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Abstract

We show that the positive Wiener–Hopf factor of a Lévy process with positive jumps
having a rational Fourier transform is a rational function itself, expressed in terms
of the parameters of the jump distribution and the roots of an associated equation.
Based on this, we give the closed form of the ruin probability for a Lévy process, with
completely arbitrary negatively distributed jumps, and finite intensity positive jumps with
a distribution characterized by a rational Fourier transform. We also obtain results for the
ladder process and its Laplace exponent. A key role is played by the analytic properties
of the characteristic exponent of the process and by a Baxter–Donsker-type formula for
the positive factor that we derive.
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1. Introduction

1.1. Lévy processes with rational positive jumps

Consider a Lévy processX = {Xt }t≥0 defined on a probability space (�,F ,P). For general
reference on the subject, we refer the reader to [5], [17], or [25].

In this paper we are interested in a Lévy process of the following type. Consider a density
function of the form

p(x) =
ν∑
k=1

nk∑
j=1

ckj (αk)
j xj−1

(j − 1)! exp(−αkx), x > 0. (1.1)

Here the parameters ckj and αk can in principle take complex values, but if we order the αk by
their real parts then α1 must be a positive real, while the others may be complex with

0 < α1 < Re(α2) ≤ · · · ≤ Re(αν).

This is the general form of the density of a random variable whose Fourier (or Laplace) transform
is a rational function (i.e. the quotient of two polynomials):

p̂(u) =
∫ ∞

0
eiuxp(x) dx =

ν∑
k=1

nk∑
j=1

ckj

(
iαk

u+ iαk

)j
. (1.2)
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Wiener–Hopf factors with rational transforms 119

Assume that X is a Lévy process with jump measure given by

�X(dx) =
{
π+(dx) = λp(x) dx, x > 0,

π−(dx), x < 0,

where π−(dx) is an arbitrary Lévy measure concentrated on the set (−∞, 0), describing the
behavior of the negative jumps of the process. The positive jumps of the process have finite
intensity λ > 0 and magnitude distributed according to the probability density p(x) given
in (1.1).

We now describe the characteristic exponent ψ of our model defined, for u ∈ R, by the
Lévy–Khinchine formula E(exp(iuXt)) = etψ(u). Consider two independent Lévy processes
X− and X+ with respective characteristic exponents

ψ−(u) = iau− 1

2
σ 2u2 +

∫ 0

−∞
(eiux − 1 − iuh(x))π−(dx), (1.3)

ψ+(u) = λ(p̂(u)− 1). (1.4)

Here a ∈ R, σ ≥ 0, h(x) = x 1{|x|≤1} is a fixed truncation function, and p̂ is as given in (1.2).
Our process can then be constructed asX = X−+X+ and, consequently, has a characteristic

exponent given by
ψ(u) = ψ−(u)+ ψ+(u). (1.5)

In the actuarial literature, X is the perturbed model obtained from the compound Poisson
process X+ perturbed with the spectrally negative Lévy process X−.

The goal of this paper is to establish the largest possible class of Lévy processes under which
the double product form of the Laplace transform that we obtain in (2.2), below, holds for the
distribution of the maximum defined in (1.7), below.

The presented results are similar to the classical results for random walks, where it is known
that the computation of the law of the maximum requires only the specification of the positive
jump structure of the processes, as exposed in [10, Chapter XII] and [14], or more recently in
[1, Chapter VIII].

For Lévy processes, we generalize the results of [20], where the distribution of the maximum
was considered when the Lévy measure had arbitrary negative part and positive jumps according
to a mixture of exponential random variables, and [2] and [19], where positive phase-type
distributed jumps were considered. In a recent paper by Pistorius [22] further results were
obtained, in particular an algorithm for the computation of the parameters of the distribution
of the maximum (that is of phase type) and a probabilistic representation of the ladder process.
Among other works that study different aspects of ruin probabilities for Lévy processes, we
mention [15], where asymptotic results for overshoots were obtained, [11], where a convolution
formula was obtained for a classical claim process perturbed by an α-stable Lévy process,
and [13], where a Pollachek–Khinchine-type formula for the maximum of a Lévy process,
constructed as the perturbation of a classical ruin process with a subordinator, was obtained.

In the present paper we pursue two objectives: the determination of the closed form of the
distribution of the maximum for a Lévy process with positive jumps having a rational transform
(this formally generalizes the class of phase-type distributions) and, at the same time, we are
interested in the application of the classical complex variable methods to Lévy processes as
in [3]. The obtained results have relevant applications in mathematical finance, where the
determination of the Wiener–Hopf positive and negative factors give the solution of the optimal
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120 A. LEWIS AND E. MORDECKI

stopping problem related to the pricing of a perpetual call and put option, respectively, in a
market model generated by a Lévy process (see [7] and [18]).

