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Abstract

We give a new necessary and sufficient condition for an iterated function system to satisfy the
deterministic chaos game. As a consequence, we give a new example of an iterated function system
which satisfies the deterministic chaos game.
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1. Introduction

As is well known, fractals may appear as attractors for iterated function systems
(IFSs). In this way, essentially contractive iterated function systems are simple tools
to construct fractals. The main technique for studying essentially contractive iterated
function systems is to apply the so-called coding map. However, this technique does
not work for many interesting cases. The aim of the present work is to study iterated
function systems without a coding map.

We begin by introducing definitions and notations for iterated function systems and
then formulate our main result. Throughout this paper, X will stand for a compact
metric space with metric d and F will stand for a finite family of continuous maps
f1, . . . , fk on X.

We denote by 〈F 〉+ the semigroup generated by these maps. We call the action of
the semigroup 〈F 〉+ on X the iterated function system associated to F and we denote
it by IFS(X;F ) or IFS(F ).

Let us consider the spaces Σ+
k = {1, . . . , k}N of sequences of symbols from the finite

alphabet {1, . . . , k}. For every ` ∈ N, set Σ`k = {1, . . . , k}`, whose elements are the finite
words. Following [11, 17], we say that a sequence (ωi)∞i=1 ∈ Σ+

k is disjunctive if it
contains all possible finite words as its subsequences. The sequence ω is disjunctive if
and only if it has a dense orbit under the shift map, that is,

∀` ∀ρ ∈ N` ∃n ∈ N : (ωn+1 . . . ωn+`) = ρ.

We denote the set of all the disjunctive sequences by Ω.

c© 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 $16.00

464

https://doi.org/10.1017/S0004972716000289 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000289


[2] A new example of a deterministic chaos game 465

For any sequence ω = (ω1ω2 . . . ωn . . .) ∈ Σ+
k , set f 0

ω := Id and

f n
ω(x) = f n

ω1...ωn
(x) = fωn ◦ f n−1

ω (x), ∀n ∈ N.

If ω = (ω1ω2 . . . ωn . . .) is a sequence in Σ+
k , then the corresponding chaos game orbit

[1] of a point x0 ∈ X is a sequence {xn}
∞
n=0 defined iteratively by xn = fωn (xn−1) for

n = 1, 2, . . . . A chaos game orbit is also called a fibre-wise orbit and denoted by
O+(x, ω) = { f n

ω(x)}∞n=0.
Now consider the hyperspace K(X) consisting of all nonempty compact subsets of

X endowed with the Hausdorff metric dH . It is known that if X is compact, so is K(X)
(see [15]). Associated with the set F , we define the Hutchinson operator F = FF as
follows:

F : K(X)→K(X), F(Θ) =

k⋃
i=1

fi(Θ).

Simplify F({x}) to F(x) for x ∈ X. A nonempty closed subset A of X is said to be a
strict attractor of IFS(X;F ) if there is an open neighbourhood U of A so that, in the
Hausdorff metric space (K(X), dH),

lim
n→∞

Fn(K) = A for every compact set K ⊂ U.

We remark that it is usual to include in the definition of attractor that F(A) = A
(cf. [4, Definition 2.2]). Denote by B(A) the basin of the strict attractor. That is,
the union of all open neighbourhoods U of A such that the above convergence holds.

The simple and main tool for approximation of attractors is the chaos game. We
will focus on a definition of a kind of chaos game which is independent of start points.
We say that a strict attractor A of IFS(X;F ) satisfies the deterministic chaos game if,
for every ω ∈ Ω,

A ⊂ O+(x, ω) for all x ∈ B(A).

It is obvious that if a strict attractor A of IFS(X;F ) satisfies the deterministic chaos
game, then for every x ∈ B(A), i ∈ N and every ω ∈ Ω, A ⊂ O+( f i

ω(x), σi(ω)), where
σ : Σ+

k → Σ+
k is the shift map. Indeed, the assertion follows from the following

facts: F(B(A)) ⊆ B(A) (see [3]), σ(Ω) = Ω and IFS(X;F ) satisfies the deterministic
chaos game. Roughly speaking, a fibre-wise orbit simulates the attractor by drawing
accumulation points.

