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Introduction

In [6], Lorch and Newman proved the following lemma:

U d(u) IS continuous and of bounded variation, 0 ̂  u ^ 1, then

f"1 | f ^-dg(u(1) I I I dg(u)\ds = o(logm), m -*• oo.

This was extended more recently by Leviatan and Lorch ([5], Lemma 3) to
functions which are of bounded variation on the positive real axis, where now
the upper limit of integration on the inner integral is infinite.

In this paper, the two dimensional analogues of these lemmas are established.
As well, an inequality of some interest in itself is obtained:

THEOREM 1. For all non-negative a and b, finite or infinite, the following
inequality holds:

C°'b , f00'00 sinsw sintv , , ., , J(2) I I I -:—dg(u,v)\2 dsdt
J -a,-b J -oo.-oo s *

^ f | j* e-
iisu+tv)dg(u,v)\2dsdt.

J —a.—b J — oo,— oo

THEOREM 2. Suppose that g(u,v) is of bounded variation in the Vitali
sense in the real plane. Then

Pm,n I* co, oo — i(su + tv)

(3) I —dg(u,v)\dsdt
J 1,1 J-00,-00 S«

= o(logmlogn), m,n->• oo

if and only if dg(u,v) has no mass points; and

f "•" , f00'10 sinsw sintv . , ., , ,
(4) — - dg(u,v)\dsdt

J 1,1 J-oo,-oo S *78
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= o ( logmlogn) , m,n->• oo

if and only if dg(u,v) has no mass points bounded away from the coordinate
axes.

It is easily seen that if dg(u,v) has mass points along the coordinate axes,
these will not contribute anything to the estimate (4). Note also, that continuity
of the function g(u,v) is not required for (3) and (4) to hold.

The two dimensional analogue of the lemma proved in [5], as well as of
the one proved in [6], then follows immediately from (4) by a suitable restriction
on the function g(u,v).

Some Preliminary Results

Definitions of bounded variation for functions of two variables are given
by Clarkson and Adams [3]. The proofs will be given under the assumption
that g(u,v) is of bounded variation in the Hardy-Krause sense. That the results
also hold for functions which are of bounded variation in the Vitali sense follows
the observation that if g{u,v) is of bounded variation in the Vitali sense, it is
always possible to construct another function, h{u,v), of bounded variation in
the Hardy-Krause sense, such that the measures dg(u,v) and dh(u,v) are equal.
The difference between the positive and negative variation functions of g(u,v)
is one such function.

We denote the rectangle whose vertices are at(u",u"), (u", v'), (u',v") and
(u',vr), u">u', v">v', by [u",v";u',v'], and let g(u",v";W,v') denote the
difference g(u",v") - g{u", v') - g(u', v") + g(u', v').

If g(u,v) is of bounded variation in the sense of Hardy-Krause in the real
plane, then by direct analogy with the one dimensional case [(9], ch. XVI), its
modified Fourier-Stieltjes transform, or the modified transform of dg{u,v), is
given by

= 1 f °°>" e-iisu+'v)dg(u,v).
2ft J-O,,-GC

0(s, 0 exists and is bounded uniformly for all s, t.

LEMMA 1. Ifg(u,v) is of bounded variation, then for arbitrary, fixed real
numbers p and q,g(u + p,v + q;u-p,v-q) is absolutely and square integrable
in the real plane.

PROOF. It is sufficient to prove the lemma for p and q positive. Also, since
g(u,v) is of bounded variation, and so may be expressed as the difference between
its positive and negative variation functions which are bounded, non-negative
and positively monotonic ([7], p. 250), the problem is reduced to proving the
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lemma under the assumption that g(u,v) is already positively monotonic, that
is, for positive p and q, g(u + p,v + q;u — p,v — q) ̂  0. Now let

f(a,b) = \ g(u + p,v + q;u-p,v-q)dudv
J -a,-b

(f'a-t-q,b + p f-a + p,b + q ra + p,-b + q f—a + p,-b + q \

+ \g(u,v)dudv
\J a-p,b-q J -a-p,b-q J a-p,-b-q J-a-p,-b-q I

Let a,b-> co. Then g(u,v) tends to definite limits which we denote by
g(co,co), g(—co,co), 3(00,-00) and g{— 00,— 00) in the respective regions of
integration, so that

lim/(a,/?) = Apqg{co,co; —co, —00)
= 4pqV(g), a,b - • co,

where V{g) is the total variation of g(u,v). This proves the absolute integrability.
That g(u + p,v + q;u — p,v — q) is also square integrable follows the observation
that it is of bounded variation, hence bounded in the real plane.

