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Abstract

Resilience is a key driver in the design of systems that must operate in an uncertain operating environment, and it is a key
metric to assess the capacity for systems to perform within the specified performance envelop despite disturbances to their
operating environment. This paper describes a graph spectral approach to calculate the resilience of complex engineered
systems. The resilience of the design architecture of complex engineered systems is deduced from graph spectra. This is
calculated from adjacency matrix representations of the physical connections between components in complex engineered
systems. Furthermore, we propose a new method to identify the most vulnerable components in the design and design
architectures that are robust to transmission of failures. Nonlinear dynamical system and epidemic spreading models are
used to compare the failure propagation mean time transformation. Using these metrics, we present a case study based
on the Advanced Diagnostics and Prognostics Testbed, which is an electrical power system developed at NASA Ames
as a subsystem for the ramp system of an infantry fighting vehicle.
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1. INTRODUCTION

Conceptual design is the earliest stage in the overall process
of engineering system design. Past research efforts (Ormon
et al., 2002; Jen, 2005; Leveson et al., 2006; Madni &
Jackson, 2009; Kurtoglu et al., 2010) have recognized the
significance of utilizing fault-tolerance analysis during the
conceptual design phase. However, anticipating component
failure rates and system performance is difficult because de-
tailed knowledge of system components and their perfor-
mance criteria are not yet available. Therefore, it is important
to develop fault-tolerance engineering tools that can be used
during the early design of complex systems because of the in-
herent uncertainty in the performance of individual compo-
nents and their interaction effects during the product life cycle
cost (Zhang et al., 2011). Robustness in this context means
operation of the system within the designed performance
variance under all ranges of environmental conditions experi-
enced in the field. For the engineered system to be robust, the
design of the system is required to be robust, meaning that the

system is able to function under the full range of environ-
mental conditions that may be experienced during system
operation (Youn & Wang, 2011). Resiliency is recognized
as maintaining system functions despite the existence of
failures (Mehrpouyan, 2013). This differs from traditional
definitions of robustness because resiliency deals with the
functional response of a system. As designers, it is important
to be sure that these systems are able to perform the functions
they were designed to perform; something that robustness
does not strictly deal with. Instead, robustness correlates to
the ability of a system to produce performance characteristics
despite the presence of these internal and external stimuli.
Complete functionality of a complex engineered system
does not necessarily have to be maintained for the system
to be considered robust.

The main purpose of system reliability analysis is to deter-
mine the weakness of a design and to quantify the impact of
component failures. The resulting analysis provides a numer-
ical rank to identify which components are more important to
system reliability enhancement or more critical to system fail-
ure. Design reliability analysis methods introduced in the re-
search literature, such as the function-failure design (Stone
et al., 2005), the functional failure identification and propaga-
tion (Kurtoglu & Tumer, 2008), and decomposition-based
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design optimization (McCulley & Bloebaum, 1996; Miche-
lena et al., 1997) methods have begun to adopt graph-based
approaches to model the function of the component and the
flow of energy, material, and signal (EMS) between them.
This work extends this idea to demonstrate the effect of the
design architecture on the robustness of the system being
designed.

In the past several years, scientific interest has been
devoted to modeling and characterization of complex systems
that are defined as networks. Such systems consist of simple
components whose interactions are very basic, but their
large-scale effects are extremely complex (e.g., protein
webs, social communities, and the Internet). Numerous
research studies have been devoted to the effect of network
architecture on the system dynamics, behavior, and character-
istics. Because many complex engineered systems can be
represented by their internal product architecture, their com-
plexity is dependent on the heterogeneity and quantity of
different components as well as the formation of connections
between those components. Because of this, system proper-
ties can be studied by graph-theoretic approaches. Complex
networks are modeled with graph-based approaches, which
are effective in representing components and their underlying
interactions within complex engineered systems.

Research findings by Ash and Newth (2007) suggest that
modular systems are less robust even though their individual
components are designed with high robustness. Modularity
describes the topology of a system or network. Modularity
in a system is rather straightforward. A system is modular if
components or subsystems can be isolated from the greater
system without compromising the structure of the rest of
the system. For instance, a modular system topology is one
that allows a component or subsystem to be removed without
first removing many others. Networks are a little more diffi-
cult. A network is said to be modular if there are high concen-
trations of high connectedness in the network separated by
low connectedness between “modules.” Bagrow et al.
(2011) confirm these finding and further explain that the
high robustness of modular systems is only possible if the
components’ failure can be isolated to their modules. Further-
more, Hölttä et al. (2005) prove that while the hierarchical
modular structure improves the system’s robustness, exces-
sive use of modularity results in loss of performance. In con-
trast, there are studies (Gershenson et al., 2003; Ishii & Yang,
2003) that support the increase of modularity in the design of
complex engineered systems. Therefore, in order to design a
robust system and to recommend or oppose the modular phys-
ical system architecture, it is utterly important to understand
the architectural properties of complex engineered systems
and the effect of design architecture topology on the propaga-
tion of failures within a complex engineered system.

In this research, we adopt approaches from graph theory
and social network analysis to understand the robustness of
the design architecture of a complex engineered system. Spe-
cifically, this paper shows the relationship between graph
spectral theory eigenvalue analysis and how optimizing (or

altering) the graph of a system will change system connected-
ness, thereby changing the robustness of the system. To ac-
complish this objective, the network model of a safety-critical
engineered system in the context of complex network theory
is constructed. Its network properties are calculated to deter-
mine system robustness. Constructive design architecture
change recommendations are made to optimize the system
robustness.