Remark 1.1. From [2, 6–8, 14], the deterministic chaos algorithm holds in the
following five cases:

(1) strict attractors of IFSs on Hausdorff topological spaces with certain contractions
(such as weakly hyperbolic, strongly fibred, well-fibred, contractible, . . .);

(2) strict attractors of nonexpansive or equicontinuous IFSs on metric spaces;
(3) forward and backward minimal IFSs of homeomorphisms of the circle;
(4) IFSs on a compact metric space having a minimal map; and
(5) strict attractors of symmetric IFSs.
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Before adding another and different class of systems to this list, we note the
following equivalency to the deterministic chaos game.

Proposition 1.2 [8]. A strict attractor A of IFS(X;F ) satisfies the deterministic chaos
game if and only if for every open set I which has a nonempty intersection with the
attractor A, there is a finite word (ω1 . . . ωt) such that

for each x ∈ A there is i ∈ {0, . . . , t} so that fωi ◦ · · · ◦ fω1 (x) ∈ I.

We say that a strict attractor A of IFS(X; F ) generated by a family of
homeomorphisms F = { f1, . . . , fk} of X satisfies the vee-chaos game if for every open
set I which has a nonempty intersection with the attractor A, there are α, β in Σ+

k and
t, s ∈ N and

∀x ∈ B(A),
[( t⋃

i=0

{ f i
α(x)}

)
∪

( s⋃
j=0

{g j
β(x)}

)]
∩ I , ∅, (1.1)

where gi = f −1
i for 1 ≤ i ≤ k.

Now we can state the main results of this paper.

Theorem 1.3. A strict attractor of an IFS on a compact metric space satisfies the
deterministic chaos game if and only if it satisfies the vee-chaos game.

Corollary 1.4. There exists an IFS which satisfies the deterministic chaos game and
is not included in the cases (1)–(5) of Remark 1.1.

2. Proof of the main theorem

Now we prove the main result of the paper.

Proof of Theorem 1.3. Clearly, if A is a strict attractor which satisfies the
deterministic chaos game, then A satisfies the vee-chaos game.

Conversely, consider a strict attractor A of an IFS(X;F ) generated by a family
of homeomorphisms F = { f1, . . . , fk} of X, where A satisfies the vee-chaos game.
By Proposition 1.2, the attractor A satisfies the deterministic chaos game if for any
nonempty open set I ⊂ X with A ∩ I , ∅, there exist t ∈ N and ρ ∈ Σ+

k such that

∀x ∈ B(A),
( t⋃

i=0

{ f i
ρ(x)}

)
∩ I , ∅.

Suppose that I is an open set which has a nonempty intersection with the attractor A.
By the assumption, there are finite words α, β in Σ+

k and t, s ∈ N satisfying (1.1) with
gr = f −1

r for 1 ≤ r ≤ k.
Take z = fβ1 ◦ · · · ◦ fβs (x). Since x ∈ B(A) and F(B(A)) ⊂ B(A), z ∈ B(A). Thus,[( t⋃

i=0

{ f i
α(z)}

)
∪

( s⋃
j=0

{g j
β(z)}

)]
∩ I , ∅.
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Now define ρ by
(βsβs−1 . . . β1α1α2α3 . . .).

To complete the proof, we claim that

∀x ∈ B(A) ∃i ∈ {0, . . . , t + s}, f i
ρ(z) ∈ I.

To see this, we consider the following two cases.

Case 1. (
⋃t

i=0{ f
i
α(z)}) ∩ I , ∅.

Since (
⋃t

i=0{ f
i
α(z)}) ∩ I , ∅, we have f i

α(z) ∈ I for some i ∈ {1, . . . , t}. On the other
hand, z = fβ1 ◦ · · · ◦ fβs (x), which implies that

fαi ◦ · · · ◦ fα1 (z) = fαi ◦ · · · ◦ fα1 ◦ fβ1 ◦ · · · ◦ fβs (x) = f s+i
ρ (x) ∈ I

for some i in {1, . . . , t}.

