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ABSTRACT. Observations of glacier flow and explanations of its origin started as early as the 18th
century. Several mechanisms were suggested before gravity-driven viscous flow became the accepted
theory of glacier flow in the 1950s, the early years of the Journal of Glaciology. Since the viscosity of ice
is strongly temperature-dependent, the topic of glacier and ice-sheet dynamics became essentially a
fluid-dynamical problem. The availability of growing computing power turned the field of glacier
mechanics and thermodynamics into a field of numerical modelling with increasing sophistication.

INTRODUCTION
People have interacted with glaciers since historical times;
either the glaciers posed a threat to settlements or they
hindered mobility in mountainous terrain. Although glaciers
seem to be static phenomena at first glance, their waxing and
waning over long time periods was soon recognized. The
understanding of the physics of glaciers changed from
intuitive interpretations of individual observations on glaciers
in the late 18th century to peculiar ideas about extrusion flow
as late as the mid-20th century.

Shortly after the inception of the Journal of Glaciology, in
January 1947, physicists started to enter the field of glacier
mechanics and thermodynamics. These activities initiated a
new chapter in physical and theoretical glaciology. With the
availability of increasing computational power, the large
body of knowledge that has developed since those pioneer-
ing days can now be condensed into ever more sophisticated
numerical models of the many aspects of the thermomech-
anics, dynamics and stability of glaciers and ice sheets.

THE BEGINNING
Horace-Bénédict de Saussure (1740–99) observed sliding of
glaciers and related the sliding motion to the action of water
flowing at the bottom (Clarke, 1987, and references therein).
With this, de Saussure may have been the first to hypothe-
size a connection between glacier motion (sliding) and the
occurrence of water at its base.

Bernhard Friedrich Kuhn (1762–1825) was among the
early researchers who tried to understand the working of
glaciers (Röthlisberger, 1987). He was probably the first to
combine thermodynamics and mechanics to explain the
motion of glaciers. Although our present knowledge
indicates it is not very realistic, it is interesting to look at
Kuhn’s (1787) theory in some detail, partly in his own words,
albeit translated from his old-fashioned German. He was
already aware of some seasonal variation of the mechanical
activities in a glacier:

At the onset of the cold season it becomes slowly more
quiet; the vaults close themselves and the ice sinks back

to the ground. Also the thundering and banging, which is
so striking for the visitors, becomes more seldom, and is
no longer heard in the middle of the winter.

Kuhn experienced the ‘thundering’ and ‘banging’ in the
summer on the glaciers of Grindelwald in the Bernese Alps,
and realized that

from 1770 through 1778 both Grindelwald glaciers
increased with fast paces; and each time at the end of the
beautiful season, that they approached the surrounding
scattered objects by 20–30 and more Klafter (�1.8m),
and most astonishing, their expansion was larger during
summer than during winter.

He related the motion of the glacier to the heat collected in
summer by the rocks surrounding the glaciers and subse-
quently flowing underneath the ice:

Much more it seems that its true cause lies in the heating
by the sun of the ground in the neighbourhood of the
glaciers. The fire material, set on motion by the
approaching (of the sun), spreads to all sides, and flows
through the surface of the ground towards the glaciers . . .

The heat acts as long on the base of the glaciers until the
entire weight of the ice masses only rests on pillars here
and there. Even these will be destroyed by the con-
tinuously working heat flux. If in the end they are no
longer able to carry the load, then necessarily the masses
must collapse. Now, the glaciers rest always more or less
on slopes of the mountains or on steep sloping steps of
the valleys; if then the supports give way to the weight,
the mass, together with the sinking, moves forwards as
far down the slope until an equilibrium between force
and resistance is reached again.

