u above its aver­
age value, pertaining to the state of partial equilibrium of the atmo­
sphere, would be sufficient to lead to mass loss. Because of the close­
ness of this value to v we can say that u fluctuates in half of the 
cases to values above v. 

h This means that the relatively small fraction of the atmospheric gas, involved in the 
surges, will not lead to notable broadening of the Fraunhofer lines in excess of the 
thermal broadening, as these absorption lines are formed in a (transition) layer below 
the chromosphere, where u < q. 
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§6 

We now can find a relation for the loss rate M or A. Equation (5) can 
be rewritten as 

\m + g', (15) 

where g1 = (1/p dp/dr + GM/R2) is the net static acceleration, which is 
close to zero. Since M = 4irR2p(R)u>v and M = 4irR

2p (R)u>v + 4TTR
2P(R)U, 

where u > v denotes the velocities in excess of the escape velocity v, 
this relation is equivalent with 

M vM + 4ITR2 p(R)u>v + p(R)g' (16) 

Multiplying with (GM/RL), assuming v = l/xt, and approximating p(R) by 

(17) 

O(R)/T,, we find that 
Q 

A = 

A(t) = 4TTR 

A/xt + A(t), 

GMp (R) 
,/T, 

. D GMp(R) . 
4TTR u>v/Td. (18) 

The time-behaviour of A(t) is determined by the fluctuating acceler­
ation U>V/T(J, which develops on a dynamical timescale. Thus is A(t) a 
stochastic 'force', with an autocorrelation of the form (Andriesse, 
1979) 

-y/x, 
<A(t)A(t + y)> * <A2>e . (19) 

The 'force' is associated with a large number of events, both spread 
in time and over the surface of the star. 

A formal integration of equation (17) leads to 

-t/x 

AQe 

t 

dy A(t y)e 
-y/i 

(20) 

This shows that in the absence of the stochastic 'force' the mass loss 
A will decay from some initial value A to zero in the thermal time Tt. 
This is the reason why we have approximated v by \/xt: any large devi­
ation of the outward flow from its average value will disappear only by 
the dissipation of excess energy in this deviation and this occurs on 
the thermal time-scale. In the presence of the stochastic 'force' A(t), 
this decay to zero is stopped at the average value 

<A> 

t 

dy A(t y)e 
-y/x. 

(21) 
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where the brackets denote an ensemble (surface) average over the 
events . It is important to realize that the average of the stochastic 
'force' is finite and positive. 

§7 

Before treating relation (17) further, we like to draw the attention 
to its general nature. It is a Langevin equation, which is character­
istic for the description of thermodynamic fluctuations, apparent in 
the Brownian motion or in the electronic noise, and can be found in 
any textbook on these subjects (cf. Becker, 1961; Middleton, 1960). 
Being equivalent to the Fokker-Planck equation, it is rooted in the 
statistical theory for the approach to equilibrium of systems with 
many degrees of freedom. This led the author to simply take it as an 
Ansatz in his first paper on the fluctuation theory, without any other 
justification than that it is generally valid for thermodynamic fluctu­
ations . 

There is, however, an important difference in the application of 
the Langevin equation to the problem of the stellar mass loss on the 
one hand, and to the problem of the Brownian motion or the electronic 
noise on the other hand. In the first case the stochastic 'force' works 
in one direction only, so that its average is finite and positive, 
whereas in the second case this 'force' works in all directions, so 
that its average is zero. By a trick we can translate the first problem 
in the second though. 

§8 

Assume a normal distribution of the velocities u around their average 
value, which in practice is equal to the escape velocity v. This means 
that the probability for a certain value of the stochastic 'force' p(A) 
is given by 

1 -A2/a2 

P(A) = - ^ e A / 0 , (22) 

a being the standard deviation. However, equation (18) stipulates that 
only those values of u, which are in excess of v, lead to a (positive) 
'force' A and, consequently, that negative values of A should be dis­
carded. With the notation A for positive, A_ for negative and A for 
both positive and negative values of A we have 

5 This means that <A> = tt<A(t)> would be wrong, as it implies that A(t) has instanta­
neously the same value over the whole surface of the star. 

It led him in a few days to the main result of the theory, found in November 1977. 
However, it also led to a long delay in its publication, only in March 1979, as the ref­
erees were sceptical to the point of denying that it has a physical basis. 
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<A+> = 

<A+> 

dA Ap(A) = 0, 

CO 

dA Ap(A) = 07/27. 

