Multipliers between some function spaces on groups

A.K. Gupta and U.B. Tewari

Abstract

Let G be a nondiscrete locally compact abelian group with dual group Γ. For $1 \leq p \leq \infty$, denote by $A_{p}(G)$ the space of integrable functions on G whose Fourier transforms belong to $L_{p}(\Gamma)$. We investigate multipliers from $A_{p}(G)$ to $A_{q}(G)$. If G is compact and $2<p_{1}, p_{2}<\infty$, we show that multipliers of $A_{p_{1}}(G)$ and multipliers of $A_{p_{2}}(G)$ are different, provided $p_{1} \neq p_{2}$. For compact G, we also exhibit a relationship between $\tau_{r}(\Gamma)$ and the multipliers from $A_{p}(G)$ to $A_{q}(G)$. If G is a compact nonabelian group we observe that the spaces $A_{p}(G)$ behave in the same way as in the abelian case as far as the multiplier problems are concerned.

Introduction

Let G be a locally compact abelian group. Throughout this paper G will be nondiscrete and, unless otherwise stated, $1 \leq p<\infty$. Let $A_{p}(G)=\left\{f \in L_{1}(G) \mid \hat{f} \in L_{p}(\Gamma)\right\}$. For $f \in A_{p}(G)$, we define $\|f\|_{A_{p}}=\|f\|_{1}+\|\hat{f}\|_{p}$. If G is compact and nonabelian, $A_{p}(G)$ is defined in an analogous way (see [4]). Under convolution as multiplication $A_{p}(G)$ is a commutative semi-simple Banach algebra.

Let X and Y be translation invariant topological linear spaces of Received 16 August 1977.
functions or measures defined on G for which it is possible to define Fourier or Fourier-Stieltjes transforms. A continuous linear transformation T from X into Y is called a multiplier if T commutes with translations. Let T be a linear transformation from X to Y. Suppose there exists a function ϕ on Γ such that $(T f)^{\wedge}=\hat{\phi}$, for each $f \in X$. Such a T commutes with translations, and in many cases T is continuous. Consequently, such a T would define a multiplier from X to Y. The collection of all multipliers from X into Y will be denoted by $M(X, Y)$. The set of all functions ϕ on Γ which define elements $T \in M(X, Y)$ in the above manner will be denoted by $M_{X}^{Y}(\Gamma)$. We shall write $M(X, X)=M(X)$ and $M_{X}^{X}(\Gamma)=M_{X}(\Gamma)$. If G is infinite, compact, nonabelian then $M(X, Y)$ and $M_{X}^{Y}(\Sigma)$ are defined similarly, where Σ is the dual object of G.

If G is a noncompact locally compact abelian group, then $M_{A_{p}}(\Gamma)=M(G)^{\wedge} \quad($ see [7], 204-207), and if G is a compact abelian group, then $M_{A_{p}}(\Gamma)=I_{\infty}(\Gamma)$, provided $1 \leq p \leq 2$. Thus we see that $M_{A_{p}}(\Gamma)$ need not depend on the index p. The situation is not so simple for compact G when $2<p<\infty$. In Section 1 , we show that $M_{A_{p_{1}}}(\Gamma) \neq M_{A_{2}}(\Gamma)$ for compact G and $2<p_{1}, p_{2}<\infty$, if $p_{1} \neq p_{2}$.
$M\left(A_{p}(G)\right)$ and $M\left(L_{1}, A_{p}\right)$ have been studied in some detail (compare [6], [7]). However, a systematic study of $M\left(A_{p}, A_{q}\right)$ has not been made so far. It is very easy to see that ${ }_{M_{A}}{ }^{q_{p}}(\Gamma)=M_{A_{p}}$ (Г) if $p \leq q$ (see [7]), and ${ }_{M_{A}}{ }^{1}(\Gamma)=M_{A_{p}}(\Gamma)$. In Section 2, we study ${ }_{M_{A}}{ }^{q}(\Gamma)$ for $q<p$.