Kuhn’s understanding of the motion of the ice in glaciers
may have been the weakest (Röthlisberger, 1987) part of his
understanding of glaciers in general. Even at that time, he
realized that the glaciers had once been much larger and
had reached far down into the valleys. He may have been
one of the discoverers of ice-age glaciations in the Alps.
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Johann Jakob Scheuchzer (1672–1733), Johann von
Charpentier (1786–1855) and Louis Agassiz (1807–73) put
forward the ‘dilatation theory’ to explain the motion of
glacier ice by the forces exerted by the expansion of water
freezing in fissures and capillary tubes in the ice. James
David Forbes (1809–68) opposed this theory, based on his
own observations on Mer de Glace, France, where he
observed the ice to flow fastest in the centre of the glacier.
He concluded that, if the dilatation theory were true, then
the flow would be greatest at sunset and near the margins.
He was perhaps the first to propose viscous flow for glacier
ice. (For more details see Clarke, 1987, and references
therein.) Systematic observations of the motion of glaciers
were conducted during the 19th century on Unteraar-
gletscher and Rhonegletscher, Switzerland. Several coloured
stone rows across Rhonegletscher were surveyed several
times after 1894 (Mercanton, 1916), and visibly demon-
strated the differential motion of the ice across the glacier.

Demorest (1942) recognized several modes of motion of
the ice by distinguishing

. . . discontinuous fracture and shearing in which differ-
ential movements occur along discrete planes, whereas
at depth the ice is plastic and motion is by plastic flow of
a streamline nature, . . .

and further divided streamline flow into pressure-controlled
extrusion and drainage-controlled gravity flow (Waddington,
2010).

PHYSICAL GLACIOLOGY
In the mid-20th century, investigations began to discover the
flow properties of the ice. The laboratory experiments of
Glen (1952) resulted in the flow law, already anticipated by
Perutz (1950a,b),

_� ¼ �

B

� �n
, ð1Þ

where _� is the shear rate, � the shear stress and B and n are
constants. Measurements of the closure of boreholes and

tunnels and subsequent theoretical analyses calibrated and
confirmed the power-law formulation. Nye (1953) applied
the flow law to field observations in the Jungfraufirn, Swiss
Alps (Gerrard and others, 1952), and the observed contrac-
tion rates of ice tunnels on Skauthöre glacier, Norway
(McCall, 1952), and Z’Mutt and Arolla glaciers, Swiss Alps
(Haefeli, 1951, 1952; Haefeli and Kasser, 1951).

Nye (1953) computed an exact solution for the stress/
strain-rate relation for the closure of cylindrical and spher-
ical holes in glacier ice. Applying the measurements of the
tunnels he obtained values of

n ¼ 3:07, B ¼ 4:89�108 dynes cm�2 s1=n: ð2Þ
These studies were the turning point for the increasing
acceptance of the idea that glacier ice behaves like a quasi-
viscous fluid, much like metals and other polycrystalline
materials. Thus, the understanding of glacier flow became a
problem in fluid mechanics with a non-Newtonian material.

In the 1950s, the rigorous mathematical descriptions of
physics started to enter glaciology. This can be seen from the
‘Bader peak’, the first ‘Nye peak’ and the ‘Robin and
Röthlisberger peak’, presented by Garry Clarke (1987) in a
memorable talk, ‘A short history of scientific investigations
on glaciers’, given in the special session on the occasion of
the 50th anniversary of the International Glaciological
Society during the Second Symposium on Remote Sensing
in Glaciology in 1986, held at the University of Cambridge,
UK. The peaks mark large peaks in the number of equations
per 100 pages of the Journal of Glaciology, compared to the
relatively steady number of maps (Fig. 1). The 1950s also
saw the onset of papers in the Journal of Glaciology
combining maps and equations (e.g. Haefeli, 1952; Röthlis-
berger, 1955).

The early attempts to describe glaciers in terms of
mathematical physics were essentially guided by the need
for simplifications. The style of these early works was
influenced by the highly developed analytical methods used
in contemporary fluid mechanics. The mapping of the
complexities of the natural systems considered was a
necessary step of the preceding research. However, only

Fig. 1. Maps and equations in the Journal of Glaciology. The peaks are labelled to indicate the main contributors to each peak: B (Bader,
1950), N1 (Nye, 1952a,b), RR (Robin, 1955; Röthlisberger, 1955), N2 (Nye, 1959a,c) and HL (Hutter and others, 1981; Lliboutry and
Reynaud, 1981). (From Clarke, 1987.)
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the simplest versions of the systems lead to mathematical
problems that can be treated analytically or that yield simple
numerical solutions. It is only in recent times that computing
power and, triggered by it, experience in numerical
mathematics allows us to attack more and more complex
problems in glacier dynamics. In this sense, the 1950s saw
the pioneers who converted glaciology into a physical
science, in particular in the treatment of glacier flow (Nye,
1951, 1952b, 1959c) and thermodynamics (Robin, 1955).