1.2. Analytic properties and the Wiener–Hopf factorization

The characteristic exponent ψ− defined in (1.3) admits an analytic continuation to the half
complex plane Im(z) < 0, continuous in Im(z) ≤ 0. The characteristic exponent ψ+ defined
in (1.4) admits an analytic continuation to the half complex plane Im(z) > −α1. In conclusion,
the characteristic exponent (1.5) of the full model admits an analytic continuation to the complex
strip −α1 < Im(z) < 0, continuous in −α1 < Im(z) ≤ 0, under the formula

ψ(z) = iaz− 1

2
σ 2z2 +

∫ 0

−∞
(eizx − 1 − izh(x))π−(dx)+ λ(p̂(z)− 1), (1.6)

which satisfies E(exp(izXt )) = etψ(z), by [25, Theorem 25.17]. Furthermore, ψ(z) is a mero-
morphic function in the set Im(z) < 0, with poles in −iα1, . . . ,−iαν and respective multiplic-
ities n1, . . . , nν . This justifies the label pole count for the quantity n = n1 + · · · + nν .

Denote by τ(q) an exponential random variable with parameter q > 0, independent of the
process X, and, for q = 0, let τ(0) = ∞. Our main interest in this paper is the determination
of the law of the following random variables:

Mq = sup
0≤t<τ(q)

Xt and Iq = inf
0≤t<τ(q) Xt , (1.7)

called the supremum and the infimum of the process, respectively, killed at rate q if q > 0. For
the case in which q = 0, we always assume that

E(X1) = a +
∫ −1

−∞
xπ−(dx)+ λ

∫ ∞

0
xp(x) dx < 0

(including the case in which E(X1) = −∞), and, consequently, the process drifts to −∞,
i.e. P(limt→∞Xt = −∞) = 1. This amounts to saying that the random variable M0 in (1.7)
is proper, while the random variable I0 in (1.7) degenerates, i.e. P(I0 = −∞) = 1. Their
respective characteristic functions are the positive Wiener–Hopf factor given by

φ+
q (u) = E(exp(iuMq)), q ≥ 0,

and the negative Wiener–Hopf factor given by

φ−
q (u) = E(exp(iuIq)), q > 0.

We consider the two following cases.

Case (S): −X− is a subordinator.

Case (NS): −X− is not a subordinator.

Lemma 1.1, below, is crucial in our development. (All proofs may be found in Section 3.)

Lemma 1.1. (Roots.) (a) Consider q ≥ 0, and assume that E(X1) < 0 for the case in which
q = 0. Then, the equation q − ψ(z) = 0 has a simple purely imaginary root −iβ1(q), with
β1(q) > 0, the unique root in the closure of the strip

O = {z = u+ iv : − β1(q) < v ≤ 0}. (1.8)
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(b) For q ≥ 0, the equation q−ψ(z) = 0 has, in the set Im(z) < 0, a total ofµ = µ(q) distinct
roots −iβ1(q),−iβ2(q), . . . ,−iβµ(q), with respective multiplicities 1,m2(q), . . . , mµ(q),
ordered such that 0 < β1(q) < Re(β2(q)) ≤ · · · ≤ Re(βµ(q)). Furthermore, the total
root countm = 1 +m2(q)+· · ·+mµ(q) does not depend on q and is related to the pole count
n by the relation m = n in case (S) and m = n+ 1 in case (NS).

(c) Consider the polynomial

Bm,q(u) =
µ(q)∏
j=1

(
u+ βj (q)

βj (q)

)mj (q)
. (1.9)

Then, when q tends to 0 the q-roots converge to the zero roots in such a way that

Bm,q(u) → Bm,0(u), q → 0.

We will frequently omit the explicit display of q-dependencies in the roots. Consider the
random variable Xτ(q), the process stopped at the independent exponential time τ(q). For
z ∈ O, defined in (1.8), using the Frullani integral to pass from (1.10), below, to (1.11), below,
we have

E exp(izXτ(q)) =
∫ ∞

0
qe−qtetψ(z) dt

= q

q − ψ(z)
(1.10)

= exp
∫ ∞

0

e−qt

t
(etψ(z) − 1) dt (1.11)

= exp
∫ ∞

0

e−qt

t

∫ ∞

−∞
(eizx − 1)P(Xt ∈ dx) dt

= exp
∫ ∞

−∞
(eizx − 1)

(∫ ∞

0

e−qt

t
P(Xt ∈ dx) dt

)
(1.12)

= exp

(∫ ∞

0
(eizx − 1)πM(dx)+

∫ 0

−∞
(eizx − 1)πI (dx)

)
= exp(ψM(z)+ ψI (z)), (1.13)

where, for z ∈ O, we introduced the following notation:

ψM(z) =
∫ ∞

0
(eizx − 1)πM(dx), (1.14)

ψI (z) =
∫ 0

−∞
(eizx − 1)πI (dx), (1.15)

with

πM(dx) =
∫ ∞

0

e−qt

t
P(Xt ∈ dx) dt, πI (dx) =

∫ 0

−∞
e−qt

t
P(Xt ∈ dx) dt.

(This development is adapted from [5, Lemma VI.2.7], where it can be found for the case in
which z = u ∈ R. We rely on the argument there to interchange the integration orders to
obtain (1.12).) Rogozin [24] established

φ+
q (u) = E(exp(iuMq)) = exp(ψM(u)), φ−

q (u) = E(exp(iuIq)) = exp(ψI (u)),
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122 A. LEWIS AND E. MORDECKI

and the Wiener–Hopf–Rogozin factorization:

q

q − ψ(u)
= φ+

q (u)φ
−
q (u) = exp(ψM(u)+ ψI (u)). (1.16)

In fact, our development (1.13) shows that this equality holds in O, under the respective analytic
continuations defined in (1.6), (1.14), and (1.15).