(23) 

(24) 

But 

<A+
2> = dA A2p(A) = 02/2, 

so that 

<A+> <A+
2>'2/A. 

(25) 

(26) 

This suggests that the average of the stochastic 'force' A+, relevant 
for the stellar mass loss, can be found from the root-mean-square 
average of the stochastic 'force' A+, relevant for the Brownian motion 
or the electronic noise (except for the factor /IT) . 

Similarly, assume a normal distribution for A+. This implies that 
we consider for a moment negative mass losses also, like negative dis­
placements considered in the theory for the Brownian motion or the 
electronic noise. Then, 

<X+> <X+
2>'2 /A". (27) 

The latter assumption of a normal distribution may be less justified 
than the former, as X cannot be completely stochastic. It results from 
the stochastic 'force' plus an independent systematic 'force' (equation 
17). This means that (27) is only true by order of magnitude. 

We can now treat A as a symmetric 'force' with an average of zero 
and apply the approximations (26) and (27) to find the physically 
relevant average. 

§9 

The integration of (17) can be performed with the physically illumina­
ting time-step method of Einstein and Hopf (cf. Becker, 1961). Take a 
time x such that 

T, << T << T , (28) 

within which X has changed its value many times but <X> has hardly 
changed. With the abbreviation 

dt A(t) = B (29) 

0 

we have for the change of X after such a time x 
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A. X 
1 o 

More in general, with 

(j+l)T 

dt A(t) = B., 

T/T X + B . 
to o 

where j is an integer number, we can write 

T/T X. + B.; 
t J J 

o r , 

A. , 
J+1 

u s i n g 

a = 

Vi 

- X. = - T / T 
J 

- T / T t , 

= a A. + B . . 
J J 

(30) 

(31) 

(32) 

(33) 

(34) 

The last equation is a recursion formula relating the final value Xn 
to the initial value XQ through the intermediate values Xj, Xo . ..

 A
n-i-

We can eliminate these intermediate values by multiplying the equation 
for A- with an-J and then adding the newly found equations as 

X 
n i . / n " 
a X + (a 

o 
'B + a

n-2B, o 1 +Bn-1>-
(35) 

If we square Xn and consider the average, we have <^n
2> = < A 0

2 > s <X2>, 
whereas <B^B^> = <B2> if i = j and 0 if i j1 j , since the B- are assumed 

:atistically independent. This results in to be st£ 

<A2>(1 a2n) = <B2> 1 
2n 

(36) 

which after substitution of a2 = 1 - 2x/Tt leads to 

<X2> = T <B2>/2T. 

It should be noted, that B as given by equation (31) depends on T. We 
can express <B2>/2x in the autocorrelation of A. 

310 
By definition, 

T T 

<BZ> dt dt'<A(t)A(t')>, (38) 

0 0 

whereas <A(t)A(t')> will only depend on the time difference y = t' - t, 

<A(t)A(t')> = <A(t)A(t + y)>, (39) 
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given in equation (19). In evaluating the double integral (38) we in­
troduce, besides the time difference y, the time sum z = t' + t, with 
which 

2T T- T-Z 

<B2> = I dz dy <A(t)A(t + y)> 

T+IT-ZI 

dy <A2> e 
M/T, 

2TT <A2>. 
d 

(40) 

The replacement of the integration limits by ± °° is justified by the 
fact that <A(t)A(t + y)> is virtually zero at y = x >> x^. Combining 
the results (37) and (40) and taking notice of the fact that we have 
considered symmetrical functions X and A, we find 

< X / > = T ,T <A, Z> 
+ d t ± 

(41) 

Using the approximations (26) and (27) this results in the averages, 
relevant to the stellar mass loss 

<A > =: A ,T <A >. 
+ d t + 

(42) 

The problem is reduced now to that of the average of the stochastic 
'force' . 