Nye (1951, 1952b) first described the fundamental
patterns of the flow of ice in glaciers and ice sheets. He
exploited symmetries in specific examples of geometries to
obtain solutions of the corresponding differential equations.
However, these examples already illustrated the most
important patterns of ice flow that occur in valley glaciers
and ice sheets. The parallel-sided slab (thin-layer) solution
for the difference between the ice velocities u0 at the ice
surface and u at depth d , measured perpendicular to the
surface of the slab, can be given analytically,

u0 � u ¼ K
n þ 1

sinn � d nþ1 , ð3Þ

where (in Nye’s terminology) K ¼ ð�g=BÞn, B and n are
constants of the flow relation, and �, g and � are the ice
density, the acceleration due to gravity and the inclination
angle of the slab, respectively. Exploiting the symmetries of
an infinitely deep channel of width d yields the same basic
equations as for ice flow in a slab, except that the coordinate
axes are exchanged.

Another example that approximates a valley glacier even
more realistically is a channel defined by a half-circular
cylinder. Here again, the corresponding solution of the
equations corresponds to the solution for the parallel slab,
Equation (3), except for an additional factor ð1=2Þn on the
right-hand side, and d now denotes the radial distance from
the circular axis (Nye, 1952b). However, the more detailed
explanation was only given in Nye’s (1965a) paper on the
flow of ice in channels of various shapes. This solution
exploits the circular symmetry by showing that the Hagen–
Poiseuille flow in a circular tube is described by the
same equations, if the pressure gradient along the tube is
given by �g sin�.

For some more general and more realistic cases, the
plasticity assumption n ! 1 was used to allow simpler
mathematical treatments (Nye, 1951). The stress and vel-
ocity solution for slab flow of uniform slope was used as a
first approximation for slab flow with a slowly varying slope.
For a steady geometry, the vertical component of the

velocity, V , the radius of curvature of the bed, R, and the
longitudinal gradient of the flow rate, �, are closely related
by (Nye, 1951)

V ¼ � �0 þ �

R
cot�

� �
, ð4Þ

where �0 denotes the longitudinal derivative of � and � is the
local inclination of the slab. With these considerations, Nye
(1951) derived the connections between active (compres-
sive) and passive (extending) flow and the trajectories of
maximum shear stress, along which a possible shear fracture
or fault could occur. Based on these considerations, Nye
(1952b) distinguished the three different possible crevassing
patterns in a glacier flowing in a channel (Fig. 2) , depending
on whether the flow is compressive, neutral or tensile.

In the discussion of the mechanical properties of ice, Nye
(1952b) mentioned that

the values of the constants depend rather sensitively on
the amount of bubbliness in the ice and on the
temperature.

Thus it became necessary to study the englacial temperatures
to fully treat the dynamics of glaciers and ice sheets. Robin
(1955) first attempted to estimate the temperature distri-
bution in an ice sheet. He began by solving the Fourier
equation for a vertical profile in the centre of an ice sheet,
assuming the vertical velocity component grew proportion-
ally to the distance to the bed, matching the accumulation
rate at the surface. To estimate temperature profiles at some
distance from the centre, several simplifying assumptions,
similar to the modern shallow-ice assumptions, were made
(e.g. that the horizontal heat diffusion is negligible). The
influence of the increasing surface temperature conditions
with distance to the centre on such a vertical profile was
transformed into a vertical temperature gradient at the
surface. Furthermore, no horizontal advection or diffusion
was considered explicitly, but horizontal advection and
diffusion were mimicked by a constant heat source along the
vertical profiles (see equation (15) of Robin, 1955). Although
the match with observed data from Antarctica was not
particularly good, the principal patterns of the temperature
distribution in an ice sheet were correctly reproduced
(Fig. 3), in particular, the core of cold ice advection and the
possibility of temperate ice at the bed in the marginal area.