Furthermore, as the integral in (1.14) is also convergent when Im(z) ≥ 0, the exponent ψM
has an analytic continuation to the half-plane Im(z) > −β1 under the given formula, and, again
by [25, Theorem 25.17], we have

E exp(izMq) = exp(ψM(z)), Im(z) > −β1.

2. Main results

As the characteristic exponent ψM of the maximum admits an analytic continuation to the
strip of the complex plane Im(z) > −β1, the following Baxter–Donsker-type formula in (2.1),
below, holds for the positive Wiener–Hopf factor. Note that (2.1) avoids integration at z = 0.

Theorem 2.1. The positive Wiener–Hopf factor for a Lévy process with characteristic exponent
given in (1.5) for u > 0 satisfies

φ+(iu) = E(exp(−uMq)) = exp

(
1

2π i

∫ −iv+∞

−iv−∞
iu

z(z− iu)
log

(
q

q − ψ(z)

)
dz

)
(2.1)

for any v ∈ (0, β1).

Remark 2.1. From the proof of Theorem 2.1, it can be seen that the rational structure of the
positive jumps in (1.2) is not used. Consequently, (2.1) remains true under the condition of the
existence of a strip of analyticity of the form −β < Im(z) < 0 for some β > 0.

Based on the previous result, we can explicitly compute the positive factor in our model,
showing that it has a rational transform.

Theorem 2.2. Consider a Lévy process X with characteristic exponent given by (1.5) and
q ≥ 0. Assume that EX1 < 0 for the case in which q = 0. Then the maximumMq has rational
Laplace transform given by

φ+
q (iu) = E(exp(−uMq)) =

ν∏
k=1

(
u+ αk

αk

)nk µ(q)∏
j=1

(
βj (q)

u+ βj (q)

)mj (q)
. (2.2)

Throughout the paper, we use the convention that in the absence of positive jumps ν = 0
and

∏ν
k=1(. . . ) = 1 for every displayed product argument.

In order to obtain the density of the maximum Mq , we first denote

φ+
q (iu) = E(exp(−uMq)) = An(u)

Bm,q(u)
,

where Bm,q is as defined in (1.9) and

An(u) =
ν∏
k=1

(
u+ αk

αk

)nk
.
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Then we must invert the Laplace transform of the quotient of polynomials obtained above. The
fractional expansion theorem states that

An(u)

Bm(u)
= d0 + d1

β1

u+ β1
+

µ∑
k=2

mk∑
j=1

dkj

(
βk

u+ βk

)j
,

where the first two coefficients are given by

d0 =

⎧⎪⎪⎨
⎪⎪⎩

0 in case (NS),
µ∏
j=1

(βj )
mj

ν∏
k=1

(αk)
−nk in case (S),

(2.3)

d1 = lim
u↓−β1

(
u+ β1

β1

)
φ+
q (iu)

=
ν∏
j=1

(
αj − β1

αj

)nj µ∏
k=2

(
βk

βk − β1

)mk
, (2.4)

and the rest of the coefficients are given by

dk,mk−j = 1

j ! (βk)mk−j
[
∂j

∂uj

(
An(u)

Bm(u)
(u+ βk)

mk

)]
u=−βk

(2.5)

for k = 2, . . . , µ and j = 0, . . . , mk − 1. Thus, we have obtained the following result.

Corollary 2.1. Consider a Lévy process X with characteristic exponent given by (1.5) and
q ≥ 0. Assume that EX1 < 0 for the case in which q = 0. Then the random variable Mq has
a (generalized) density given by

fMq (x) = d0δ0(dx)+ d1β1 exp(−β1x)+
µ∑
k=2

mk∑
j=1

djk(βk)
j xj−1

(j − 1)! exp(−βkx), (2.6)

where δ0(dx) is the Dirac delta at x = 0, β1, . . . , βµ are as given in Lemma 1.1, and the
coefficients d0, d1, and djk are given in (2.3), (2.4), and (2.5), respectively.

Our results can also be interpreted in terms of the ruin probabilities for the dual process
X̂ = {X̂t = −Xt }t≥0 for the case in which q = 0. More precisely, if we define the ruin
probability by

R(x) = P(there exists t ≥ 0 such that x + X̂t ≤ 0),

from Corollary 2.1 we obtain the explicit formula

R(x) = P(there exists t ≥ 0 such that x −Xt ≤ 0) = P(M0 ≥ x) =
∫ ∞

x

fM0(y) dy,

with fM0 given in (2.6).
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2.1. Ladder process

From (2.2), under case (NS), we now derive the characteristic Lévy exponent κ(q, u) of the
ladder process � = (L−1, H) defined as in [5, p. 157]. With R0 = 0, where R0 = inf{t >
0 : Xt > 0}, then E exp(−qL−1

t − uHt) = e−tκ(q,u), where {L−1
t , Ht } is a two-dimensional

subordinator for t < ζ ≤ ∞ with lifetime ζ . For t ≥ ζ , both components are sent to ∞, which
serves as a cemetery state. With these conventions, we can write

κ(q, u) = k̂ + d1q + d2u+
∫
(0,∞)2

(1 − e−(qx+uy))��( dx, dy), (q, u) ≥ 0, (2.7)

where k̂ ≥ 0 is the killing rate, the {di} are nonnegative drift coefficients, and��( dx, dy) is a
Lévy measure supported on the set (0,∞)× (0,∞) which satisfies the condition∫

min[
√
x2 + y2, 1]��( dx, dy) < ∞.

