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STABLE ORBITS IN THE CIRCULAR PLANE RESTRICTED 
THREE-BODY PROBLEM* 

DANIEL BENEST 

Observatoire de Nice 

RESUMEN 

Se investigan por exploraci6n numerica las regiones extendidas de estabilidad para 
satelites retrogrados cuando la masa del cuerpo poco masivo crece hasta p, = 0.5. 
Se hace un estudio preliminar de las caracteristicas y propiedades de estabilidad de las fami-
lias de orbitas periodicas. En seguida se considera el caso general de orbitas no periodicas. 
Dichas exploraciones numericas muestran que para grandes orbitas aperiodicas el movimiento 
se puede descomponer en un "movimiento de referenda" rapido y una libracion lenta. Estu-
diamos esta libracion teoricamente en el caso de Hill, por el cual el "movimiento de refe
renda" es eliptico. 

ABSTRACT 

We investigate by numerical exploration the extended regions of stability for retrograde 
satellites when the mass of the less massive body increases up to p, — 0.5. A preliminary study 
is made of the characteristic and stability properties of the families of periodic orbits; then 
the general case of non-periodic orbits is considered. Those numerical explorations show that 
for stable large non-periodic orbits, the motion can be decomposed into a fast "reference 
motion" and slow libration; we study theoretically this libration in Hill's case for which the 
"reference motion" is elliptic. 

I. NUMERICAL EXPLORATION OF 
STABLE ORBITSf 

a) Introduction 

In the circular plane restricted three-body problem, 
we itudy by numerical simultation the satellites (B3) 
of the less massive body (B2). We use rotating axes 
with origin in B2 and we denote by /A the mass ratio 
m2/(mi + m2) with m2 < mx. B3 starts perpendicu
larly from the right part of the X axis, so that an 
orbit can be represented by a point in the plane 
(Xo, Vo), where we can examine the limits of 

* Figures 2, 3 and 6c have been reproduced from Astron. 
and Astrophys., 1974, 32, 39. Figures 4a-h, 5, and 6d-n 
from Astron. and Astrophys., 1975, 45, 353 published by 
Springer-Verlag Berlin-Heidelberg-New York on behalf of 
the Board of Directors, ESO. 
, t This section is the synthesis of two papers: Benest 
(1974) and Benest (1975a). 

the subspace of initial conditions for stable orbits. 
Figure 1 shows this subspace in Hill's case. The 
"band" of stable retrograde orbits, extending to much 
larger distances, surrounds a family of symmetrical 
simple-periodic orbits where and only where this 
family is stable: the stability of a periodic orbit is 
defined through the value of an index of stability, 
denoted by a such that | a | < 1 is the mean stability, 
but the isolated unstable value a = —0.5. 

To show the evolution of this "band" when p 
increases from 0 to 0.5 we first study this simple-
periodic family and possibly other periodic families. 

b) Periodic Families 

i) Family f. 

Figure 2 shows how the characteristic of family / 
evolves when fi increases from 10~6 (curve 1) to 0.5 
(curve 12). 
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FIG. 1. Non-periodic stability zone (hatched region) in 
Hill's case. 

As Xo varies monotonically along the characteristic, 
we can represent the stability properties in the (p, 
Xl0) plane (Fig. 3 ) : for p < 0.0477 . . . , the orbits 
are continuously stable until ejection. 

ii) The Double-Periodic Family <p. 

For this critical value of p, an unstable interval 
appears on the characteristic between two points 
which are intersections with the characteristic of a 
symmetrical double periodic family (called f ) . Fig
ure 4 shows the evolution of this characteristic from 
p = 0.0477. .. ; we shall see later that for p > 0.150, 
the family <p has no influence on the "band" of stable 
retrograde non-periodic orbits. 

The orbits of family ? have two perpendicular 
intersections at the right of the X axis (whose abscissas 
are noted X0jt and X„s) and the numerical results 

BENEST 

show that, up to p = 0.130, te quantity (X0l + X„2)/ 
2 varies monotonically along the characteristic, so 
that we can, as for family /, represent the stability 
properties in a (p, X0) plane (Fig. 5) . 

Hi) Other Periodic Families 

Many N-periodic orbits were found, systematically 
or by chance, for various values of N, but they were 
mostly unstable and had no influence at all on die 
"band" of stable retrograde non-periodic orbits. 

c) Non-Periodic Orbits 

Figure 6 shows the evolution of the "band" of 
stable retrograde non-periodic orbits: up to p = 
0.0477, the figure is topologically identical to Hill's 
case (cases a, b, c); from 0.0477 to 0.063, the family 
f is always stable and can neutralize at least partly, 
the unstable interval of family / (case d); from 
0.063 on the family <p has one or two unstable intervals 
and the "band" breaks up into several parts (cases 
e> f> g) 1 from 0.097 on a new stable interval in family 
f gives rise to an extension of the "band", which 
grows when, at the same time, the effect of the 
family p decreases, and disappears for 0.150 (cases 
h, i, j); then, the "band" evolves slowly to its final 
shape for 0.5 (cases k to n). 

I I , LIBRATION EFFECTS FOR LARGE 
ORBITS^ 

Numerical explorations of the restricted problem 
has shown that for stable large non-periodic retro
grade satellite orbits, the motion can be decomposed 
into a fast "reference motion" and a slow libration 
around B2. We study here this libration in the circular 
plane Hill's case, for which the "reference motion" 
is elliptic. We establish the equations of motion for 
the coordinates of the center of this ellipse. We find 
two integrals of motion: the first is the semi-major 
axis of the ellipse; the second is essentially Jacobi's 
integral, translated into the new coordinates. We give 
a formula for the period of the libration and we find 
its limiting value for small libration amplitudes. A 
numerical experiment gives very good agreement for 
all these results. 

% This section is detailed in an earlier paper (Benest 
19756). 
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FIG. 4. Evolution of the characteristic of family <£ 
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Fio. 6. a to n. Evolution with ft of the non-periodic stability zone: horizontal hatchings; full and dotted lines: stable and 
unstable parts of periodic families; circles: a= —0.5; perpendicular dashes: | a | = 1; crosses.* extrema of a. 
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FIG. 5. Stability of family <f>: full lines: critical orbits 
(| a | = 1) ; dashed lines: a = —0.5; dotted lines: a = 0; 
horizontal hatchings: a < — 1; vertical hatchings: a > +1 ; 
— . — . — : a is minimum; — . . —• . . — : a is maxi
mum; crosses: limits of good orbits; double line: critical 
orbits of family /; double dashed line: ejection orbits for 
family /. 
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