§11 

The energy, associated with the stochastic 'force' acting on the atmo­
sphere with mass m , is 

K(R) = m <u2(R)>/2 - m v2/2 = m /M(R)-|f2(R) (43) 

By a thought experiment we now prove that 

ma/M(R) = x d / V 

with which the above relation reduces to 

(44) 

K(R) = T /T -|fi(R)|7. a t 1 ' (45) 

To this end we need to realize that m is that minute fraction of the 
a 

This implies an equipartition of kinetic (mechanical) power RCR)/-^ and thermal power 
jS2(R)|/xt = L in the atmosphere. 

https://doi.org/10.1017/S0252921100094811 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100094811


THE FLUCTUATION THEORY OF THE STELLAR MASS LOSS 223 

stellar mass for distances in excess of R that does not strongly inter­
act with the radiation field (optical depths below unity). Give a small 
displacement 6 to the stellar atmosphere, which due to gravitational 
interaction is communicated to the stellar body. The reaction to 6 of 
the atmosphere on the one hand, and of the stellar body on the other, 
must be governed by the conservation of momentum. As the appropriate 
relaxation times are x, and x , respectively, we have 

m 6/x, = M(R)6/x (46) 
a d t 

which proves relation (44). 
We cannot simply return to equation (18) to relate K(R) with <A+>, 

as it contains the atmospheric density. The following intuitive argu­
ment may be used. As the stochastic 'force' perturbs the gravitational 
energy of the star, one expects that the power K(R)/TJ in these per­
turbations is proportional to both the 'force' <A+>. and the gravitati­
onal energy |fi(R)|. With a (dimensionless) proportionality constant x 
one has 

K(R)/xd = X <A+>|£2(R)|. (47) 

Together with equation (45) this leads to 

<A+> - x/Tt. (48) 

§12 

Except for the uncertainty about the value of x> we have obtained now 
a result for the average stellar mass loss. Combining relations (42) 
and (48) and omitting the subscript +, as it is clear that there are 
only positive values, we find the general relation 

<X> = x A d / r t . (49) 

The value of x may be found by a comparison with measured data of mass 
loss rates. A more satisfactory procedure for finding x is to consider 
a limiting case. 

At the Eddington limit the outward radiative force approaches the 
inward gravitational force binding the star, so that at this limit the 
maximum loss of mass should be reached. By equating these forces we have 

M = _JS_ L, (50) 
4TTCG 

where c is the velocity of light and K the mass absorption coefficient 
of the gas. The maximum of the mass loss rate is therefore given by 

of it would strongly interact with the radiation field, and thus would the relaxation 
time be increased above T^. 
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Mm = — L /V < 5 1> 
4TTCG 

L/ij- being the maximum rate with which L can change. As 1/T,- = L/|fl| -
RL/(GM2) and as M = A-RL/(GM), we have for this maximum loss rate 

A = - J S - ^ = 1, (52) 
m 

4TTCG M 

by virtue of relation (50). This maximum value has been discussed be­
fore by Williams (1967) and Thomas (1973), but their argument was that, 
if a star does not at all thermalize the centrally produced power, it 
must use all of it in expelling mass - which is incorrect. 

A star at the Eddington limit is virtually unbound, so that T^ and 
xt must take on the same value: any perturbation of the stellar surface 
becomes resonant with the response of the stellar body. Thus, 

which together with the above equations (49) and (52) suggests that 

X K I- (54) 

But x is not exactly equal to unity9. Andriesse (19,80a) has discussed 
reasons for a somewhat smaller value, namely (2ir) 5 = 0.40. 

§13 

The result of the fluctuation theory of the stellar mass loss rate is 
thus 

<A> - A d / T t . (55) 

By inserting the definitions (1), (2) and (4), and using the approxi­
mations discussed in §2, this leads to 

<M> * L3/2(R/M)9/1+/G7/tt. (56) 

Of course, the last equation should not be used in the cases where the 
mentioned approximations are incorrect. It is useful for main-sequence 
stars, but it becomes worse the further the stars have evolved from 
this sequence to the red. It gives about two orders of magnitude too 
much mass loss for evolved Hayashi-line stars, which have a strong 
concentration of matter at the centre. In these cases one should use 
the actual result (55) in conjunction with the definition equations of 
A, TJ and xt. 

The only star, for which at this moment the physical parameters 

In taking the limit Td + Tt one violates the condition (28) used in deriving equation 
(49), which thus may not be valid close to that limit. 
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are known precisely enough to allow for a convincing refutation of the 
fluctuation theory, is the Sun. With its value for L, R and M one 
obtains L3'2(R/M)9/1+/G7/lt = 2.547 x 109 kg s-1 or 4.06 x \0~lk MQ y_1, 
whereas 40% of this value (see at the end of §12) would be a somewhat 
more realistic estimate of the mass loss rate. The value, derived from 
measurements of the solar wind (Hundhausen, 1972), is about 1.4 x 10 
kg s-1. Given the uncertainty in the determination of x an£i the rough 
approximation of Tt, one can say that the Sun does not refute the the­
ory. 