LEMMA 2. If g(u,v) is of bounded variation in the real plane, then

\g(u + p,v + q;u-p,v-q)\zdudvI — oo . — 00

, f 00'00 1 ,, x i 2 s i n 2 p s
= 16 | < K s 0 | 2 ^

1 -00,-00 "

PROOF. An elementary calculation shows that

<KM){eips-e-ips}{^'-e~M}= ±- P " e-*su+'°

Integrating by parts ([8], p. 38), and noting that g(u + p,v + q;u-p,v-q) ->• 0
as u, v -y ±oo independently, then gives the result

(5) (j)(s,t

so that the expression on the left is the modified Fourier transform of
g(u + p,v + q;u—p,v — q), a function which is absolutely and square integrable
in the real plane. The proof is completed by the application of Parseval's relation
([2], p. 67) to (5).

Proof of Theorem 1

If the integral on the right is infinite, the equality is obvious. Otherwise

(6) I — 7—dg(u,v)\
J-00,-00 * '
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/* C O , CO J / \
i l l f i(swi~t y) | ~~ i(su ~f*/t>) i(su ~~tv) ~* i ( su —fu)"J CT \ J ^ / i

I vt I
J-<X3,— CO J* '

Then, since (a + b + c + d)2 g 4(a2 + b2 + c2 + d2),

J~a,-b J-co,—c •* '

s V

J
r
-a.-fcJ-

^*a,l> 1*00,00 —i(s»+<B)

I -—dff(«,»)
J-a,-b J-cc,— a> i J

by suitably changing the variables. This proves Theorem 1.

REMARKS. In the one dimensional case we also have, trivially,

(7) | f ° ° sins«dflf(«)|^| P° e-™dg(u)\
J —CO J - C O

for every value of s. In the two dimensional case, it is equally obvious that
/ * 00,00 / * 00,00

I sin susintvdg(u,v)\ ^ | e~'susintvdg(u,v)\
J — oo, — oo J—co,—co

for every choice of s and t. It is also true that if g(u,v) factors, so that
g{u,v) = g'{u)-g\v), then

|* 00,00 I* 00, CO

(8) | sin su sinit? ̂ ( u , i?)| g | j e~'(™+">) ^ ( « , r ) | ,
J—oo,—oo J — o o , —co

for then the proof of (8) reduces to the proof of the inequality (7). However,
the inequality (8) does not hold in general. For let s = t = 1, and let

u < 0 , v < 0

g(u,v) = 0 , ^ « < 0 , » ^ 0

M ^ 0 , v<0
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g(u,v)= 1, <

g(u,v) = 2, 7i/2 g u, v,

so that dg{u,v) = 1 when (u,u) = (0,0) and when (u,v) = (n/2,njl), and
dg(u,v) = 0 otherwise. Then the left side of the inequality (8) equals 1, and
the right side equals 0.

Proof of Theorem 2

The proof is an obvious adaptation of the proof given by Lorch and Newman
in [6]. We first prove the inequality (4) and its converse.

Let A' = [a,b; —a,—b~\, and let A" = ~(a,b; —a,—b), where a and b
are any positive, real numbers. Then

I(m,n) = | —dg(u,v)\dsdt
J 1,1 J-00,-00 S '

J 1,1 I J A'

= J'(m,n)+I"(m, n).