Multipliers from $L_{1}(G)$ to $A_{p}(G)$ have been studied in detail in [6] for abelian groups. The methods of [6] do not appear to extend to nonabelian groups. In Section 3, we determine multipliers from $L_{1}(G)$ to $A_{p}(G)$ for a compact nonabelian group G. Our method works for abelian
groups also. In fact, it is simpler for abelian groups.

1. Multipliers of A_{p}

By proving the existence of sets of uniqueness for $L_{p}(G)$ with $1 \leq p \leq 2$, Figà-Talamanca and Gaudry have proved in [2] that $M\left(L_{p}(G)\right) \xi_{7} M\left(L_{2}(G)\right)$ for a nondiscrete locally compact abelian group G. The authors of [2] then employ the Riesz convexity theorem to prove that $M_{L_{p}}(\Gamma) \cap C_{0}(\Gamma) \not{ }_{\mp} M_{L_{q}}(\Gamma) \cap C_{0}(\Gamma)$ for $1 \leq p<q \leq 2$. Price [9] has generalized these results.

In view of the above results, we were led to investigate analogous questions for A_{p}-multipliers. Our results are included in the following theorem.

THEOREM 1.1. Let G be an infinite compact abelian group, $1 \leq q<\infty, 2<p<\infty$, and $p>q$. Then
(i) $\quad M_{A_{p}}(\Gamma) \cap C_{0}(\Gamma) \subsetneq M_{A_{q}}(\Gamma) \cap C_{0}(\Gamma)$,
(ii) $\underset{p>q}{\cup} M_{A_{p}}(\Gamma) \varsubsetneqq M_{A_{q}}(\Gamma)$.

Proof. (i) If $q \leq 2$ then $M_{A_{q}}(\Gamma)=\tau_{\infty}(\Gamma)$. It is also known (see [7], p. 208) that there exists a function ϕ in $C_{0}(\Gamma)$ such that $\phi \notin M_{A_{p}}(\Gamma)$. This implies (i). Let us then suppose that $q>2$. Let $r=\frac{2 q}{q-2}$. Then $r>2$ and $q=\frac{2 r}{r-2}$. By [10, Theorem 1$]$ it follows that there exists a function f in $A_{p}(G)$ such that $\sum_{\gamma \in \Gamma}|\hat{f}(\gamma)|^{2 r / r-2}=\infty$. It follows from [4, Theorem 35.4, Part VI] that there exists a $\psi \in \mathcal{Z}_{\boldsymbol{r}}(\Gamma)$ such that $\psi \hat{f} \notin \tau_{2}(\Gamma)$. Hence by [4, Corollary 36.13] there exists a function $\varepsilon(\gamma)= \pm 1$ on Γ such that $\varepsilon(\gamma) \psi(\gamma) \hat{f}(\gamma)$ is not the Fourier transform of any integrable function on G. Let $\phi(\gamma)=\varepsilon(\gamma) \psi(\gamma)$. Then $\phi \oint M_{A_{p}}(\Gamma)$. We shall show that $\phi \in M_{A_{q}}(\Gamma)$, proving (i). In fact we show
that $Z_{r}(\Gamma) \subseteq M_{A_{q}}(\Gamma)$. Let $\phi \in \tau_{r}(\Gamma)$, where $r=\frac{2 q}{q-2}$, and $f \in A_{q}(G)$. Then by Hólder's inequality we get

$$
\sum_{\gamma \in \Gamma}|\phi(\gamma)|^{2}|\hat{f}(\gamma)|^{2} \leq\left(\sum_{\gamma \in \Gamma}|\phi(\gamma)|^{2 q / q-2}\right)^{q-2 / q}\left(\sum_{\gamma \in \Gamma}|\hat{f}(\gamma)|^{q}\right)^{2 / q}<\infty
$$