The simplification that the flow of glaciers can be
described as quasi-stationary was justified by Nye (1951):

The rate of deformation in a glacier or an ice-sheet is so
slow, and the times involved are so long, that the

Fig. 2. The unbroken lines show the theoretical positions and directions of crevasses in three possible cases. The diagrams at the top indicate
the stresses acting near the margin. (From Nye, 1952b.)
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deformation will be almost entirely of the type which is
called in metals ‘quasi-viscous creep’ or ‘�-flow’ (the
transient component of creep, or �-flow, will be
negligible).

Thus, the problem reduces to a Stokes problem (equations
(1) and (2) of Nye, 1951). He also assumed incompressibility
(his equation (4)) and isotropy (equation (5)). Nye (1953)
additionally presented the tensorial formulation of the
isotropic flow law of the Glen type. Together with the need
to know the temperature field to obtain the temperature-
dependent viscosity, the basic formulation of the thermo-
mechanically coupled flow of the ice in glaciers was
established at that time. In modern notation the equations
for the flow and stress fields are

r � T ¼ �� g , r � u ¼ 0, D ¼ Af ð�ÞTD, ð5Þ
and the thermodynamic equation for the evolving interior
temperature field is

�c _	 ¼ r � ð�r	Þ þQ, ð6Þ
where T, TD and D are the stress, deviatoric-stress and
strain-rate tensors, respectively, u is the velocity vector, A the
temperature-dependent rate factor, the function f ð�Þ defines
the stress/strain-rate relation, _	 is the total temporal deriva-
tive of the temperature 	, � is the heat conductivity, c is the
specific heat and Q is the density of the heat production
rate. The above equations for interior fields must be
complemented by an equation for the evolution of the ice
thickness, h, in a given climate (surface mass balance, as,
and basal mass balance, ab),

@h
@t

¼ �r � q þ as þ ab, ð7Þ
where t is the time and q the horizontal volume flux vector.

Analytical (exact) solutions were the preferred solutions
for mathematical problems in the pre-computer era, but
even today they are sometimes considered superior to
numerical solutions. However, the above set of equations
(Equations (5–7)) allows for exact solutions only for a small
set of simple geometries and physical conditions. In the
appendix of Nye’s (1952b) paper an analytical solution of
the shape of a circular ice sheet resting on a horizontal bed
for perfect plastic ice was given,

hðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2h0x

p
, ð8Þ

where h is the ice thickness at the position x and h0 is the
maximum thickness at the centre of the ice sheet. Using this
solution, Nye (1952c) tried to estimate the thickness of the
Greenland ice sheet. Vialov (1958) presented an exact
isothermal steady-state solution for constant accumulation
and for ice with Glen-type flow properties, f ð�Þ ¼ �n�1.
Solutions with more realistic accumulation functions and
time-dependent solutions, both isothermal and thermome-
chanically coupled, were proposed by Halfar (1981, 1983)
and Bueler and others (2005, 2007). The early motivation to

find solutions of the ice-sheet equation was the wish to
estimate the thickness of existing ice sheets (Nye, 1952c;
Weertman, 1961), whereas later the motivation was the
need for exact solutions to verify the numerical methods of
ice-sheet models.

The topic of exact solutions of the ice-sheet equation
demonstrates a pattern in mathematical glaciology: if one
searches the literature for some specific topic in glacier
physics, one finds a pioneering paper at the very beginning
written by J.F. Nye. A few selected examples are (1) the
response of glaciers to climatic changes (Nye, 1958, 1960),
where the kinematic wave theory was also introduced,
(2) papers related to the interpretation of field measure-
ments, such as the determination of strain-rate tensors at the
surface of glaciers (Nye, 1959b) and (3) the correction of
measurement of past firn accumulation in ice sheets from ice
cores (Nye, 1963). Furthermore, the first calculation of ice
flow in a circular channel (Nye, 1952b) was extended to the
flow in channels of various shapes in Nye’s seminal paper
(Nye, 1965a), the influence of longitudinal stress on glacier
flow was briefly mentioned by Nye (1952b), then extended
(Nye, 1969b), and its influence on sliding over wavy beds
was also discussed by Nye (1969a, 1970).