2. BACKGROUND

Eliminating the likelihood of failures and, should failures
occur, ensuring the continued operation of the system within
a safe performance envelop until repairs can be made are
of paramount importance in mission critical complex
engineered systems. To avoid the failures of critical compo-
nents, setting aside the problem of identifying critical
components, the engineering design literature recommends
techniques such as failure mode effects analysis (Stamatis,
2003) or a function-failure design method (Stone et al.,
2005), among many. Although these techniques have proven
useful where knowledge of failure modes and effects can be
predicted, their most significant weaknesses are that they can
neither readily handle interaction effects of failures nor iden-
tify the most vulnerable components without significant prior
knowledge. Although methods such as the functional failure
identification and propagation technique address this issue
(Kurtoglu & Tumer, 2008), significant expertise of engineers
and a knowledge base of previous products are still required.

In contrast to techniques relying on prior knowledge, the
network topology analysis and biological concepts of resili-
ence hold promise for addressing this problem in the
engineering design domain. The study of network topologies
provides interesting insights into the way that complex engi-
neered systems are designed. Numerous studies (Albert et al.,
2000; Crucitti et al., 2004) have attempted to measure the
resilience of complex networks. In the design of networks,
the design philosophy is not to predict that failures will occur,
but, rather, to design with the knowledge that failures will
occur (i.e., that nodes will fail and external “attacks” on the
network may happen). The challenge for the network de-
signer is to ensure that the network continues to operate, or
fails gracefully, even under such circumstances. The results
of these efforts conclude that many complex systems exhibit
a surprising degree of tolerance against failure in a specific
class of networks called scale-free networks (Goh et al.,
2002). A scale-free network is an inhomogeneous network
in nature, meaning that a significant number of nodes have
very few connections while a small number of particular
nodes have many connections. The inhomogeneous feature
of a scale-free network allows for higher failure tolerance un-
der random failure of nodes, but the network is more vulner-
able to failure when the most highly connected nodes fail
(Callaway et al., 2000; Cohen et al., 2000; Jeong et al.,
2000; Tu, 2000). In the case of designing resilient complex
engineered systems, the design architecture can be modeled

H. Mehrpouyan et al.94

https://doi.org/10.1017/S0890060414000663 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000663


as a complex network and their resilience optimized by ensur-
ing that critical components (nodes) are less vulnerable to
failure while preserving the interconnectedness of interde-
pendent components.

There are two concepts that are most relevant: contagion
spread and failure tolerance. A contagion spreads by altering
the states of nodes, which is not dissimilar from the situation
of a degraded flow from a component altering the perfor-
mance of interdependent components. This is usually
described as degradation in system performance, and robust
systems are those that maintain performance within a tight tol-
erance despite perturbations. However, engineered system de-
signs are naturally different from models such as the Internet
and World Wide Web representations of complex networks.
As a result, the appropriate network representation is critical
to the success of modeling engineered system design, because
the representation affects the accuracy and efficiency of the
calculation for system modularization and optimization. In
order to evaluate different system design architectures for
any given design problem, the graph theoretic formulation
must not depend on any particular design architecture.
Therefore, a general and precise analytical model such as a
nonlinear dynamical system (NLDS) that uses a system of
probability equations (Callaway et al., 2000) for accurate
modeling of viral propagation in complex networks can be
used to investigate the behavior of failure propagation in com-
plex engineered systems. This approach examines the propa-
gation behavior via a number of stochastic contact trials per
unit time, where the infection expands at a constant rate
from an initially infected vertex.

In addition, existing research literature on the analysis of
disease epidemic spreading (Moreno et al., 2002; Wang
et al., 2003; Chakrabarti et al., 2008) and dynamics of infor-
mation spreading in social networks (Acemoglu et al., 2010;
Lerman & Ghosh, 2010) are focused on modeling the failure
propagation in complex engineered systems. Even though
the two models share similar features, they are very different.
For example, the disease-spreading model is based on the
physical contact between individuals in a social network.
Many factors such as biological characteristics of both the
carrier and the infectious agent play an important role in the
mathematical model of the spread. However, information
spreading is possible through nonphysical contact and via
the use of communication infrastructures, and the decision
of whether information should be spread to more individuals
or not is made by individuals. Consequently, the paper fo-
cuses on the epidemic spreading of diseases, and these types
of models inspire the proposed model.

3. METHODOLOGY

The initial part of the research focuses on producing synthetic
networks that model real-world system design. In order to
evaluate each design, a Modelica-based structural model (Til-
ler, 2001) is created and converted into a graph representation
of the system’s design architecture. The network is modeled

by a connected graph G¼ (V, E), which is a collection of ver-
tices V (also called nodes) with edges E between them. In this
context, components of complex engineered systems are
modeled as nodes of the graph, and the connections between
these components are the graph edges. These graph repre-
sentations are then used as a tool to convert each design
into an adjacency matrix of nodes (components) and edge
connections. Let A signify the adjacency matrix of an engi-
neered system under study with n components. A is defined
as follows:

Aij ¼
1 8 i, jð Þj i = jð Þ and i, jð Þ [ D½ �
0 otherwise

� �
, (1)

where D symbolizes the set of components, and A is a square
symmetric matrix with diagonal entries of zero. The edge
connections between components are defined topologically.
A topologically defined graph has components that are
physically connected. For example, if two components
are physically connected together within a design, they are
connected within the graph and are represented with a “1”
within an adjacency matrix.

In addition, a degree matrix called D is used to define the
number of connections associated with a specific node or
component and is defined based on the following:

Dij ¼
di degree of component i when i ¼ j
0 otherwise

� �
: (2)

Then, the Laplacian matrix is defined as L¼D 2 A for un-
weighted graphs.