Now divide both sides of (2.7) by u, and let u tend to ∞. Then, for u ≥ max[ 1
2 , q],

(1 − e−(qx+uy))/u ≤ 2 min[√x2 + y2, 1], and so the integral term vanishes in the limit by
dominated convergence. This yields limu→∞ κ(q, u)/u = d2. Taking the same limit in the
formula φ+

q (iu) = κ(q, 0)/κ(q, u), we find that, for case (NS),

κ(q, 0) = d2
Nq

D
, where

Nq

D
=

∏µ(q)
j=1 (βj (q))

mj (q)∏ν
k=1(αk)

nk
,

with an obvious definition of Nq and D. For q > 0, D > 0, since p(x) ≥ 0. Also, Nq > 0,
since all the other terms are positive.

Not all ladder height processes {Ht } have a positive drift; however, {Ht } is known to have
a strictly positive drift if and only if the Lévy process X can ‘creep’ upwards across any level
x > 0 (cf. [23] for a discussion). Necessary and sufficient conditions for upwards creep have
been found in [26]. However, we only need the sufficient conditions as given in [4]: upwards
creep occurs if (i) σ > 0, (ii) X has bounded variation and positive drift coefficient, or (iii)∫ 0
−1 x�X(dx) = −∞ and

∫ 1
0 x�X(dx) < ∞. In our class of models, case (NS) implies that

we have σ > 0, a positive drift coefficient, or
∫ 0
−1 x�X(dx) = −∞. Since our upwards jump

process has finite intensity, at least one sufficiency condition holds. Now assured that d2 > 0,
we can (and now do) adopt a normalization of the local time such that d2 = 1. We then conclude
from κ(q, u) = κ(q, 0)/φ+

q (iu) that, for case (NS),

κ(q, u) =
∏µ(q)
j=1 (u+ βj (q))

mj (q)∏ν
k=1(u+ αk)nk

, (q, u) ≥ 0. (2.8)

Equation (2.8) is our main result for this section. Holding q ≥ 0 fixed, (2.8) provides a
meromorphic extension of κ(q, u) to the entire complex u-plane. From it, we immediately
obtain the killing rate

k̂ = κ(0, 0) =
∏µ(0)
j=1 (βj (0))

mj (0)∏ν
k=1(αk)

nk
. (2.9)

Under our standing requirement that EX1 < 0 for Lévy processes X that are not killed, there
exists a nontrivial solution β1(0) > 0 and the numerator in (2.9) is strictly positive. This class
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of processes drift to −∞, have a last maximum with probability 1, and a strictly positive killing
rate for the ladder process. (In the alternative, with EX1 > 0, limq↓0 β1(q) = 0. This means
that k̂ = 0 as expected, since there is no last ladder epoch.)

Now, let us compare (2.8) with known results for the so-called spectrally one-sided Lévy
process, i.e. a drift and diffusion component may be present, but the jumps are entirely positive
or negative.

If there are no positive jumps then the pole count ν equals 0 from Lemma 1.1. For case
(NS), the root count is one larger, so µ(q) = 1. Hence, (2.8) reads κ(q, u) = β1(q)+u, where
β1(q) is the sole nonnegative solution to ψ(−iu) = q with (q, u) > 0. This is correct; see
[5, Section VII(2)], where β1(q) is denoted as �(q).

If there are no negative jumps (NNJ), let β0(q) be the sole nonnegative solution toψ(iu) = q

with (q, u) > 0. With the set {βj (q) : 1 ≤ j ≤ µ(q)} previously defined, restricting our class
of models to NNJ means that

ψ(iu)− q = 1

2
σ 2u2 − au+ λ(p̂(iu)− 1)− q =

(
σ 2

2

)∏µ(q)
j=0 (u+ βj (q))

mj (q)∏ν
k=1(u+ αk)nk

(2.10)

withm0(q) = 1. The right-hand side of (2.10) expresses the left-hand side as a rational function
of u, matching the roots, poles, multiplicities, and behavior as u tends to ∞. With NNJ, we
insist that σ 2 > 0 because σ 2 = 0 would force the choice a > 0 to preserve case (NS). But the
combination of σ 2 = 0, a > 0, and NNJ is inconsistent with our standing condition EX1 < 0.
Finally, we appeal to (2.8) to be valid throughout the complex u-plane with the exception of
the isolated poles. Appending u+ β0(q) to both products in (2.8), and using (2.10), yields

κ(q, u) =
∏µ(q)
j=0 (u+ βj (q))

mj (q)

(u+ β0(q))
∏ν
k=1(u+ αk)nk

= 2

σ 2

(
�(u)− q

u+ β0(q)

)
,

using the Laplace exponent �(u) ≡ ψ(iu). This is also correct; see, for example,
[13, Equation (5.4)] or make an easy independent calculation from Fristedt’s formula for κ(q, u)
[5, Corollary VI.10].