Therefore $\hat{\phi f} \in Z_{2}(\Gamma)$, and there exists $g \in L_{1}(G)$ such that $\hat{g}=\phi \hat{f}$. Since $\hat{f} \in Z_{q}(\Gamma)$ and ϕ is bounded, $\hat{g} \in Z_{q}(\Gamma)$, and therefore $\hat{\phi f} \in\left(A_{q}(G)\right)^{\wedge}$. Thus $\phi \in M_{A_{q}}(\Gamma)$, and the proof of (i) follows.
(ii) For $\phi \in M_{A_{p}}(\Gamma)$, let $\|\phi\|_{A_{p}}$ denote the norm of the corresponding operator $T \in M\left(A_{p}(G)\right)$. Since $M_{A_{p}}(\Gamma)$ is a commutative semi-simple Banach algebra with this norm for all p, and ${ }_{M_{A}}(\Gamma) \subseteq M_{A_{q}}(\Gamma)$ whenever $p>q$, we get that for some constant $K,\|\phi\|_{A_{q}} \leq K\|\phi\|_{A_{p}}$ for all $\phi \in M_{A_{p}}(\Gamma)$. Since $M_{A_{p}}(\Gamma) \not M_{A_{q}}(\Gamma)$ (from (i)), it follows from the open mapping theorem ([5], p. 99) that $M_{A_{p}}(\Gamma)$ is of first category in $M_{A_{q}}(\Gamma)$. Let $\left\{p_{n}\right\}$ be a decreasing sequence such that $p_{n} \rightarrow q$. Then $\underset{p>q}{\cup} M_{A_{p}}(\Gamma)=\bigcup_{n=1}^{\infty} M_{A_{p_{n}}}(\Gamma)$. This shows that $\underset{p>q}{\bigcup} M_{A_{p}}(\Gamma)$ is of first category in $M_{A_{q}}(\Gamma)$, and hence (ii) follows.

REMARK 1.2. The assertions in the above theorem hold with obvious modifications, even if G is an infinite compact nonabelian group. The proof is exactly similar to the above and the results needed in the argument can be found in [4, Theorem 35.4, Part VI] and [3, Theorem 2.b].

$$
\text { 2. Multipliers from } A_{p}(G) \text { to } A_{q}(G)
$$

In this section we study $M_{A}^{A} q_{p}$ for $1 \leq q<p<\infty$. As mentioned
in the introduction, if $p \leq q$, then ${ }_{M_{A}}{ }^{A}{ }_{p}(\Gamma)={ }^{M_{A}}{ }_{A}{ }^{p}(\Gamma)$ and the problem has been investigated in detail [6] and [7].

PROPOSITION 2.1. Let G be a noncompact locally compact abelian group, and let $B_{r}(G)=\left\{\mu \in M(G): \hat{\mu} \in L_{p}(\Gamma)\right\}$, where $1 \leq r<\infty$. Then

$$
\left(B_{p q / p-q}(G)\right)^{\wedge} \subseteq M_{A}^{A} q_{p}(\Gamma) \varsubsetneqq(M(G))^{\wedge}
$$

Proof. Let $\phi=\hat{\mu}, \mu \in B_{p q / p-q}(G)$. Then $\phi \hat{f}=\hat{\mu} \hat{f}=(\mu * f)^{\wedge} \in\left(L_{1}(G)\right)^{\wedge}$ for $f \in L_{1}(G)$. If $f \in A_{p}(G)$, then by Hölder's inequality $\phi \hat{f} \in L_{q}(\Gamma)$, and hence $\phi \in M_{A}^{A} q_{p}(\Gamma)$. Also ${ }_{M_{A}}^{A} q_{p}(\Gamma) \subseteq M_{A}(\Gamma)=(M(G))^{\wedge}$. To prove that the second inclusion is proper, we observe that $\delta_{0} \notin M_{A}^{A} q_{p}(\Gamma)$, where δ_{0} is the identity of $M(G)$. This follows from [10, Theorem 2].

Now we discuss ${ }_{M_{A}}{ }^{q^{\prime}}(\Gamma)$. Throughout the rest of this section G will be an infinite compact abelian group.