Lij ¼
di i ¼ j
�1 when i = j and i is adjacent to j

0 otherwise

8<
:

9=
;: (3)

In reviewing the literature in algebraic graph theory (Fax &
Murray, 2004; Jamakovic & Uhlig, 2007; Wu et al., 2011),
the second smallest eigenvalue of the Laplacian matrix has
appeared as a critical parameter for robustness properties of
dynamic systems that operate as networks. The second small-
est eigenvalue of a Laplacian matrix is known as the alge-
braic connectivity. The algebraic connectivity describes the
average difficulty to isolate an individual node (component)
from the rest of the system (Fig. 1). Because the algebraic
connectivity of a graph increases with increasing node and

Fig. 1. Even though both graphs have the same degree sequence, the graph
on the left is considered weakly connected. On the left, the algebraic connec-
tivity equals 0.238, and on the right, 0.925.
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edge connectivity, a higher algebraic connectivity will result
in an increased number of paths between nodes. This inher-
ently means that networks with higher algebraic connectivity
are more robust (Jamakovic & Uhlig, 2007). In addition, an-
other such parameter exists in the literature called spectral
radius. In the review of literature from network theory, the
spectral radius is the largest eigenvalue of the adjacency ma-
trix (Jamakovic et al., 2006). Jamakovic et al. (2006) con-
clude that a smaller spectral radius results in higher system
resiliency against failure propagation throughout the system
compared to other networks of similar average node degree.
Because this value is based on the evaluation of the eigen-
spectrum of a single, unique characteristic equation, it is
important to note that the value is not useful unless it is com-
pared to another graph of similar size. It does not have a
defined range of values. The spectral radius provides a high-
level analysis to compare two or more graphs.

The number of modules present in a network is determined
using the eigenvalues of the adjacency matrix representation
of the design (Sarkar & Dong, 2011; Sarkar et al., 2013). To
determine the number of modules, the eigenvalues of the ad-
jacency matrix are ordered in descending order. The differ-
ences between the ordered eigenvalues define the number
of modules in the system. If k corresponds to an eigenvalue
of the adjacency matrix, the maximum difference is between
the kth and kthþ1 eigenvalue. The number of modules is the k
value where that difference is the greatest. Given the relative
quantity of modules within a design, this information can be
used for insight into the robustness of a given design topology
as well as the resilience to attack propagation for a specific
design.

The following constraints are defined while modeling the
system under design as a network:

1. A component is not connected to itself, meaning that
the diagonal of the adjacency matrix is a diagonal of
zeros.

2. A system is represented as a connected system; there-
fore, there is no isolated component (or set of compo-
nents) not connected to any other component. Every
node should have a path available to reach every other
node in the network.

3.1. Maximizing the design robustness

This section demonstrates the effect on the design architecture
from maximizing the algebraic connectivity for system robust-
ness. A random, generic system is represented as a network.
This system is not meant to describe possible real-world sys-
tem architectures, but rather to show how changes in network
topology manifest in graph analysis metrics. A genetic algo-
rithm is developed to iterate through a random network and
change the connections between nodes (components) within
an adjacency matrix. This is done by maximizing the algebraic
connectivity of the network in each iteration. Each generation

(iteration) represents a system architecture that experiences
binary crossover and mutation events to produce the next gen-
eration. The system under design is modeled in binary values
with values of 1 representing a connection between two com-
ponents, and 0 otherwise. The developed algorithm performs
evaluations on a binary bit string of characters, which repre-
sent the connections between two components. Even though
the Laplacian matrix is used to define the algebraic connectiv-
ity, the adjacency matrix is manipulated in order to iterate
through the design space. The design space is defined by
combinations of generic system components, where each
component is capable of having a connection with any other
component. This results in all possible system design candi-
date architectures, including some infeasible architecture.
The evaluation process is computed on a sequence of design
variables, where every possible connection between one
component and another is a design variable, represented in
a binary string of 1 or 0 characters similar to the following:

design ¼ 1011010101011111000 : : :½ �: (4)

For a more conventional problem, such as a design prob-
lem with defined design variables, such as length, width,
height, mass, and so on, the algorithm manipulates the string
so that the binary address of the design variables is changed
from generation to generation. This is especially useful for
a discrete problem that contains only a handful of possible de-
sign architectures. Figure 2 depicts the steps of the algorith-
mic process to compute the algebraic connectivity of the
system under design. The maximization of the algebraic con-
nectivity in the genetic algorithm produces adjacency matri-
ces with higher component degrees, representing a higher
average number of connections per component and therefore
a higher algebraic connectivity, as expected.

3.2. Design topology and its effect on failure
propagation

The second part of the research determines how design
architecture affects the propagation of failures throughout an
engineered system. System robustness and resistance to topo-
logical failure propagation help to describe how a complex en-
gineered system responds to internal and external stimuli.

The cascading failure is modeled as a contact process,
introduced by Harris (1974), and has wide applications in
engineering and science (Durrett, 1999; Marro & Dickman,
2005). A typical contact process starts with a component in
its failure mode, which affects the neighboring components
at a rate that is proportional to the total number of faulty com-
ponents. For such a system with n components, given any set
of initially faulty components, the propagation of failure be-
tween components exists in a finite amount of time. This pa-
per presents a reasoning method based on the length of time
that the failure propagation is active in the system. With this
information, system architectures can be identified that are
resilient to the transmission of failures.
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Spectral radius has thus far been presented as a quantity
capable of producing insights into network resilience to
propagating attacks. This metric is based off an evaluation
of the network topology as a whole rather than the individual
nodes providing avenues for attack propagation. In essence,
the spectral radius metric does not capture a network’s inher-
ent ability to “bottle-neck” failures with local topology. The
following network propagation models allow for this type
of analysis.

3.2.1. NLDS modeling

The NLDS propagation model provides an indication for
the length of time to full propagation according to the graph
layout defined by an adjacency matrix. In the proposed
model, a universal failure cascading rate b (0 � b � 1) for
each edge connected to a faulty component is defined. The
model is based on discrete time stepsD t, withD t! 0. During
each time interval, Dt, a faulty component i infects its neigh-
boring components with probability b.