Jenssen and Radok (1961) used a CSIRAC electronic
computer to compute transient vertical temperature profiles
in ice sheets. In Nye’s (1965a) paper on channel flow and his
paper on the frequency response of glaciers (Nye, 1965b),
results were obtained by numerical solution using a digital
computer (IBM 1620). Despite the limited speed of computa-
tion at that time, finite-difference solutions with damping of
the oscillations and acceleration of the convergence with the
alternate direction method and over-relaxation could be
obtained within a reasonable time (hours to days). These
papers mark the beginning of the new field of computational
glaciology, addressed in the following section.

COMPUTATIONAL GLACIOLOGY
With the dawn of digital computing, scientists quickly started
to use the new tools to obtain numerical solutions to
previously intractable problems. The basic problem of ice-
sheet and glacier modelling is to compute the ice flow in a
moving domain with additional internal evolving fields
(Hindmarsh and Hutter, 1988), where the domain itself is a
result of the ice flow and the surface mass balance.

Owing to the limited computing power available, the first
numerical models of ice sheets and glaciers were restricted
to far-reaching approximations. Campbell and Rasmussen
(1969, 1970) and Rasmussen and Campbell (1973) pre-
sented a vertically integrated, hydrostatic glacier model with
various flow laws that parameterize basal stresses and
velocities. Budd and Jenssen (1975) formulated the three-
dimensional (3-D) model equations of the dynamics of
glacier systems and studied transient evolution of the
dynamic into equilibrium states in two-dimensional (2-D)

Fig. 3. Sketch of the temperature distribution in a simplified ice sheet similar to central Greenland. (From Robin, 1955.)
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simplifications. The first 3-D ice-sheet model was developed
by Mahaffy (1976) and applied to Barnes Ice Cap (located in
central Baffin Island, Nunavut, Canada). The model was
based on a Glen-type rheology and the shallow-ice
approximation (SIA) of the force balance, a consistent
approximation that was rigorously derived later by Hutter
(1983) and Morland (1984). A major simplification was that
the strong temperature dependence of the ice viscosity
(contained in the rate factor A; Equation (5)) was not
considered, which allows the governing equations to be
vertically integrated and the temperature-evolution equation
(Equation (6)) to be ignored.

Jenssen (1977) applied the first thermomechanically
coupled model to the Greenland ice sheet. However, the
resolution of only 12� 12� 10 (vertical) gridpoints was too
coarse to resolve the detailed features of the geometry of the
ice sheet, and computations had to be interrupted after
1000 years integration time, due to numerical problems. In
this work, he introduced the terrain-following coordinates
that are used in most subsequently developed ice-sheet
models. Similar models by the same working group were
applied to the North American and Antarctic ice sheets
(Budd and Smith, 1981, 1982; Budd and others, 1984 and
later publications). A different approach was taken in a
series of studies in the early 1980s by Oerlemans
(1982a,b,c, 1983). The numerical solution of the thermo-
mechanically coupled problem of ice-sheet dynamics was
made more efficient by using a spectral approach, with
polynomial basis functions for the vertical temperature
profile and the velocity profile (Oerlemans, 1982a). Bedrock
adjustment due to glacial isostasy was accounted for, and
the Antarctica version of the model even included a simple
treatment of ice shelves.

Based on Oerlemans’ work, the first comprehensive, 3-D,
thermomechanically coupled ice-sheet model was devel-
oped by Huybrechts and Oerlemans (1988) and Huybrechts
(1990a,b). The version for the Antarctic ice sheet comprised
coupled ice shelves in the shallow-shelf approximation (SSA;
Morland, 1987), a sheet/shelf transition model including
membrane stress gradients, basal sliding and isostatic bed
adjustment. A relatively fine horizontal resolution of 40 km
and 10 layers for the scaled vertical coordinate was applied,
which required the model to run on contemporary super-
computers. A Greenland version of the model was first
presented by Letréguilly and others (1991a,b).