PROPOSITION 2.2. Let $1 \leq q<p \leq 2$. Then $M_{A}^{A} q_{p}(\Gamma)=\tau_{p q / p-q}$ (Г).
Proof. We observe that $\left(A_{r}(G)\right)^{\wedge}=Z_{r}(\Gamma)$ for $\quad 1 \leq r \leq 2$. Therefore $\phi \in M_{A}^{A} q_{p}(\Gamma)$ if and only if $\phi \psi \in \mathcal{Z}_{q}(\Gamma), \psi \in \mathcal{Z}_{p}(\Gamma)$, that is if and only if $\phi \in Z_{p q / p-q}(\Gamma) ;$ see $[4$, Theorem 35.4, Part VI].

PROPOSITION 2.3. Let $1 \leq q \leq 2<p$. Then

$$
\tau_{p q / p-q}(\Gamma) \subseteq M_{A}^{A} q_{p}(\Gamma) \subsetneq \tau_{2 q / 2_{-}}(\Gamma)
$$

Moreover, if $r>\frac{p q}{p-q}$, then $\tau_{r}(\Gamma) \notin M_{A}^{A} q_{p}(\Gamma)$, and if $r>p$, then $\tau_{p q / p-q}(\Gamma) \nsubseteq{ }_{M_{A}} q_{p}(\Gamma)$.

Proof. Let $\phi \in Z_{p q / p-q}(\Gamma)$ and $f \in A_{p}(G)$. Then by Hölder's inequality $\hat{\phi f} \in I_{q}(\Gamma)=A_{q}(G)^{\wedge}$. Thus $\tau_{p q / p-q}(\Gamma) \subseteq{ }_{A}^{A} A_{p}(\Gamma)$ and also, since ${ }_{M_{A}^{A}}^{q_{p}}(\Gamma) \subseteq M_{A}^{A} q_{2}(\Gamma)=\tau_{2 q / 2-q}(\Gamma)$, we get $\tau_{p q / p-q}(\Gamma) \subseteq{ }_{A}^{A} q_{p}(\Gamma) \subseteq \tau_{2 q / 2-q}(\Gamma)$. To prove that ${ }_{M_{A}^{A}} q_{p}(\Gamma) \subsetneq \tau_{2 q / 2-q}(\Gamma)$, it now suffices to show that for $r>\frac{p q}{p-q}, \tau_{r}(\Gamma) \notin M_{A}^{A} q_{p}(\Gamma)$. Now $r>\frac{p q}{p-q}$ implies that $p>\frac{r q}{r-q}$. Then, by [10, Theorem 1], it follows that there exists $f \in A_{p}(G)$ such that $\sum_{\gamma \in \Gamma}|\hat{f}(\gamma)|^{r q / r-q}=\infty$. Hence by [4, Theorem 35.4, Part VI] there exists a function ψ in $\tau_{p}(\Gamma)$ such that $\psi \hat{f} \notin z_{q}(\Gamma)$. This shows that $Z_{r}(\Gamma) \nmid M_{A}^{A} q_{p}(\Gamma)$. To complete the proof of the proposition we shall now show that $\eta_{p q / p-q}(\Gamma) \nmid{ }_{M_{A}} q_{p}(\Gamma)$ if $r>p$. By [10, Theorem 1] there exists a function f in $A_{r}(G)$ such that $\sum_{\gamma}|\hat{f}(\gamma)|^{p}=\infty$. Again [4, Theorem 35.4, Part VI] implies that for some ψ in $\tau_{p q / p-q}(\Gamma), \psi \hat{f} \nmid \tau_{q}(\Gamma)$; that is $\psi \nmid{ }_{M_{r}}^{A} q_{r}(\Gamma)$. This completes the proof of the proposition.

Let us now consider the case when $2<q<p<\infty$. In this situation we shall show that $\tau_{p q / p-q}(\Gamma)$ is not contained in ${ }_{M_{A}^{A}} q_{p}(\Gamma)$.

LEMMA 2.4. Let $2<q \leq p<\infty$ and $1 \leq r<\infty$. Then $\tau_{p}(\Gamma) \subseteq M_{A}^{A} q_{p}(\Gamma) \quad$ if and on l_{y} if $\quad \tau_{r}(\Gamma) \subseteq M_{A_{p}}^{A^{2}}(\Gamma)$.