This process can be represented as a Markov chain because
the process is treated as a discrete time stochastic process with
a finite number of states, in this case 2N . Each state in the Mar-
kov chain corresponds to a specific design system configura-
tion of N components, each of which can be in one of the two
possible states (nominal or failed), which results in 2N possi-
ble configurations. In addition, the Markov property that the
state of the system at time t + 1 is dependent only on the state
of the system at time t is satisfied in this context.

The proposed solution for solving a full Markov chain is
exponential in size. In order to overcome this limitation, it
is assumed that the states of the neighbors of any given
component are independent of one another. Therefore, the
no-linear dynamical system of 2N variables is reduced to
one with only N variables for the full Markov chain that
can be replaced by Eq. (6). This makes the large design
problems solvable with closed-form solutions.

The probability that a component i is failed at time t is
defined by Pi (t), and the probability that a component i
will not be affected by its neighbors in the next time step is
denoted by zi(t). This holds if either of following happens:

1. Each neighbor is in its nominal state.
2. Each neighbor is in its failed state but does not transfer

the failure with probability (1 – b).

With the consideration of small time steps (Dt ! 0), the
possibility of multiple cascades within the same Dt is small

and can be ignored.

zi(tÞ ¼
Y

j:neighbor of i (Pj(t � 1)(1� b)þ (1� Pj(t � 1)))

¼
Y

j:neighbor of i (1� b� Pj(t � 1)): (5)

In the above formula, it is assumed that Pj(t – 1) are indepen-
dent from one another.

As illustrated in Figure 3, each component at time step
t is either nominal or failed. A nominal component i is
currently nominal; however, it can be affected (with probabil-
ity 1 – zi(t)) by one of its faulty neighbors. It is important to
note that zi(t) is dependent on the following:

1. The failure birth rate b.
2. The graph topology around component i.

The probability of a component i become faulty at time t is
defined by Pi(t):

1� Pi tð Þ ¼ 1� Pi t � 1ð Þð Þzi tð Þ i ¼ 1, . . . , N: (6)

The above equation can be solved to estimate the time
evolution of the number of faulty components ht, given the
specific value of b and a graph topology of the conceptual
design, as follows:

ht ¼
XN
i¼1

Pi tð Þ: (7)

3.2.2. Epidemic spreading model

In this approach, the theoretical model is based on the con-
cept that each component in the complex engineered system
can exist in a discrete set of states. The failure propagation
changes the state of a component from “nominal” to “failure”
or from “failure” to “fixed.” As a result, the model is classi-
fied as a susceptible–failed–fixed (SFF) model, in which
components only exist in one of the three states. The state
“fixed” prevents the component from failing by the same

Fig. 2. Algorithm steps for computing the resiliency of the system under design.

Fig. 3. Transition diagram of the nominal-failed model.
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cause within the time span of the failure propagation epi-
demic. The densities of susceptible, failed, and fixed compo-
nents, S(t), r(t), and F(t), respectively, change with time
based on the normalization condition, which can be formu-
lated as follows: The proposed methodology is based on
the universal rate (m) in which the failed components are
fixed in the design, whereas susceptible components are af-
fected by the failure at a rate (l) equal to the densities of
failed and susceptible components. In addition, K̄ is defined
as a number of contacts that each component has with other
components per unit time. It is important to note that the as-
sumption made in this proposed model is based on the fact
that the propagation of failure is proportional to the density
of the faulty components. Therefore, the following differen-
tial equations can be defined:

dS

dt
¼ �l�KrS,

dr

dt
¼ �mrþ l�KrS,

dF

dt
¼ mr: (8)

In order to estimate S(t), the initial conditions of F(0)¼ 0 (no
design fix is implemented yet), S(0) ffi 1 (almost all the
components are in their nominal or susceptible modes), and
r(0) ffi 0 (small number of faulty components exist in the initial
design) is assumed. Therefore the following can be obtained for

S(t): S tð Þ ¼ e�l
�krF(t): (9)

In order to address the contact process in an engineered sys-
tem, a general connectivity distribution P(k) is defined for
each design network. At each time step, each nominal or sus-
ceptible component is affected with probability l, in the case
of being connected to one or more faulty components. At the
same time, every faulty component is repaired in the system
design. It is assumed that the designers of the system fix
the faulty components with probability m. Because every
component in an engineered system has different degrees of
connectivity (k), the time evolution of rk(t), Sk(t), and
Fk(t), which are the density of faulty, susceptible, and fixed
components with connectivity k at time t, is considered and
analyzed. Therefore, Eq. (9) can be replaced by the following:

rk(t)þ Sk(t)þ Fk tð Þ ¼ 1: (10)

As a result, the global variables such as rk (t), Sk(t), and Fk(t)
are expressed by an average over the different connectivity
classes:

F tð Þ ¼
X

k
P kð ÞFk tð Þ: (11)

The above equations, combined with initial conditions of the
system design at t 5 0, can be defined and evaluated for any
complex engineered system.

4. CASE STUDY

The paper explores the design space for two case studies to
demonstrate the features of graph spectral theory on complex
engineered system design. The Advanced Diagnostics and
Prognostics Testbed (ADAPT) is designed based on the re-
quirement to generate, store, distribute, and monitor electrical
power in an exploration vehicle. The electrical power system
(EPS) testbed developed at NASA Ames Research Center is
used as an example to describe the spectral analysis process,
while the ramp system of an infantry fighting vehicle (IFV) is
used to provide comparisons between designs.

In addition, two failure propagation models are imple-
mented on the IFV network models in an effort to examine
their topological structure for resilience to failure propaga-
tion. These models, the NLDS model and the SFF epidemic
spreading model, are presented with two cases of different
failure origins, a highly connected component (an electrical
ground node) and a minimally connected component (an
electrical circuit breaker node).

