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GROUP RINGS. I 
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1. Introduction. In this note we study the question of automorphisms 
of the integral group ring Z(G) of a finite group G. We prove that if G is 
nilpotent of class two, any automorphism of Z(G) is composed of an auto­
morphism of G and an inner automorphism by a suitable unit of QiG), the 
group algebra of G with rational coefficients. In § 3, we prove that if two 
finitely generated abelian groups have isomorphic integral group rings, then 
the groups are isomorphic. This is an extension of the classical result of 
Higman (2) for the case of finite abelian groups. In the last section we give a 
new proof of the fact that an isomorphism of integral group rings of finite 
groups preserves the lattice of normal subgroups. Other proofs are given in 
d;4). 

2. Automorphisms of group rings. We shall use the following theorem 
of Glauberman (a proof can be found in (4 or 6)). All groups in this section 
are finite. 

THEOREM 1 (Glauberman). Let 6: Z(G) —* Z(H) be an isomorphism. Let Kx 

be a class sum in G, i.e., sum of distinct conjugates of an element x of G. Then 
d(Kx) = d= Ky for some y G H. 

PROPOSITION 1. Let 6 be an automorphism of Z{G). Let Cu 1 ^ i ^ r, be 
the conjugacy classes and Kt the corresponding class sums of G. Suppose that 
6(Ki) = Ki', 1 ^ i, i' S r, and that there exists an automorphism a of G such 
that a (Ci) = Cf for all 1 S i ^ r. Then we can find a unit y Ç Q(G) such that 

Hg) = yg'y'1 for all g e G. 

Proof. Extend a and 6 to Q{G) in the natural way. The centre of QiG) 
which is generated by the class sums Ku 1 ^ i ^ r, is kept fixed elementwise 
by <7-10. Since QiG) is semi-simple, we can write 

Q(G) = Si e s2 e . . . © st, 
as a direct sum of simple rings St. Let 1 = ei + e2 + . . . + eu where et Ç St 

are central idempotents. Then 

Si = etQiG) and (a^d) (St) = Si9 1 g i ^ t. 
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As a~l0 keeps the centre of St fixed elementwise, it acts on St as an inner 
automorphism by some at Ç 5*; see (5). I t follows that a~ld is an inner 
automorphism of Q(G) by a = ai + a2 + . . . + at. Thus, we have for 
g G G, that 

O-10)(g) = agor1, 0(g) = yg'y-1, where y = o-(a). 

Remark. Let If be a normal subgroup of G. Let A(iJ) be the kernel of the 
natural map Z(G) —> Z(G/H). Then A(i?) is the two-sided ideal generated 
by the elements (1 — h), where h runs over H. 

PROPOSITION 2. Let y be an automorphism of Z(G), where G is a nilpotent 
group of class two. Let Ku 1 Si ^ r, be the class sums of G. Suppose that 
n(Ki) = Ki>, 1 ^ i S r. Then there exists an automorphism a of G which, 
when extended to Z(G), satisfies a(Kt) = Kt> for all 1 ^ i ^ r. 

Proof. We first observe that a class sum of a nilpotent group of class two 
is of the form gH, where H = Yln^H h and H is a subgroup of the derived 
group G''. Let y(g) = y. Then n(K0) = n(gH) = y Hi, where Hi is another 
subgroup. Now yHi = Kgi = giH2. We claim that Hi = H2. Observe that 
\Hi\giïl2 = \Hi\yHi = yB1-B1 = giH2-Hi and l i ^ f i^ = H2-Hi. There­
fore, i^i is contained in H2j and by symmetry, Hi = iJ2- Thus, we have that 
lx(Kg) = y Hi = giHi. Next, we claim that there exists a g2 6 G such that 
Y == g2 mod A(Hi)A(G). Since 7/fi = grffi, we have that 

7 = gi + Z (1 - *)*(*) 

= gi + L (1 - *)»» mod A(#i)A(G) (where rcA € Z) 
ft 

= Si + 1 - I l *"* m o d A(Hi)A(G) 
ft 

= g i l l A"̂ * mod A (HO A (G). 
ft 

Thus, 7 = g2 mod A(i?i)A(G), and hence 7 = g2 mod A(G')A(G). I t has been 
proved independently by Jackson (3) and Whitcomb (6) that given 7 as 
above, there exists a unique gy £ G such that 7 = gy mod A(G/)A(G) and 
7 —-> g7 is an isomorphism X: M(G) —> G. Because of uniqueness, it follows that 
g7 = g2. Since gy = 7 mod A(i7i)A(G), we have that g7i?i = y Hi. Let 
°"(g) = ^ii(g). Then 0- is an automorphism of G and 

a ( i Q = \»(Kff) = X(7i?i) = X( 7 )#i = £7i?i = 7 # i = n(Kg). 

This completes the proof. 

Now we have the following theorem. 

THEOREM 2. Let 6 be an automorphism of Z(G), where G is a nilpotent group 
of class two. Then there exists an automorphism X of G and a unit y of Q(G) 
such that 6(g) = ±7g x 7 - 1 for all g £ G. 
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Proof. Let us write C(a) = J^g ag if a = Z^a^g is an element of Z(G). 
Clearly, C(6(g)) = ± 1 for any element g of G. Normalize 6 by defining 
/*(#) = C(6(g)) -6(g). By linear extension, /x becomes an automorphism of 
Z(G) which maps class sums to class sums. The theorem now follows from 
the last two propositions. 