Proof. Since ${ }^{M_{A}}{ }_{p}(\Gamma) \subseteq{ }^{A}{ }_{A}{ }^{q}(\Gamma)$, the 'if' part of the lemma follows. Suppose then $\tau_{p}(\Gamma) \notin{ }_{M_{A}}{ }^{2}(\Gamma)$. We shall show that $\tau_{p}(\Gamma) \nsubseteq{ }^{M_{A}}{ }_{p} q_{p}(\Gamma)$. If $I_{p}(\Gamma) \notin M_{A_{p}}{ }^{2}(\Gamma)$, then there exists $\psi \in I_{p}(\Gamma)$ and $f \in A_{p}(G)$ such that $\psi \hat{f} \notin A_{2}=Z_{2}(\Gamma)$. As in the proof of Theorem 1.1 there exists a function $\varepsilon(\gamma)= \pm 1$ on Γ such that $\varepsilon(\gamma) \psi(\gamma) \hat{f}(\gamma) \notin\left(L_{1}(G)\right)^{\wedge}$. Then the function $\varepsilon(\gamma) \psi(\gamma)$ belongs to $Z_{\gamma}(\Gamma)$, but it does not belong to ${ }_{M_{A}}^{A} q_{p}(\Gamma)$. This completes the proof of the lemma.

COROLLARY 2.5. If $1 \leq p \leq 4$, then $\tau_{p}(\Gamma) \subseteq M_{A_{p}}(\Gamma)$, but if $4<p<\infty$ then $\tau_{4}(\Gamma) \notin M_{A_{p}}(\Gamma)$ and $\tau_{p}(\Gamma) \notin M_{A_{4}}(\Gamma)$.

Proof. If $1 \leq p \leq 4$ then $p \leq \frac{2 p}{p-2}$ and by Proposition 2.3, $\tau_{p}(\Gamma) \subseteq \tau_{\langle\rho / p-2}(\Gamma) \subseteq M_{A}^{A_{p}}(\Gamma) \subseteq M_{A_{p}}(\Gamma)$, provided $p>2$. If $p \leq 2$, then $M_{A_{p}}(\Gamma)=\tau_{\infty}(\Gamma) \geq \tau_{p}(\Gamma)$. If $4<p<\infty$ then $4>\frac{2 p}{p-2}$ and hence by Proposition 2.3, $\tau_{L}(\Gamma) \nsubseteq M_{A_{p}}{ }^{2}(\Gamma)$ and by the lemma above, it follows that $\tau_{4}(\Gamma) \notin M_{A_{p}}(\Gamma)$. Also if $4<p<\infty$ then $p>\frac{4.2}{4-2}=4$ and hence $\tau_{p}(\Gamma) \notin M_{A_{4}}^{A_{2}}(\Gamma)$ and $\tau_{p}(\Gamma) \notin M_{A_{4}}(\Gamma)$ as before.

COROLLARY 2.6. If $2<q<p<\infty$ then $\tau_{p q / p-q}(\Gamma) \notin M_{A}^{A} q_{p}(\Gamma)$.

Proof. Since $q>2, \frac{p q}{p-q}>\frac{2 p}{p-2}$ and therefore, by Proposition 2.3, $\tau_{p q / p-q}(\Gamma) \notin{ }_{A_{A}}^{A}(\Gamma)$, and hence, by Lemma 2.4, $\tau_{p q / p-q}(\Gamma) \notin M_{A}^{A} q_{p}(\Gamma)$.