In principle, the ladder process jump measure��( dx, dy) can be obtained by the inversion
of (2.7). While this may not be easy, consider the simpler case of the ladder height jump
measure �H(dy), where (2.7) reads as κ(0, u) = k̂ + u+ ∫

(1 − e−uy)�H (dy). Using (2.8)
and (2.9), and letting u tend to ∞, we find that�H(0,∞) < ∞. In other words, prior to being
killed, {Ht } is a Poisson process plus a unit drift with jump intensity

λH ≡ �H(0,∞)

= lim
u→∞

{∏µ(0)
j=1 (u+ βj (0))mj (0)∏ν

k=1(u+ αk)nk
− u−

∏µ(0)
j=1 (βj (0))

mj (0)∏ν
k=1(αk)

nk

}

=
µ(0)∑
j=1

mj(0)βj (0)−
ν∑
k=1

nkαk −
∏µ(0)
j=1 (βj (0))

mj (0)∏ν
k=1(αk)

nk
. (2.11)

This leaves
∫

e−uy�H (dy) = k̂ + u+ λH − κ(0, u). The right-hand side of the last equality
is a rational function of u with poles at u = −αk, k = 1, . . . , ν, pole multiplicities nk , and
decaying as O(1/u) as u tends to ∞. But this also describes the transform p̂(iu) of (1.2)
expressed as a rational function. Hence, by inversion, we see that the ladder height jump

https://doi.org/10.1239/jap/1208358956 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1208358956


126 A. LEWIS AND E. MORDECKI

distribution has essentially the same structure as the distribution of the positive jumps of the
underlying X-process, although the two intensities (λ, λH ) differ. It is also easy to see from
(2.11), recalling the discussion above for no positive jumps, that λH vanishes if λ vanishes.

Similar work for the case of phase-type positive jumps can be found in [22].

2.2. Asymptotic behavior for general Lévy processes

It is interesting to note that the second term d1β1 exp(−β1x) in (2.6) determines the asymp-
totic behavior of the density of the maximum for large values of x in our model (1.5). For the
case in which q = 0, this asymptotic behavior for a general Lévy process whose characteristic
exponent has a purely imaginary root −iβ, β > 0, was obtained in [6] and satisfies

lim
x→∞ P(M0 > x)eβx = C. (2.12)

The constant C given in [6] is difficult to calculate. In our model with characteristic exponent
defined by (1.5) the constant C = d1. The following result gives the constant in (2.12) for
general Lévy models. The proof can be found in Section 3.

Proposition 2.1. Consider a general Lévy process with characteristic exponentψ(u). Assume
that there exists a positive β such that ψ(−iβ) = 0. Then the constant in (2.12) is determined
by

C = lim
u↓−β

(
u+ β

β

)
φ+

0 (iu). (2.13)

To complete the story, we sketch how our general expression (2.13) easily generates known
results for C in spectrally one-sided Lévy models. In both cases we assume that the drift
µ ≡ EX1 < 0 and, for simplicity, that the constant C is not 0 or ∞.

First consider the spectrally negative case. Since the process always attains new maxima
in a continuous manner, form the well-known martingale ξt = exp(izXt − tψ(z)), real
and analytic for z on the negative imaginary axis, where we work throughout the remainder
of this section. Stopping this martingale at t = τx , the first hitting time of x ≥ 0
(justifiable by a limiting argument with Doob’s optional stopping theorem) implies that 1 =
eizx E(exp(−τxψ(z)) 1{τx<∞}). Choose z = −iβ, where ψ(−iβ) = 0 and β > 0 by virtue of
EX1 < 0. Then 1 = eβx E(1{τx<∞}) = eβx P(M0 ≥ x), so C = 1, the known result. Since
the distribution P(M0 ≤ x) is nondefective, then φ+

0 (iu) = β/(u+ β), showing that (2.13) is
correct, although not especially useful in this case.

More interesting is the spectrally positive case, where it is again notationally cleaner to use
the Laplace exponent�(s) = ψ(is). Here s is a real parameter, so that E(exp(−sXt )) = et�(s).
It was originally proved, in [27] and transparently in [12], that

E(exp(−sM0)) = − µs

�(s)
, s ≥ 0. (2.14)

Since, by assumption, ψ(−iβ) = 0 for some β > 0, then (2.14) can be extended to
−β < s < ∞. We can then apply (2.14) to (2.13). Moreover, because the limit C in (2.13)
exists and is not 0, then the 0 of �(s) at s = −β must be simple. This allows us to invoke
L’Hospital’s rule and immediately find that

C = −µ lim
s↓−β

(
s + β

β

)
s

�(s)
= µ

� ′(−β) = −� ′(0)
� ′(−β) = |µ|

µ∗ ,
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where µ∗ is defined to be the drift in the associated process�∗(s) ≡ �(s−β). The result that
C = |µ|/µ∗ for a spectrally positive Lévy process (such that µ < 0 and an associated process
exists with µ∗ > 0) was established in [9] as a consequence of a much lengthier argument.