Less convincing cases are provided by T SCO, T, Pup, AX Sgr, n Car, 
a1 Sco, which roughly form a series of further evolved stars, whereas 
also cases exist of Wolf-Rayet stars and central stars of planetary ne­
bulae. We need not discuss these cases here but note that at this mo­
ment no clear refutation has been found 

§14 

As the theory is general, it should be useful in studying the stellar 
evolution, where so far mass loss has been ignored or taken into ac­
count in a rather crude way. Andriesse (1980c) has already shown that 
it sheds light on the relation between 0 and Of stars, whereas it con­
tains the promise to understand enigmatic phenomena like n Carinae's 
'outburst' and the formation of Wolf-Rayet stars. For this aspect the 
reader is further referred to a Note on evolution computations using 
the fluctuation theory, which recently has been submitted to Astronomy 
& Astrophysics. 

Another aspect of the theory is, that it predicts an intrinsic 
scintillation of the stars, for the simple reason that the surges ex­
tract energy from the radiation field of the photosphere (§4). It is 
possible to explain the observed scintillation of early-type super-
giants in terms of A. Here the reader is referred to the qualitative 
discussion of the fluctuation theory (which may be read as a comment on 
the present paper) in the proceedings of the Erice-workshop of 1980 on 
red giants. 

§15 

As it stands, the above discussion is incomplete (§4), hazardous (§5) 
and heuristic (§12). It addresses phenomena of an enormous complexity, 
of which even the principles are poorly understood. Yet it arrives at 
a result of an extreme simplicity, i.e. with a high degree of falsifi-
ability. 

In the years to come it will be confronted with more facts than 
are available now. It cannot be excluded that some of these facts will 
refute its predictions, but until then one should take the simplicity, 

10 Recently, professor C. Chiosi, who claims to have been unaware of the present theory, 
seems to have discovered relation (55) by looking closely at the data on the loss rates 
of 27 0-stars. 
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to which the facts seem to obey, as a challenge. 
Could it be that, according to the old rule simplicitas veri 

sigillum, the simplicity refers to a true law of nature? And that, ac­
cording to Ockam's razor entia non multiplicanda praeter necessitatem, 
the complexity of phenomena in a stellar atmosphere is irrelevant for 
the establishment of this law? 

Popper's view is that theories with a high degree of falsifiabili-
ty, like the present one, come close to the truth, if many attempts to 
refute them have failed. Correct as this may be from a methodological 
point of view, the author nevertheless feels that the acceptance of 
this theory (as being true) does not depend on the attempted refutations 
but on the further clarification of its derivation. 

The challenge of this theory lies in understanding the correctness 
of weakly founded steps in its argument. 
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DISCUSSION 

THOMAS: I regret that you will not continue work along these lines, 

which appears promising. What you did was a linear approximation 
of non-equilibrium. What about higher order approximations? 

ANDRIESSE: They are certainly much more difficult and you also have to 
know more about the system (the photosphere) than just relax­

ation times. To give an example: the spread of the mass flow around the 
average value, hich is given by the linear approximation, can only be 
obtained by knowing the number of (mass-loss) events N. I believe that 
the spread will turn out to be about 1/|/~N. But how can we predict N 
from elementary considerations? 

CONTI: In the sun we do observe spicules, which are analogous to those 
you propose to be necessary for hot star winds. Do the solar 

spicules provide enough energy for the solar wind? 

ANDRIESSE: If this could be proved, it would strengthen the ideas in 
the fluctuation theory. I believe that surges, like the spicules 

on the Sun, both provide the heat of the chromospheres-coronae and the 
kinetic energy of the winds. However, I cannot give any observational 
justification for this belief. 

DUPREE: G. Brueckner of the U.S. Naval Research Laboratory has observ­
ed a few massive high velocity spicules at the solar limb by 

using a high resolution rocket-borne ultraviolet spectrograph. Assuming 
that they are distributed over the solar surface, he estimates that 
these spicules could provide enough energy to heat the corona. 
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