At approximately the same time, Herterich (1988, 1990)
and Böhmer and Herterich (1990) came up with a model of
similar complexity. Like the Huybrechts model, the Ant-
arctica version of the Herterich model included coupled ice-
sheet/ice-shelf dynamics based on the SIA and SSA,
respectively, and had an explicit treatment of the transition
zone. Major differences were that the Herterich model did
not use a scaled vertical coordinate, did not account for
basal sliding and ran at a coarser horizontal resolution
(100 km). This model was also used to investigate the
possible existence of an extended glaciation in Tibet during
the last glacial period (Kuhle and others, 1989) and, later
and complemented by basal sliding, to simulate the
response of the Greenland ice sheet to various climate
scenarios (Calov and Hutter, 1996).

During the 1990s, several other 3-D, thermomechanically
coupled ice-sheet models entered the scene. In the first
intercomparison topic of the European Ice-Sheet Modelling
Initiative (EISMINT; Huybrechts and others, 1996) five

models of that kind (plus several simpler ones) participated,
while in the second topic (Payne and others, 2000, and
references therein) the number was already up to 10. The
latter topic focused, in particular, on the effects of
thermomechanical coupling, and revealed that the radial
symmetry implied in the experimental design can be broken
by the formation of radial spokes of the velocity, ice-
thickness and temperature distributions. While this feature
appeared to be common to all participating models, details
varied between them, and the preferential alignment of the
spokes with the lines of symmetry of the numerical grid
pointed, at least partly, to a numerical cause for the
phenomenon. Nevertheless, it was also concluded that the
models showed considerable agreement in their predictions
of global-scale response to imposed climate change.

None of the ice-sheet models mentioned above used a
force balance beyond the SIA. However, for realistic
simulations of smaller glaciers, which are less shallow than
ice sheets and have a more complex topography, the SIA is
inadequate, and thus during the past �15 years 3-D glacier
models that solve the full-Stokes problem of ice flow have
been developed (Gudmundsson, 1999; Lüthi and Funk,
2000; Zwinger and others, 2007; Jouvet and others, 2008,
2009). This is computationally much more demanding than
solving the SIA and requires modern, powerful computers.

Integrating higher-order or full-Stokes dynamics in ice-
sheet models is even more of a challenge due to the size of
ice sheets. Saito and others (2003, 2006) implemented the
first-order approximation (FOA) by Blatter (1995) (see also
Greve and Blatter, 2009) and investigated the impact
(compared with the SIA) on the solutions of the above-
mentioned EISMINT experiments by Payne and others
(2000). A similar model was devised by Pattyn (2003), later
upgraded to full-Stokes dynamics and applied to problems of
ice flow over subglacial lakes (Pattyn, 2008). However, a
fully operational, 3-D, thermomechanically coupled, prog-
nostic ice-sheet model with higher-order or full-Stokes
dynamics is not yet available.

Efforts towards higher-order and full-Stokes modelling
culminated in the Higher-Order Model (HOM) inter-
comparison topic of the Ice-Sheet Model Intercomparison
Project (ISMIP) (Pattyn and others, 2008), in which 27
numerical models of different complexity and one analytical
model from 20 contributors participated. These models were
compared and verified in a series of experiments applied to
2- and 3-D geometries of both steady-state (diagnostic) and
time-dependent (prognostic) type. It was found that all
models produced results that are in approximate agreement,
even for high aspect ratios when the SIA is clearly violated.
The full-Stokes models were most consistent with each other
and an analytical solution that exists for one of the
experiments, while the spread among the different flavours
of higher-order models was somewhat larger.

Most recently, in the Heinrich Event INtercOmparison
(HEINO) topic of ISMIP, internal large-scale ice-sheet
instabilities in different contemporary ice-sheet models were
explored (Calov and others, 2010). For the experiments a
simplified geometry that reproduces the main characteristics
of the Laurentide ice sheet (including the sedimented region
over Hudson Bay and Hudson Strait) and a temporally
constant glacial climate were employed. It was found that all
participating models (eight SIA models and one combined
SIA/SSA model) are capable of producing Heinrich-type free
oscillations if the boundary conditions are sufficiently
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favourable. However, the large differences between the
results of different models (some are much more prone to
produce oscillations than others) clearly showed that further
model improvements are crucial for adequate, robust and
reliable simulations of ice-sheet instabilities.