3. Proofs

Proof of Lemma 1.1. (a) Consider an auxiliary function a(v) = ψ(iv), defined for v ∈
(−α1, 0], that satisfies

(i) a(v) is a real convex analytic function in (−α1, 0) with a(0) = 0;

(ii) a′(0−) = − E(X1) > 0 for the case in which q = 0;

(iii) limv↓−α1 a(v) = ∞.

For the case in which q > 0, the continuity property (i) gives the existence of a negative root
−β1 of the equation a(v) = q. For the case in which q = 0, properties (ii) and (iii) imply that
the function a(v) has an absolute minimum in a certain point v0 ∈ (α1, 0) and that the equation
a(v) = 0 has a root −β1 < v0. In both cases, as a′(−β1) < 0, it is a simple root. Now, for
z = u+ iv in the strip O, the ridge property gives, for z ∈ O,

Re(ψ(z)) ≤ ψ(iv) < q,

giving q − ψ(z) 
= 0 in O. It is also true that ψ(u− iβ1) 
= q if u 
= 0. In the case in which
the equality ψ(u − iβ1) = q holds for some u, denoting by F(dx) the distribution of X1, we
have ∫ ∞

−∞
exp(β1x) dF(x) = exp(ψ(−iβ1))

= eq

= exp(ψ(u− iβ1))

=
∫ ∞

−∞
exp(β1x) cos(ux) dF(x).

We conclude that F(x) can concentrate mass only in the set x = 2πk/u, k ∈ Z, i.e. F(x) is
a lattice random variable, a situation that is excluded by the form of the positive jumps of our
process (that have positive probability of hitting any interval). This implies that −iβ1 is the
only root in the closure of O. This concludes the proof of (a).

We first show part (b) for the case in which p(x) ≡ 0, i.e. when we do not have positive
jumps. Then we have to prove that, in case (S), we have q − ψ(z) 
= 0 for Im(z) < 0 and, in
case (NS), that q − ψ(z) = 0 has exactly one root in the set Im(z) < 0.

First consider case (S). As −X− is a subordinator,

ψ−(z) = iaz+
∫ 0

−∞
(eizx − 1)π−(dx)

for some a ≤ 0. Let z = u+ iv and observe that when v = Im(z) < 0, we have

Re(q − ψ−(z)) = q + av +
∫ 0

−∞
(1 − e−vx cos ux)π−(dx) > q. (3.1)

This means that q − ψ−(z) has no 0s in Im(z) < 0, i.e. we have established that m = 0 in
case (S).
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Now consider case (NS). When −X− is not a subordinator, the equation q − ψ−(z) = 0
has exactly one purely imaginary root in the half-plane Im(z) < 0 if q > 0 or if q = 0 and
E(X1) < 0 (see [5, Section VII.1]). In conclusion, we have established thatm = 1 in case (NS).

To complete the proof of part (b), we consider that the full model (with positive jumps) is
a perturbation of the model just considered, and we prove, with the help of Rouche’s theorem,
that the winding number w = m−n, i.e. the difference between the number of roots minus the
pole count, remains constant when we add the jumps. To do this, let

f (z) = q + λ− ψ−(z) = q + λ− iaz+ 1

2
σ 2z2 +

∫ 0

−∞
(1 + izh(x)− eizx)π−(dx),

g(z) = −λp̂(z),
and observe that f = 0 is the equation considered previously (now with q + λ instead of q),
and f + g = q − ψ(z) = 0 is the equation under consideration, the full model.

The idea is then to establish that |g| < |f | on a contour of the form

{z = reiθ , π ≤ θ ≤ 2π} ∪ {Im(z) = 0, r ≤ |z| ≤ R} ∪ {z = Reiθ , π ≤ θ ≤ 2π} (3.2)

with 0 ≤ r < R (small r and large R), contains all the poles of q − ψ , in order to show that
the winding numbers of f and f + g = q − ψ coincide. To verify that |g| < |f | on (3.2), we
proceed by steps.

Step 1. Assume that q > 0. We prove that |g| < |f | when Im(z) = 0 for both case (S) and
case (NS). Let z = u+ iv, and observe that, owing to the fact that a distribution with rational
transform is nonlattice (as it has density), we know that p̂(u) 
= 1 (see [21, Lemma I.3.2]). So

|g(u)| < λ if u 
= 0.

On the other side,
|f (u)| ≥ Re(f (u)) ≥ f (0) = λ+ q > λ,

completing the proof for the case in which r = 0.
Step 2. Assume that q = 0. The preceding argument does not work for the case in which

u = 0, when |g(0)| = λ. But, in this case the condition

EX1 = a +
∫ −1

−∞
xπ−(dx)+ λ

∫ ∞

0
xp(x) dx < 0

ensures that
f ′(i0−) > g′(i0−).

As the limit in the derivative is taken with z → 0 and Im(z) < 0, this tells us that there exists a
small enough r > 0 such that the inequality |f (z)| > |g(z)| holds for z = reiθ , π ≤ θ ≤ 2π .
This means that in this case the contour should have a modification of the form z = reiθ , π ≤
θ ≤ 2π , to exclude the point z = 0.