To estimate I'(m,n), let integers h and k be determined by the inequalities

2*<m ^ 2 " + 1 , ?<n ^2k + 1,

and assume that the measure dg(u,v) is identically zero on A". Then, applying
the Cauchy-Schwarz inequality for integrals, the inequality (6), and Lemma 2,

., , . fm'" I [aib sinsu sintv ,
I(m,n)= | dg(u,v)\dsdt

J 1,1 }-a,-b s t

£ "i f a l""a ' + I | f"- ^ L
0,0 J 2',21 J -00,-00 S

*,* / • 2 ' + > , 2 J + i (• 00,00 j

g Z {2'+' | ™
0,0 J2',2/ J-oo,-oo

~~ 0,0 J 2',2J St

w,tO dsdf

flf(«,i>)

+

st

0,0 J -00,-00 S '
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h.k

Now let co(g;d',5") = sup{\g(u + e',v + s";u - e',v-e")\, where the supremum

is taken over e' and E" , 0 < e' ^ 5', 0 < s" ^ (5", and over all M,« . Under the
assumption that dg(u,v) has no mass points, co(g;5',5") -* 0 as 6', 5" -> 0, this
convergence being monotonic. Then

h.k ra+l.b+l 2i,2J

I'(m,n) g 7T E { Z |«(« + (2/>-l)/2',
0,0 J -o-l.-6-l 1.1

v + (2q-l)l2J; u + (2p-3)/2*,» + (2q-3)l2?\2dudv}*

; 2~', 2"'')}*
0,0

= C I
0,0

since in the range of summation, g(u + 2 ~\ v + 2 ~J; u — 2~l, v — 2 ~J) = 0 when-
ever (U,D)^ [a + l,b + 1; — a — 1, — b — 1] by the assumption that dg(u,v) is
identically zero in A". Now let m,n run through the sequence l,2,4,---,2/ l+1

and 1,2,4,•••,2t+1 respectively. Then, given s>0, for h,k large enough, there
exist integers h' < h and k' < k such that {co(fir;2"i,2~J)}* < e, i > A' and
7 > k'. Then

A ' , * ' h'.k h,k' h.k

0,0 O.k'+l fc'+l,0 A'+1,*'+1

+ 1) + (h' + l)(jfe - Jk')

= 0(1) (0(1) + 0(/i) + O(fe) + O(e/ifc)}

= o(hk) + O(ehk)

= o(logmlogn), m,n -> co

since 8 is arbitrary.
To estimate I"(m,n), choose a and b so large so that the total variation of

g(u, v) on A" does not exceed £. Then

P' '" i f sinsw sintv , , xi , ,
J ' (m ,« )= — — dg(u,v)\dsdt

J 1.1 J A" s «

^ £ — — = £(log m log n).
J I.I

 s t
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Thus, if g(u,v) has no mass points, then

I(m,n) = I'(m,n) + I"(m,n)

= o(log m log n) + £(log m log n)

= o(logmlogn), m,n -*• oo
since 8 is arbitrary.

To prove the converse, suppose that dg(u,v) has mass points {(u^Vj)},
i,j = 1,2,3, -•-, and let di} — g(ut*,Vj*;uf,vJ) be the "jumps" at these points.
Let

g'(u,v) = £ du

g"(u,v) = g(u,v)-g'(u,v).

Then dg"(u,v) has no mass points and

/ .„„ / •« ,» si

Jl , l J+00,-00

+
f00'00 sinsw sintv , ... ., , .

—^— dg"(u, v) I dsdt

=
Jl>

ds dt

S '
4- o(logmlogn), m,m -» oo

by the proof of the first part. Now

| S rf(j-sin WjS sin Uj< |

is an almost periodic function with a positive mean value M. Thus

I(m, n) -* M log m log n + o(log m log n)

# o(logmlogn), m,n -> oc .

This proves the converse of (4).
To prove the equality (3), we apply the Cauchy-Schwarz inequality to the

integral in (3), and proceed as before. The converse is also proved in the same
manner except that, as already noted, dg(u,v) may have mass points along the
coordinate axes in the case of the equality (4). On the other hand, if dg(u,v)
has mass points along the coordinate axes, then the equality (3) fails.
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