4.1. Graph spectral theory

Spectral graph approaches were utilized on the ADAPT test-
bed and the IFV ramp networks. This analysis includes an
evaluation of network robustness from algebraic connectiv-
ity, overall network resilience to propagations from spectral
radius, and an evaluation of modularity.

4.1.1. ADAPT EPS

Figure 4 displays the Modelica (Tiller, 2001) representa-
tion of an existing design of an EPS (Poll et al., 2007). Mod-
elica is a language for hierarchical object oriented modeling
of engineered systems, which was developed through an in-
ternational effort. The EPS model contains a power source
connected through a series of relays to an inverter and several
loads consisting of a large fan, a DC resistor, and an AC re-
sistor. A series of four AC or DC voltage sensors and three
current transmitters measure the voltage and current at differ-
ent points throughout the circuit.

The Modelica representation of the system is converted to a
network representation as described in Section 3. The gener-
ated network is used to convert the system into an adjacency
matrix of nodes (components) and edge connections. Includ-
ing the electrical ground, the EPS system consists of 25 nodes
or “components.” These nodes and edges define the connect-
edness of the system, or the design architecture of the system.

The first step is to create the adjacency matrix of the net-
work representation of the EPS system. The first row depicts
the battery and its connections to other components in the sys-
tem. The first column of the first row is represented by a set of
zeros, because the battery is not connected to itself. The sec-
ond column of the first row is assigned 1, representing the bat-
tery’s connection to the circuit breaker. Therefore, each row in
the matrix represents a component in the design and each col-
umn signifies the component’s connections with other compo-
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nents in the system. Then the degree matrix and Laplacian ma-
trix for the EPS, which resulted from Eqs. (2) and (3), are cre-
ated. A table of the eigenvalues resulting from the adjacency
matrix and the Laplacian matrix can be found as Table 1.
From the eigenvalues of the adjacency matrix, a spectral ra-
dius of 3.324 is computed. As stated previously, this number
is not directly usable without a comparison to other designs.
However, because this example is meant to show the process
of converting a complex engineered system model to a net-
work, the implications of the spectral radius will be discussed
further with the comparison of the ramp models.

As seen from Table 2, nearly half of the components within
the EPS system are also modules. Because many electrical
components can only be connected in certain configurations,
the possible system design space is limited. The analyzed
EPS has components connected in both series and parallel con-
nections, with the parallel connections representing electrical
modules. Alternatively, the algebraic connectivity of the sys-

tem is rather high when compared to the ramp designs, as dis-
cussed in the next section. This is mainly due to the properties
of an electrical circuit. The EPS is modeled with a ground as a
component within the system graph. An electrical ground must
exist and be connected to the proper components in order to
complete the circuit. As a result, circuits tend to be intercon-
nected, which increases the average node degree of the graph
and the algebraic connectivity. However, this relationship
does not always apply. As will be seen in a ramp design case
study, a high average node degree does not always correspond
directly to an increased algebraic connectivity. Some systems
contain subsystems, which are independent of the overall sys-
tem but highly interconnected within their own subsystems
(high average node degree). Therefore, if the rest of the system
is sparsely connected, the isolated area of high interconnected-
ness drives the average node degree of the system up, while the
algebraic connectivity remains low because it relates to the
Laplacian of the overall system.

Fig. 4. Model of the existing electrical power system design architecture.

Table 1. Eigenvalues generated in EPS design architecture

Table 2. Spec EPS design architecture

EPS System Results

EPS Design ID Components Min Node Degree Max Node Degree Avg. Node Degree Spectral Radius Algebraic Connectivity Modules

1 25 1 8 2.4800 3.3243 0.2473 11
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4.1.2. Ramp system of the IFV

To demonstrate the benefits and scalability of using spec-
tral graph theory on complex engineered systems, a ramp sys-
tem of the IFV is modeled and analyzed next. The modeled
ramp is located at the rear of the IFV and used for the speedy
exit and entry of the troops, and the power-operated ramp is
also fitted with a door. A hierarchical Modelica ramp model
consists of an EPS (Fig. 4), a mechanical ramp subsystem, a
controller subsystem, and a crew subsystem.

Graph spectral analysis was conducted on three different
design architectures of the ramp system. Figures 5, 6, and
7 illustrate the design options. Each design implemented in
Modelica is a system of subsystems. Therefore, every “com-
ponent” seen in the designs is actually a system of compo-
nents making up a larger nodal percentage of the system as
a whole. Each design consists of at least a unique EPS and
a mechanical subsystem. In addition, each design has mod-
eled troops entering, exiting, and residing within the vehicle.

The graph representations of the three ramp designs are
shown displayed in Figure 8. In addition, Table 3 provides
pertinent information concerning the three designs for use
with both propagation models. Included is the design identi-
fication number to be used during the analysis, the number of
nodes (components) contained within each design, the mini-
mum degree, the maximum degree, the average degree, and
the number of modules.

Each ramp design is analyzed for failure propagation by
evaluating the design architecture for the length of time to
full propagation (NLDS) and for the breadth of propagation
(SFF) when a failure is introduced. The third ramp design
consists of the highest number of modules, yet has the lowest
algebraic connectivity. This is an important insight, because
it is commonly known that modularity in complex engineered
systems is useful for system construction and maintainability,
but the isolation of failures into a single module typically
makes the system less robust, as shown.

Fig. 5. Ramp design architecture #1.

Fig. 6. Ramp design architecture #2.

H. Mehrpouyan et al.100

https://doi.org/10.1017/S0890060414000663 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000663


4.2. Failure propagation models

Two failure propagation models are used to explore the de-
sign space of the ramp system of an IFV to demonstrate resil-
ience against cascading failure. Three complete ramp system
designs will be assessed with a NLDS and an epidemic
spreading model.

Table 4 provides the information for failure origin utilized
in this simulation. Node numbers have been provided that
correlate to the node numbers used in Figure 8.