Case 2. (
⋃s

j=0{g
j
β(z)}) ∩ I , ∅.

Since (
⋃s

j=0 g j
β(z)) ∩ I , ∅, there is j ∈ {1, . . . , s} so that g j

β(z) ∈ I. Thus,

gβ j ◦ · · · ◦ gβ1 (z) = gβ j ◦ · · · ◦ gβ1 ◦ fβ1 ◦ · · · ◦ fβs (x) ∈ I.

However, gβr = f −1
βr

for r = 1, . . . , j, which implies that

fβ j+1 ◦ · · · ◦ fβs (x) = f s− j
ρ (x) ∈ I.

This completes the proof of the theorem. �

3. The new example

We complete the paper with the proof of Corollary 1.4. To this end, we need to
recall several definitions.

Let f : T2 → T2 be a generalised north–south pole diffeomorphism on the torus T2

(see [16] for more details about the north–south pole diffeomorphism). By this we
mean that the nonwandering set, Ω( f ), of f consists of one fixed source, q, one fixed
sink, p, and saddle-type periodic orbits. Let S be the set of all the saddle-type periodic
points of f . For simplicity, we assume that S consists of two saddle points a and
b so that W = W s(S ) ∪Wu(S ) ∪ {p, q} consists of four circles: two disjoint circles
following the meridian direction and two other disjoint circles following the parallel
directions. Figure 1 shows a ‘typical’ diagram of such a diffeomorphism. Notice that
for every x ∈ T2 \W, we have f n(x)→ p and f −n(x)→ q as n→∞.

Furthermore, following [8], we remark that A ∈ K(X) is a quasi-attractor of the
IFS generated by F if F(A) = A and A = {h(x)|h ∈ 〈F 〉+} for all x ∈ A. In particular,
if X is a quasi-attractor of the IFS generated by F , then we say that the IFS(X;F ) is
minimal or 〈F 〉+ acts minimally on X. Also, we say that a quasi-attractor A of the IFS
is well-fibred if for every compact set K in A so that K , A and for any open coverU
of A, there exist g ∈ Γ and U ∈ U such that g(K) ⊂ U.
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Figure 1. Diagram of the diffeomorphism f .

One of the tools which we need here is the ‘blending region’, which is the main tool
to produce C1-robust minimal actions, that is, actions whose minimality persists under
small C1-perturbations on the generators (see [9, 10, 12, 13]). An open subset ∆ of a
manifold M is called a blending region for a semigroup 〈F 〉+ of diffeomorphisms on
M if there exist h1, . . . , hk ∈ 〈F 〉

+ and an open set D ⊂ M such that ∆ ⊂ D and:

(1) ∆ ⊂ h1(∆) ∪ · · · ∪ hk(∆);
(2) hi : D→ D is a contracting map for i = 1, . . . , k.

The construction of our example is based on the following facts: existence of a C1-
blending region for a semigroup 〈F 〉+ of diffeomorphisms on the 2-torus and existence
of an irrational translation in 〈F 〉+. This implies existence of a blending region and the
possibility of replacing an irrational translation by rational ones. All these phenomena
occur sufficiently close to our original system.

Now we ready to prove Corollary 1.4.

Proof of Corollary 1.4. Consider a generalised north–south pole diffeomorphism f
on the torus and two translations R(λ,0) : T2 → T2, R(λ,0)(x, y) = (x + λ, y) and R(0,κ) :
T2 → T2, R(0,κ)(x, y) = (x, y + κ) with λ, κ ∈ R \ Q.

Since the IFS generated by f ,R(λ,0) and R(0,κ) on T2 has minimal elements, according
to [7, Proposition 1], it satisfies the deterministic chaos game. Moreover, it is not
difficult to see that this IFS is C1-robustly minimal. Indeed, one can construct a
blending region around the attracting fixed point and then apply [5, Theorem 6.2].