Three operational ice-sheet models, which all took part in
ISMIP HEINO, are currently available on the internet as free
software:

Glimmer-CISM (Community Ice-Sheet Model), http://
glimmer-cism.berlios.de/ (Rutt and others, 2009);

PISM (Parallel Ice-Sheet Model), http://www.pism-docs.
org/ (Bueler and others, 2007);

SICOPOLIS (SImulation COde for POLythermal Ice
Sheets), http://sicopolis.greveweb.net/ (Greve, 1997).

These models include 3-D coupling of temperature and
velocity fields in the SIA. They differ in the numerical grids
and some numerical schemes, but also allow for various
physical processes such as polythermal conditions and
sliding parameterization. SICOPOLIS (Greve, 1997) includes
a polythermal scheme that solves the thermodynamics
equation for temperature in the cold and for moisture
content in the temperate domain. The cold/temperate
transition surface (CTS) is tracked by matching the thermal
and kinematic conditions along the boundary. PISM offers a
polythermal scheme that solves the thermodynamics equa-
tion for enthalpy, and the CTS is given by a defined value of
the enthalpy (Aschwanden and Blatter, 2005). PISM also
offers a novel scheme for sliding including the membrane
stresses at the bed by balancing the driving forces at the bed
of the SIA ice sheet and the resistive forces of a subglacial
deforming layer in a shallow-shelf-type membrane in
between (Bueler and Brown, 2009). Glimmer-CISM is
particularly designed to be interfaced to a range of global
climate models. All three models are currently under rapid

development, and at different stages towards the implemen-
tation of higher-order dynamics, ice-shelf/stream dynamics
and basal hydrology. Figure 4 illustrates schematically the
various components of the models.

PROSPECTS
Despite the general opinion that waiting for faster computers
is not good advice in numerical model development, the fast
progress in computing power has helped in glacier model-
ling. The development of more and more efficient and stable
numerical algorithms, combined with the ever-growing
availability of storage space and advances in computation
speed, enabled us to model ever increasingly complex
glacial systems at increasing spatial and temporal resolution.
In modelling geophysical systems (and perhaps any type of
physical system) the wishes always aim beyond the capacity
of the computers.

Computation power and efficiency of numerical methods
have progressed to the point where the models are likely to
be able to include full-Stokes solutions for entire ice sheets
with adaptive grids to obtain high spatial resolution where
required. Currently, at least three projects have started to
develop such next-generation ice-sheet models,

http://www.elmerfem.org/wiki/index.php/Elmer_Ice_
Sheet_modeling

http://issm.jpl.nasa.gov/

http://trac.mcs.anl.gov/projects/sisiphus

The development of this type of ice-sheet model lies beyond
the problem of thermomechanics of ice masses and requires
close collaboration between specialist physicists, mathema-
ticians and computer scientists.

In computational glaciology, increasing expectations of
solutions to pressing problems, such as the future of ice

Fig. 4. Scheme of a modern, dynamic/thermodynamic ice-sheet model. The rectangular boxes correspond to prognostic model components,
the oval boxes to input quantities.
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sheets and glaciers in a warming climate and especially the
possibility of catastrophic disintegration of large ice shelves
in Antarctica, have led to the present surge in ice-sheet and
glacier model development. Petascale computation power,
adaptive finite-element meshes and efficient precondition-
ing may enable the computation of the systems behaviour
to reasonable resolution and accuracy. However, true
predictive power also rests on sufficient knowledge of the
boundary conditions and the physical mechanisms. Thus, a
combination of precisely targeted (even then expensive)
field observations, advances in knowledge of the physical
processes involved and advancing all aspects of numerical
modelling technology such as algorithms, coding and
computation power will remain the tasks of glaciology in
the future.
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