3. Group rings of finitely generated abelian groups. Higman proved 
(in 1940) that the only units of finite order in the group ring Z(G) of a finite 
abelian group are dbg, g G G. From this, it follows that only isomorphic 
finite abelian groups have isomorphic integral group rings. We extend this 
result to finitely generated abelian groups. We first prove the following lemma. 

LEMMA 1. The only units of finite order in the group ring ZiG) of an arbitrary 
abelian group G are of the form zkt, where t is a torsion element of G. 

Proof. We can assume without loss of generality that G is finitely generated. 
Write G = T X F, where T is torsion and F is free. Further, F = 
(xi) X . . . X (xi). A typical element g of G can be written uniquely as 
g = t-Xialx2

a2 . . . xfi, where at G Z and t £ T. Define dt(g) = |az|. Suppose 
that 7 = migi + m2g2 + . . . + msgs is such that yn = 1. We have to prove 
that 7 = db/. Let 

nt = max d^gj). 

We shall use the group 

H = <xi2ni+1> X <x2
2W2+1> X . . . X (x^1) 

which is of finite index in G. Clearly, (y)n = 1, where y is the image of y in 
the projection Z(G) —> Z(G/H), and by Higman's result, y = dzxiJ, x (z G. 
Since gi, . . . , gs belong to different cosets of H, it must be that y = zLgu 
where gt £ T. 

THEOREM 3. Suppose that G and H are finitely generated abelian groups. Then 
Z(G) ~ Z(H) implies G c^ H. 

Proof. Write G = T X <*i) X . . . X (xi) and H = Tx X <yi> X . . . X <ym), 
as in the lemma. Let 6: Z(G)-^Z(H) be the given isomorphism. For / G T, 
set fi(t) = /i £ T\ if Bit) = ±h and set fi(Xi) — B(xi). By linear extension 
we obtain an isomorphism ju: Z(G) —-> Z(H) such that niT) — T\. We con­
clude that Z(G/T) ~ Z(H/Ti). Since Z(G/T) is free of zero divisors and 
the degree of transcendency over Q of its field of quotients is /, it follows 
that I = m and that G C±LH. 

4. Central idempotents and normal subgroups. In this section, all 
groups are finite. Let N be a normal subgroup of G; then N = J^nex n 1S a 

central element with the property that (N)2 = \N\-N. We characterize all 
N, where N is a normal subgroup of G as certain elements of Z(G) with this 
property. More precisely, we prove the following proposition. 
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PROPOSITION 3. Let y = J^geoJgg be a central element of Z(G) such that 
7« = !» E 7j ^ 0 and y2 = w7> where m is a natural number. Then y —^ KÇ.H h, 
where H is a normal subgroup of G. 

Proof. For a typical element a = J^g^G &gg of Z{G), write a* = X^ÇG «^""1« 
It is clear that (a + /3)* = a* + /3* and (a/3)* = /3*a*, and thus we have 
that (T*) 2 = my* and (TT*) 2 = m2yy*. We also remark that J^gyg = m. 
By the eigenvalues (trace) of an element a of Z(G) we mean the eigenvalues 
(trace) of R{a), where a —> R(a) is the regular representation of Z(G). 
Clearly, y is diagonalizable. The only possible eigenvalues of y are 0 and m. 
Since ye = 1, we have that t raced) = (G:l), and therefore exactly 
(G:l) — (G:l)/m eigenvalues of y are zero. Thus, at least (G:l) — (G:l)/m 
eigenvalues of 77* are zero, and therefore 

( G : 1 ) ( S T / ) = trace(77*) è ™ 2 ~ ' • 

We conclude that (£0 7^) rg ra = (Y,g yg), and therefore 7^ = 0 or 1. Since 
72 = my, it follows that 7 = J^n^h, where i7 is a subgroup. Since 7 is 
central, H is normal and the proof is complete. 

THEOREM 4. Let 6: Z{G) —> Z(i?) &e a normalized isomorphism {i.e., 
G (0(g)) = 1 /or a// g Ç G). JT^w //^r£ exisfo a one-to-one correspondence 
between the normal subgroups of G and H which preserves order, union, and 
intersection. 

Proof. Let N be a normal subgroup of G. Then N = J^n^N n satisfies 
(JV)2 = \N\N. Let 0(iV) = 7 = T,0ygg; then T

2 = |iV|-y and C(y) ^ 0. Also, 
ye = 1, due to the fact that for a unit of finite order /3 = 21 /^g, /56 7̂  0 
implies /3 = ± 6 (see (1) for the proof); therefore, fie = 0 whenever 0 = 0(x) 
for some x ^ e in G. Thus, by the last proposition, we have that 7 = M, 
where M is a normal subgroup of H and |ikf| = |iV|. The remainder of the 
result follows from the fact that for two normal subgroups N± and N2 of G, 
Ni-N2 = mN2 if and only if iVi is a subgroup of N2. 
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