4.2.1. NLDS

In order to gauge the degree of failure propagation in the
design architectures (Fig. 9), an initial set of components in

Fig. 7. Ramp design architecture #3.

Fig. 8. Graph representation of ramp designs #1, #2, and #3.

Table 3. Spec ramp design architectures

Ramp Design System Properties

Ramp Design ID Components Min Node Degree Max Node Degree Avg. Node Degree Spectral Radius Algebraic Connectivity Modules

1 33 1 6 2.3030 2.8106 0.0479 10
2 48 1 7 2.3750 2.9474 0.0481 34
3 70 1 10 2.3714 3.3899 0.0295 47
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a state of failure is defined so the failure can propagate along
the underlying graph structure of the architecture. For the sake
of comparison, each topology has been compared twice, once
with an initially failed, minimally connected component and
once with a highly connected component. In addition, in
order to compare different architectures, each cascade is set
to originate from the internal EPS subsystem, or the EPS of
each conceptual design. Specifically, a minimally connected
circuit breaker and a highly connected ground terminal are
selected as the failure origins.

As can be seen in Figure 9 the population of the infected
components with respect to time is the same for all three dif-
ferent design ramps. In the EPS subsystem of each ramp de-
sign, the circuit breaker has two connected components that
can be infected. Therefore, all three designs propagate sim-
ilarly until a component is failed, which can cause a drastic
increase in infected population size. This occurred near the
sixth time step for each design. For instance, when the failure
reaches the ground node of the EPS, the failure is able to
spread much more quickly because the ground node is the
most highly connected component in each design. The result
confirms the expectation that a more highly connected com-
ponent propagates failure to neighboring component more
quickly, while a minimally connected component, such as a
circuit breaker, results in slower failure propagation. As can
be directly observed from Figure 10, a failure originating
from a more highly connected component (in this case the
EPS ground) propagates much more rapidly.

The NLDS model proves that more highly connected com-
ponents spread a failure much faster. Therefore, nodal hubs,
or very modular areas of a design, are more detrimental to
the rapid spread of a failure. However, simply having modular
design structures does not suggest an inadequacy in resilience
toward failure cascades. As can be seen from Table 3, a large
percentage of the components within each design are consid-
ered modular hubs.

An important design aspect to note, however, is that there
was no significant evidence for either initial failure state to
suggest that one ramp design was more resilient to failure cas-
cades than any others. This is based on the assumption that
cascading time defines resilience and not infected population
size. When the same, minimally connected circuit breaker has
failed in each design, the time to full propagation for each
design is approximately 14 time steps. When the ground
terminal is initially failed, the time to full propagation is
approximately 8 time steps. In addition, the shape of each

Table 4. Initial faulty components in the ramp designs

Node Number of Faulty Components in Design Graphs

Faulty
Components

Ramp Design
#1

Ramp Design
#2

Ramp Design
#3

Circuit breaker 5 17 16
Ground 23 38 51

Fig. 9. Time evolution of faulty components’ population size in ramp design
(a) #1, (b) #2, and (c) #3 (origin of failure: circuit breaker).
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relationship, representing the progression of failed population
size, does not indicate any design being more resilient to
failure propagations.

4.2.2. SFF

Unlike the NLDS model, the SFF epidemic spreading
model is based on the idea that failure propagation can be
stopped by fixing the faulty components. The SFF model op-
erates by the spread of a failure from an initially failed com-
ponent just as the NLDS model does. However, the SFF
model is not a probabilistic model that is solely dependent
on the architecture of an adjacency matrix as the NLDS model
is. Instead, the SFF model requires a time step dependent
simulation of the spread of a component failure. As with
the NLDS model, a time step is regarded as sufficiently
close to zero so that only the current population of failed
components transmit a failure.

Each “faulty” component has an opportunity to infect a
neighboring susceptible component in the next time step. In
one time step, a component infects its connected neighbors
according to a uniform failure probability. The simulation
run for the SFF model was conducted at l = 10%. After a
component has had an opportunity to infect its neighbors,
the infected component would then be fixed in the conceptual
design to resist the same failure according to the probability of
failure removal m = 10%. A repaired component is either con-
sidered faulty without the ability to transfer the failure to the
neighboring components or is susceptible but resistant to the
failures of its connected neighbors. Therefore, the cascading
failure could be stopped with the provision that enough faulty
components become repaired in the design before they are
able to fully propagate the failure; that is, propagations can
be halted if all transmission routes are blocked by repaired
components.

The same designs were used with the SFF as were used
with the NLDS model. In addition, the same initial failure
conditions were used. An EPS circuit breaker was initially
failed as a minimally connected component. A ground node
was then initially used to propagate the failure as a highly
connected component. Figure 11 shows the epidemic spread-
ing graphs for an initially failed circuit breaker within the EPS
for each ramp design.

In order to compare the time evolution of faulty component
density in the three different conceptual ramp designs, a
component with an equal number of connections from the
EPS subsystems of the ramps is chosen as an initial faulty
component. The reason for this is because SFF failure propa-
gation is based on connections; therefore, the results must be
reported in terms of faulty component density. As is depicted
in Figure 11, each data set is representative of a set of compo-
nents with the same degree (e.g., ramp #1: red colored data set
represents six components in the system design with only
three connections). Therefore, each set of components has a
failure density ranging from 0 to 1; 0 means that no compo-
nents of that degree are infected, and 1 means that every com-
ponent of that degree is infected. Fixed components are not

Fig. 10. Time evolution of faulty components’ population size in ramp
design (a) #1, (b) #2, and (c) #3 (origin of failure: ground).
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considered faulty. Consequently, a plot of faulty component
density fluctuates intermittently between 0 and 1, but it even-
tually settles at 0 as all failed components are fixed in the
system design. In the legend of each graph, a k value is given,
which is indicative of the degree of the components followed
by the number of components within that data set. When a
minimally connected component, such as a circuit breaker,
is chosen as a failure origin, it is compared to an initially in-
fected highly connected component, such as a ground, and
the failure spreads more slowly, as expected.