PROPOSITION 2.7. If $2<q<p<\infty$ then

$$
\left(B_{p q / p-q}(G)\right)^{\wedge} \subsetneq^{M_{A}^{A}} q_{p}(\Gamma)
$$

Proof. Let $\phi \in\left(B_{p q / p-q}(G)\right)^{\wedge}$ and $f \in A_{p}(G)$. Since $\phi \in(M(G))^{\wedge}$, $\phi f \in\left(L_{1}(G)\right)^{\wedge}$. Since $\phi \in \tau_{p q / p-q}(\Gamma)$ and $\hat{f} \in \tau_{p}(\Gamma)$, it follows that $\phi f \in Z_{q}(\Gamma)$. Therefore $\left(B_{p q / p-q}(G)\right)^{\wedge} \subseteq M_{A}^{A} q_{p}(\Gamma)$. We shall now show that the inclusion is proper. Since $\frac{2 p}{p-2}>2$, there exists $f \in A_{2 p / p-2}(G)$ such that $\hat{f} \notin z_{2}(\Gamma)$. By [4, Corollary 36.13$]$ there exists a function $\varepsilon(\gamma)= \pm 1$ on Γ such that $\varepsilon(\gamma) \hat{f}(\gamma) \notin(M(G))^{\wedge}$ and hence $\varepsilon(\gamma) \hat{f}(\gamma) \nmid\left(B_{p q / p-q}(G)\right)^{\wedge}$. However $\varepsilon(\gamma) \hat{f}(\gamma) \in \tau_{2 p / p-2}(\Gamma)$ and, by Proposition 2.3, $\tau_{2 p / p-2}(\Gamma) \subseteq M_{A_{p}}^{A_{2}}(\Gamma) \subseteq{ }_{M_{A}} q_{p}(\Gamma)$. This completes the proof.

3. Multipliers from L_{1} to A_{p}

As mentioned in the introduction, for abelian groups G, multipliers from L_{1} to A_{p} have been investigated by Krogstad in [6]. Krogstad has shown that $M\left(L_{1}, A_{p}\right) \simeq\left(B_{p}(G)\right)^{\wedge}$. We shall show that the same result holds for compact nonabelian groups. As mentioned earlier, our proof differs from that of Krogstad which does not appear to extend to the nonabelian case. A similar proof for the abelian case is simpler. We shall follow the notations of [4] in dealing with the nonabelian case. Thus G will denote an infinite compact nonabelian group and Σ its dual object. $A_{p}(G)=\left\{f \in L_{1}(G): \hat{f} \in{\underset{\sim}{C}}_{C}^{C}(\Sigma)\right\}$ and $\|f\|_{A_{p}}=\|f\|_{1}+\|\hat{f}\|_{p}$.

PROPOSITION 3.1. Let G be an infinite compact nonabelion group and $1 \leq q<\infty$. Let $\mu \in M(G)^{\wedge}$ be such that $\mu * L_{1}(G) \subset A_{q}(G)$; then
$\hat{\mu} \in \underset{=}{c}(\Sigma)$.
Proof. Suppose $\hat{\mu} \notin \underset{\sim}{c}(\Sigma)$. Choose a sequence $\left\{\psi_{n}\right\}_{n=1}^{\infty}$ of finite subsets of Σ such that

$$
\sum_{\sigma \in \psi_{n}} d_{\sigma}\|\hat{\mu}(\sigma)\|_{\phi_{q}}^{q} \geq n^{3 q}
$$

Now by [4, Theorem 28.53] choose a sequence $\left\{h_{k}\right\}$ in $L_{1}(G)$ such that $\left\|h_{n}\right\|_{1}=1, \hat{h}_{n}(\sigma)=\alpha_{n}(\sigma) I_{d_{\sigma}}, \alpha_{n}(\sigma) \geq 0$, and $\alpha_{n}(\sigma)>\frac{1}{2}$ for all
$\sigma \in \psi_{n}$. Let $h=\sum_{n=1}^{\infty} \frac{h_{n}}{n^{2}} ;$ then $h \in L_{1}(G), \hat{h}(\sigma)=\alpha(\sigma) I_{d_{\sigma}}$, and $\alpha(\sigma) \geq 0$ for all $\sigma \in \Sigma$, and $\alpha(\sigma) \geq \frac{1}{2 n^{2}}$ for all $\sigma \in \Psi_{n}$. Now