Thus, there are rational numbers ϕ and ψ close to λ and κ, respectively, so that
the IFS(T2; f1, f2, f3) is minimal, where f1 = f , f2 = R(ϕ,0) and f3 = R(0,ψ). To apply
Theorem 1.3, it is sufficient to show that, for every pair of open neighbourhoods I of
the sink p and J of the source q, there exist α′, β′ in Σ+

k and t, s ∈ N so that, for all
x ∈ T2,

f t
α′(x) ∈ I or gs

β′(x) ∈ J, (3.1)

where gi = f −1
i for 1 ≤ i ≤ 3.

Indeed, since IFS(T2; f1, f2, f3) and IFS(T2; g1, g2, g3) are minimal and I and J
can be chosen sufficiently small, for every open set U there exist h ∈ 〈 f1, f2, f3〉+
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and h′ ∈ 〈g1, g2, g3〉
+ with

h(I) ⊂ U and h′(J) ⊂ U.

That is equivalent to the following: there exist sequences α and β with

αi = α′i and β j = β′j for 0 ≤ i ≤ t, 0 ≤ j ≤ s,

and ` ∈ N so that for every x ∈ T2,

f t+`
α (x) ∈ U or gs+`

β (x) ∈ U.

Now suppose that I and J are sufficiently small open neighbourhoods around p and
q, respectively. Take c1 = W s(b) ∪ {b, q} and c2 = W s(a) ∪ {a, q}. Clearly, for every
x ∈ T2 \ (c1 ∪ c2), there exists n ∈ N so that f n

1 (x) ∈ I. Hence, for strips C1 and C2

around c1 and c2, respectively, there exists n0 ∈ N so that for every x outside of
these strips and every n > n0, f n

1 (x) ∈ I. Notice that n0 →∞ as dH(c1,C1)→ 0 and
dH(c2,C2)→ 0.

It is not difficult to see that the IFS(c2; g1|c2 , g2|c2 ) is forward and backward
minimal. Thus, by [8], the circle c2 satisfies the deterministic chaos game for the
IFS(c2; g1|c2 , g2|c2 ). By shrinking C1 and C2, if necessary, dH(c1,C1) and dH(c2,C2)
are sufficiently close to zero. Thus, there is a finite sequence (β1 . . . βs′) so that for
every x ∈ C2, g j

β1...βs′
(x) ∈ J for some j = 0, 1, . . . , s′. Moreover, we can choose the

eigenvalue of f at points p and a so that gs′
β1...βs′

(C1) ∩ (Wu(a) ∪ {a, p}) = ∅. Take
(βs′+1 . . . βs′′) = (1 . . . 1)︸  ︷︷  ︸

(s′′−s′)-times

so that dH(gs′′−s′
βs′+1...βs′′

(gs′
β1...βs′

(C1)), c1) is sufficiently close to

zero.
Similarly, the IFS(c1; g1|c1 , g3|c1 ) is also forward and backward minimal. Hence,

there is a finite sequence (βs′′+1 . . . βs) so that for every x ∈ C1, g j
βs′′+1...βs

(x) ∈ J for
some j = 0, 1, . . . , s − s′′. In particular, since gs′′−s′

βs′+1...βs′′
(gs′
β1...βs′

(C1)) is sufficiently close

to c1 for every y ∈ gs′′−s′
βs′+1...βs′′

(gs′
β1...βs′

(C1)), g j
βs′′+1...βs

(y) ∈ J for some j = 0, 1, . . . , s − s′′.

Therefore, g j
β1...βs

(x) ∈ J for every x ∈ C1 ∪ C2 and for some j = 0, 1, . . . , s. This
completes the proof of our claim at (3.1).

By Theorem 1.3, T2 satisfies the deterministic chaos game for the IFS(T2; f1, f2, f3).
Clearly, IFS(T2; f1, f2, f3) does not contain any minimal element and it is not a
nonexpansive and equicontinuous IFS (by [14]). Also, it is not well-fibred (indeed,
it suffices to consider a compact neighbourhood of a circle that contains p and the
unstable manifold of one saddle).
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