Figure 12 illustrates the simulation results for an initially
failed, highly connected ground terminal. The plots present
more immediate increases in infection density, regardless of
component degree when a highly connected component is
failed initially. However, once the initial infection has passed
and the failure density begins to subside, the reduction of in-
fection density is not dependent on architecture. This is be-
cause a stopped failure is repaired according to a uniform
probability. This failure is not then passed between connected
components.

5. DISCUSSION

The first ramp design consisted of the fewest number of com-
ponents. Each ramp design was highly modular, especially
the third design, which is the most modular EPS. The third
ramp design is a good example of why looking at the average
node degree and algebraic connectivity independently is an
unreliable exercise. As can be seen from the results in Table 2,
the first two ramp designs are very similar. This is not the case
with the third ramp design, which has a smaller algebraic con-
nectivity with more modules. This is due to the third EPS de-
sign used with that ramp variant. When compared to the other
two EPS designs, the third design has an algebraic connectiv-
ity half that of the other two. In addition, the third EPS design
has more components than the others with a similar average
node degree. However, the maximum node degree of the third
design was greater than the other EPS variants. Upon further
examination, the third EPS design is found to have many
components that are only connected to two components,
one that supplies electrical current and one that receives cur-
rent, making it simpler to make a component independent
from the rest of the system. In addition, a limited number of
components are connected to many others. This small num-
ber of components is what drives the average node degree
of the system up, making each EPS design appear similar
by average node degree. However, because the algebraic con-
nectivity is a measure of the difficulty in making a component
independent of the rest of the system, the algebraic connectiv-
ity of the third ramp design remains low because of the num-
ber of components that have a fewer number of connections.
The low algebraic connectivity is consistent with the recom-
mendation for modular physical system architectures that may
have the unintended downside of making the systems less
tolerant to failure.

Fig. 11. Time evolution of faulty components density for ramp designs (a)
#1, (b) #2, and (c) #3 (origin of failure: circuit breaker). The k value is the
indicative of the degree of the components followed by the number of com-
ponents within that data set.
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After both models were applied to each of the three ramp de-
signs, the NLDS model did not show any relevant evidence to

suggest that any one ramp design (graph layout) was more re-
silient to propagations than the others. However, conclusions
can still be drawn from the results and are discussed below.
The length of time to full propagation was not significantly
different between designs. The NLDS model can adequately
identify those design components that are critical to a system
and whose failure would cause shutdown of the whole system,
as can be seen by the differences in failure origins. Con-
versely, the SFF model can be used to compare different con-
ceptual design architectures for resilience to propagation. This
can be done by analyzing how a failure propagates through a
system and then fixing failed components to inhibit the propa-
gation of the failure. The SFF model determined that the third
ramp design was more resilient to specific nodal attacks, be-
cause both simulations indicated a similar infection breadth.
This result is consistent with the observation of spectral anal-
ysis, because the third design is more modular compared to the
other designs. Therefore, it has a high robustness only because
the failure of components can be isolated to its module.

A couple of telling conclusions can be drawn from the result
of the case study. First, the NLDS models showed that connec-
tivity plays a major role in how fast an epidemic spreads. A few
components with a higher degree increase the speed of infection
throughout a system. This was conclusively shown because the
third ramp design, having a few nodes with a higher degree than
the other designs, will propagate a failure faster. Second, larger
systems will lessen the impact of random or targeted attacks.
The ramp system designs showed this because the normalized
percentage of failure began to equalize between components
with fewerconnections and components with more connections
that were used as failure origins when the system size increased.
Both conclusions provide insight into design architectures that
can be more resilient to failures.

6. CONCLUSIONS AND FUTURE WORK

Establishing robustness during the conceptual design phase is a
difficult yet important aspect to the design of engineered sys-
tems. Utilizing complex network theory in conjunction with
spectral analysis has provided useful insight into the design of
robust complex engineering systems. Spectral analysis provides
valuable metrics in quantifying certain aspects of complex net-
works. These metrics are algebraic connectivity, modularity,
and spectral radius. As stated in this paper, the algebraic connec-
tivity represents the difficulty in making one node independent
of the rest of the system. A higher algebraic connectivity denotes
an increase in components’ connectivity and higher robustness
of the overall system. Because of the close correlation between
complex networks and complex engineered systems, algebraic
connectivity is a good metric to be considered to determine
the resilience of the architecture of complex systems.

To determine the resiliency characteristics of complex engi-
neered systems, two case studies involving complex engi-
neered systems were analyzed using spectral analysis. Utilizing
the algebraic connectivity as the main analysis metric, both

Fig. 12. Time evolution of faulty components density for ramp design (a) #1,
(b) #2, and (c) #3 (origin of failure: ground).
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case studies provided evidence for the validity of using graph
spectral theory on complex engineered systems.

Further, in the second part of the research based on the two
propagation models, a NLDS model and an SFF epidemic
spreading model are developed for use during the early de-
sign of complex systems. From the two models, equations
are provided to model the propagation characteristics of fail-
ures in complex engineered systems. The NLDS propagation
model provides an indication for the length of time to full
propagation according to a graph layout. The SFF epidemic
spreading model provides an indication of the extent of a cas-
cade according to a graph layout.