Step 3. In the case in which σ > 0 let us now verify that, for big enough R,

|g(z)| < |f (z)| when z = Reiθ , π ≤ θ ≤ 2π. (3.3)

To begin with, note that
lim|z|→∞ g(z) = −λ lim|z|→∞ p̂(z) = 0. (3.4)
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As, by dominated convergence, we obtain

lim|z|→∞

∫ 0

−∞
eizx − 1 − izh(x)

|z|2 π−(dx) = 0,

we conclude that f (z) = −(σ 2/2)z2 + o(|z|2) when Im(z) < 0. Taking (3.4) into account, we
obtain (3.3).

Step 4. Now let us consider the case in which σ = 0. In case (S) (3.1) gives |f | > λ, which
ensures that condition (3.3) holds. Now consider case (NS). In this situation we know that∫ 0

−1
xπ−(dx) = −∞.

This ensures the existence of c ∈ (−1, 0) such that

ac = a −
∫ c

−1
xπ−(dx) > 0.

Now consider

ψ−(z)
iz

= ac +
∫ 0

c

eizx − 1 − izx

iz
π−(dx)+

∫ c

−∞
eizx − 1

iz
π−(dx).

We will consider |z| → ∞ with Im(z) < 0. It is clear that

lim|z|→∞

∣∣∣∣
∫ c

−∞
eizx − 1

iz
π−(dx)

∣∣∣∣ ≤ lim|z|→∞
2

∫ c
−∞ π−(dx)

|z| = 0.

Furthermore, we check that, with x < 0,

Re

(
1 + izx − eizx

iz

)
=

∫ 0

x

Re(eizt − 1) dt < 0,

to obtain
|f (z)|

|z| ≥ Re

(−f (z)
iz

)

= ac −
∫ c

0
Re

(
1 + izx − eizx

iz

)
π−(dx)+ o(1)

≥ ac + o(1). (3.5)

As ac > 0, in view of (3.4), we obtain |g| < |f | over Reiθ , 0 ≤ θ ≤ π , for big enough R.
This concludes the proof of part (b).

In order to prove part (c), it is enough to verify that, for each j = 1, . . . , n, the equation
q − ψ(z) = 0 has nj roots, all converging to βj (0) as q tends to 0.

In order to do this, take arbitrarily small δ and consider the disk D = D(βj , δ) with center
βj and radius δ. In particular, δ is small enough such that the equation q − ψ(z) = 0 has the
only root βj in the closure of D, and D is contained in Im(z) > 0. Consequently, there exists
q0 > 0 such that

q0 < inf{|ψ(z)| : z ∈ ∂D}.
From this and Rouche’s theorem, we obtain | − q| < |ψ(z)| on ∂D, and the number of roots of
q − ψ(z) and ψ(z) on D coincide. This concludes the proof of Lemma 1.1.
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Remark 3.1. As ac > 0 is arbitrary, the result in (3.5) implies that

lim
Im(z)<0, |z|→∞

ψ−(z)
|z| = ∞.

This fact was obtained in [8] for the case in which Im(z) = 0.

Proof of Theorem 2.1. We begin by taking the logarithm of (1.16) when Im(z) = −v, to
obtain

log
q

q − ψ(z)
= ψM(z)+ ψI (z). (3.6)

We show that∫ −iv+∞

−iv−∞
iu

z(z− iu)
ψI (z) dz = 0,

∫ −iv+∞

−iv−∞
iu

z(z− iu)
ψM(z) dz = 2π iψM(iu).

Observe that these two equalities, in view of (3.6), are equivalent to (2.1) and their verification
concludes the proof of the theorem.

Consider then, for fixed v ∈ (0, β1), the line segment

IR = {z = −iv + u, |z| ≤ R},

the arcs

C+
R = {|z| = R, Im(z) ≥ −v}, C−

R = {|z| = R, Im(z) ≤ −v},
and the closed contours

UR = C+
R ∪ IR, LR = C−

R ∪ IR. (3.7)

First observe that∮
LR

iu

z(z− iu)
ψI (z) dz = 0,

∮
UR

iu

z(z− iu)
ψM(z) dz = 2π iψM(iu).

The first statement holds because the integrand is analytic inside the closed integration contour,
the second statement holds by the residue theorem. In the latter case the integrand has two
poles inside the contour UR . The first residue vanishes, as ψM(0) = 0, and the second residue
gives the result.

It remains to check that the integrals in both arcs vanish as R tends to ∞. Observe that in
these arcs z = Reiθ and dz = iz dθ for values of θ in the respective intervals θ ∈ �+

R and
θ ∈ �−

R . For the first arc, we have

∫
C−
R

iu

z(z− iu)
ψI (z) dz =

∫
�−
R

i dθ
iu

(z− iu)

∫ 0

−∞
(eizx − 1)πI (dx).

The integrand can be bounded by

|eizx − 1|
|z− iu| ≤ |zx| ∧ 2

|z| ≤ |x| ∧ 2

R
(3.8)
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for |z| = R big enough. So,∣∣∣∣
∫
C−
R

u

(z− iu)
ψI (z) dz

∣∣∣∣ ≤
∫
�−
R

dθ
∫ 0

−∞

∣∣∣∣u(eizx − 1)

z− iu

∣∣∣∣πI (dx)
≤ uπ

∫ 0

−∞

(
|x| ∧ 2

R

)
πI (dx)

→ 0 as R → ∞,

by dominated convergence. Observe that the bounds obtained in (3.8) justify the change of
order in the integrals.