$$
\begin{aligned}
\sum_{\sigma} d_{\sigma}\|\hat{\mu}(\sigma) \hat{h}(\sigma)\|_{\phi_{q}}^{q} & =\sum_{\sigma} d_{\sigma}(\alpha(\sigma))^{q}\|\hat{\mu}(\sigma)\|_{\phi_{q}}^{q} \\
& \geq \sum_{\sigma \epsilon \psi_{n}} d_{\sigma} \frac{1}{2^{q} n^{2 q}}\|\hat{\mu}(\sigma)\|_{\phi_{q}}^{q} \\
& \geq \frac{1}{2^{q}} \frac{n^{3 q}}{n^{q q}}=\left(\frac{n}{2}\right)^{q} \text { for ail } n,
\end{aligned}
$$

a contradiction.
The proof of the following corollary is now obvious.
COROLLARY 3.2. Let G be an infinite compact nonabelian group and $1 \leq p<\infty$. Then $M\left(L_{1}, A_{p}\right) \simeq\left(B_{p}(G)\right)^{\wedge}$.

PROPOSITION 3.3. Let G be an infinite compact nonabelion group and $1 \leq q \leq 2$. Then

$$
{ }_{M_{L}}^{A} q_{1}(\Sigma)=\left(A_{q}(G)\right)^{\wedge}
$$

Proof. It is obvious that $\left(A_{q}(G)\right)^{\wedge} \subseteq M_{L_{1}}^{A} q^{(\Sigma)}$. Conversely, ${ }_{M_{L}}^{A} q_{1}(\Sigma) \subseteq M_{L_{1}}^{L_{1}}(\Sigma)=M(G)^{\wedge}$. Hence if $\hat{\mu} \in M_{L_{1}}^{A} q^{(\Sigma)}$, then $\mu * L_{1}(G) \subseteq A_{q}(G)$.

Therefore, by Proposition 3.1, $\hat{\mu} \in{\underset{\sim}{C}}_{q}(\Sigma)$. Then it follows from [4, (34.47) (b)] that $\hat{\mu} \in A_{q}(G)^{\wedge}$. This completes the proof of the proposition.

References

[1] R.E. Edwards, "Changing signs of Fourier coefficients", Pacific J. Math. 15 (1965), 463-475.
[2] Alessandro Figà-Talamanca and Garth I. Gaudry, "Multipliers and sets of uniqueness of $L^{\text {p }}$ ", Michigan Math. J. 17 (1970), 179-191.
[3] John J.F. Fournier, "Local complements to the Hausdorff-Young theorem", Michigon Math. J. 20 (1973), 263-276.
[4] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Volume II (Die Grundlehren der mathematischen Wissenschaften, 152. Springer-Verlag, Berlin, Heidelberg, New York, 1970).
[5] J.L. Kelley, Isaac Namioka and W.F. Donoghue, Jr., Kenneth R. Lucas, B.J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W.R. Scott, Kennan T. Smith, Linear topological spaces (Van Nostrand, Princeton, New Jersey; Toronto; New York; London; 1963. Second printing: Graduate Texts in Mathematics, 36. Springer-Verlag, New York, Heidelberg, Berlin, 1976).
[6] Harald E. Krogstad, A note on A^{P}-aZgebras (Institute Mittag-Leffler, Report no. 5, 1974).
[7] Ronald Larsen, An introduction to the theory of multipliers (Die Grundlehren der mathematischen Wissenschafter, 175. SpringerVerlag, Berlin, Heidelberg, New York, 1971).
[8] R. Larsen, "The algebras of functions with Fourier transforms in L_{p} : a survey", Nieuw Arch. Wisk. (3) 22 (1974), 195-240.
[9] J.F. Price, "Some strict inclusions between spaces of I^{p} multipliers", Trans. Amer. Math. Soc. 152 (1970), 321-330.
[10] U.B. Tewari and A.K. Gupta, "The algebra of functions with Fourier transforms in a given function space", Bull. Austral. Math. Soc. 9 (1973), 73-82.

Department of Mathematics,
Indian Institute of Technology Kanpur,
Kanpur,
India.