The integral in C+
R is similar, the main difference being the bound of the integrand. As

|z| − u ≤ |z− iu|, we obtain

|eizx − 1|
|z− iu| ≤ |zx| ∧ (evx + 1)

|z| − u
≤ 2

(
|x| ∧ evx + 1

R

)

for |z| = R big enough also. In this case the Lebesgue dominated convergence theorem works
owing to the fact that

∫ ∞
1 evxπM(dx) < ∞, a condition which is equivalent to E exp(vMq) <

∞. This concludes the proof.

Proof of Theorem 2.2. First consider the case in which q > 0. By Lemma 1.1 we know
that the equation q − ψ(z) = 0 has µ different roots −iβ1,−iβ2, . . . ,−iβµ with respective
multiplicities 1,m2, . . . , mµ and root countm = 1 +m2 + · · · +mµ equal to n in case (S) and
equal to n+ 1 in case (NS).

Let

G+
q (z) =

ν∏
k=1

(
z+ iαk

iαk

)nk µ∏
j=1

(
iβj

z+ iβj

)mj
,

and define G−
q (z) by the relation

q

q − ψ(z)
= G+

q (z)G
−
q (z). (3.9)

As G+
q is an infinitely divisible characteristic function with support on [0,∞), Rogozin’s

factorization (1.16) suggests that this is the correct factorization. If we knew that G−
q (z) is

an infinitely divisible characteristic function with support on (−∞, 0], the uniqueness of the
factorization in (1.16) would give the answer. As we do not have this information, we apply
Theorem 2.1. From definition (3.9) we observe that

(i) G−
q (0) = 1;

(ii) G−
q (z) is a nonvanishing analytic function on the half-plane Im(z) < 0 and is continuous

on Im(z) ≤ 0;

(iii) G−
q (z) is a bounded function on the half-plane Im(z) ≤ 0, as follows from the proof of

Lemma 1.1.

These properties ensure that both integrals

I±(u) = 1

2π i

∫ −iv+∞

−iv−∞
iu

z(z− iu)
log(G±

q (z)) dz
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are convergent. Based on (3.9), we compute the positive Wiener–Hopf factor integral in
Theorem 2.1 by

φ+(iu) = E(exp(−uMq))

= exp

(
1

2π i

∫ −iv+∞

−iv−∞
iu

z(z− iu)
log

(
q

q − ψ(z)

)
dz

)
= exp(I+(u)+ I−(u)).

Equation (2.2) will then follow from the evaluation of the integrals

I+(u) = logG+(iu), I−(u) = 0. (3.10)

Consider the contours UR and LR defined in (3.7). In order to obtain the first integral in (3.10),
observe that

1

2π i

∫
UR

iu

z(z− iu)
log(G+

q (z)) dz = Res

[
iu

z(z− iu)
log(G+

q (z)); z = iu

]
= logG+

q (iu),

where Res[·] is the residue of the corresponding pole. The first result in (3.10) follows because∫
C+
R

iu

z(z− iu)
log(G+

q (z)) dz → 0, R → ∞,

in view of (iii). The second result in (3.10) follows similarly. In fact, we have∫
LR

u

z(z− iu)
log(G−

q (z)) dz = 0,

as the integrand is analytic in the interior of the contour, and∫
C−
R

iu

z(z− iu)
log(G+

q (z)) dz → 0, R → ∞,

also in view of (iii). This concludes the verification of (3.10) and the proof of the theorem for
the case in which q > 0.

The case in which q = 0 is proved by approximation as follows. Observe that (1/q)τ(1) has
exponential distribution with parameter q if τ(1) has exponential distribution with parameter
1. As τ(q) → ∞ almost surely (a.s.) when q → 0, this shows that we can find exponential
times such that Mq → M0 a.s. when q → 0. For q > 0, we have just obtained

E(exp(−uMq)) =
ν∏
k=1

(
u+ αk

αk

)nk µ(q)∏
j=1

(
βj (q)

u+ βj (q)

)mj (q)
= An(u)

Bm,q(u)
.

We take limits as q tends to 0 and apply (c) in Lemma 1.1 to obtain

E(exp(−uM0)) = An(u)

Bm,0(u)
,

concluding the proof of Theorem 2.2.
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Lemma 3.1. Consider a random variable M ≥ 0 with distribution F(x) such that

P(M > x) ∼ Ae−βx, x → ∞,

for some β > 0. Then its characteristic function

φ(z) =
∫ ∞

0
eizxF (dx)

is analytic in the complex half-plane Im(z) > −β. Moreover,

lim
z↓−iβ

(
z+ iβ

iβ

)
φ(z) = A. (3.11)

Proof. The analyticity statement is a well-known consequence of the fact that F(dx) is of
exponential type. The statement about the pole is established in Proposition 3.1 of [16].

As a consequence of Lemma 3.1, the asymptotic constant C in general Lévy models under
the conditions of Proposition 2.1 is given by (3.11), which in our case reads exactly as in (2.13).

Proof of Proposition 2.1. The proof is based on Lemma 3.1.
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