Although both models provide an indication into properties
relating to failure propagation, they both require the accurate
modeling of a complex engineered system as a graph. This is
no trivial task. Because the graph of a system is dependent on
how connections are defined, it becomes increasingly impor-
tant to develop a standard methodology for modeling. In this
paper, the ramp designs were modeled based on physical
connectivity. To more accurately analyze these propagations,
additional research would analyze the effect on a complex
engineered system if its graph were created using different,
and perhaps more complicated, metrics of design dependency.
Such justifications could include expanded physical connec-
tions that are inclusive of secondary component interactions.
They do not necessarily have a physical connection interface
and may be produced as a consequence of system operation.
This could include heat, noise, and vibration related interac-
tions, among others. In addition, justifications related to EMS
flows would be a necessary next addition to analyze these mod-
els for applicability with complex engineered systems. EMS
flow relations would create connections between components
that share a flow. For instance, two components would be con-
nected as a part of a thermodynamic process if the same work-
ing fluid travels from one component to the other.

Analyzing multiple adjacency matrices created with var-
ious connection justifications per design would provide a
more complete look at a design’s resilience to propagations.
This would add computational expense in the analysis of
the design and designer effort to create the matrices. An auto-
mated method to create the adjacency matrices would solve
this issue; however, this would require an interface between
a design tool such as a computer-aided design suite and a ma-
trix creator.

In order to validate the use of these models, performance
data of an engineered system that is operating in a state of fail-
ure is a necessary next step. By analyzing the time-dependent
response of a system under failure, the propagation properties
predicted by these models can be verified.
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Hölttä, K., Suh, E.S., & de Weck, O. (2005). Trade-off between modularity and
performance for engineered systems and products. ICED 2005: Proc. 15th
Int. Conf. Engineering Design, pp. 15–18, Melbourne, August 15–18.

Ishii, K., & Yang, T.G. (2003). Modularity: international industry bench-
marking and research roadmap. Proc. Design Engineering Technical
Conf./Computers and Information in Engineering Conf. Chicago:
ASME.

Jamakovic, A., Kooij, R.E., Van Mieghem, P., & van Dam, E.R. (2006). Ro-
bustness of networks against viruses: the role of the spectral radius. Proc.
Symp. Communications and Vehicular Technology, pp. 35–38, Liege,
Belgium, November 23.

Jamakovic, A., & Uhlig, S. (2007). On the relationship between the algebraic
connectivity and graph’s robustness to node and link failures. Proc. 3rd
EuroNGI Conf. Next Generation Internet Networks, pp. 96–102, Trond-
heim, Norway, May 21–23.

Jen, E. (2005). Robust Design: A Repertoire of Biological, Ecological, and
Engineering Case Studies. New York: Oxford University Press.

Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., & Barabási, A.L. (2000). The
large-scale organization of metabolic networks. Nature 407, 651–654.

Kurtoglu, T., & Tumer, I.Y. (2008). A graph-based fault identification and
propagation framework for functional design of complex systems. Jour-
nal of Mechanical Design 130(5), 051401.

Kurtoglu, T., Tumer, I.Y., & Jensen, D.C. (2010). A functional failure rea-
soning methodology for evaluation of conceptual system architectures.
Research in Engineering Design 21(4), 209–234.

Lerman, K., & Ghosh, R. (2010). Information contagion: an empirical study
of the spread of news on Digg and Twitter social networks. Proc Int.
Conf. Weblogs and Social Media, pp. 90–97, Washington, DC, May
23–26.

Leveson, N., Dulac, N., Zipkin, D., Cutcher, J., Carroll, J., & Barrett, B.
(2006). Engineering resilience into safety-critical systems. In Resilience
Engineering—Concepts and Precepts, pp. 95–123. Aldershot: Ashgate.

Madni, A.M., & Jackson, S. (2009). Towards a conceptual framework for re-
silience engineering. IEEE Systems Journal 3(2), 181–191.

Marro, J., & Dickman, R. (2005). Nonequilibrium Phase Transitions in Lat-
tice Models. Cambridge: Cambridge University Press.

McCulley, C., & Bloebaum, C.L. (1996). A genetic tool for optimal design
sequencing in complex engineering systems. Structural Optimization
12, 186–201.

Mehrpouyan, H. (2013). Resilient design of complex engineered systems.
Proc. ASME 2013 Int. Design Engineering Technical Conf./Computers
and Information in Engineering Conf. (IDETC/CIE2013). Portland,
OR: ASME.

H. Mehrpouyan et al.106

https://doi.org/10.1017/S0890060414000663 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060414000663


Michelena, N.F., & Panos, Y.P. (1997). A hypergraph framework for optimal
model-based decomposition of design problems. Computational Optimi-
zation and Applications 8(2), 173–196.

Moreno, Y., Pastor-Satorras, R., & Vespignani, A. (2002). Epidemic out-
breaks in complex heterogeneous networks. European Physics Journal
Part B 26, 521–529.

Ormon, S.W., Cassady, C.R., & Greenwood, A.G. (2002). Reliability
prediction models to support conceptual design. Reliability 51(2),
151–157.

Poll, S., Patterson, H.A., Camisa, J., Garcia, D., Hall, D., Lee, C., Meng-
shoel, O.J., Neukom, C., Nishikawa, D., Ossenfort, J., et al. (2007). Ad-
vanced diagnostics and prognostics testbed. Proc. 18th Int. Workshop
Principles of Diagnosis (DX-07), pp. 178–185, Nashville, TN, May
29–31.

Sarkar, S., & Dong, A. (2011). Community detection in graphs using singular
value decomposition. Physical Review E 83(4, Part 2), 046114.

Sarkar, S., Henderson, J.A., & Robinson, P.A. (2013). Spectral characteriza-
tion of hierarchical network nodularity and limits of modularity detec-
tion. PLOS ONE 8(1), e54383.

Stamatis, D.H. (2003). Failure Mode and Effect Analysis: FMEA From The-
ory to Execution. Milwaukee, WI: ASQ Quality Press.

Stone, R.B., Tumer, I.Y., & Van Wie, M. (2005). The function–failure design
method. Journal of Mechanical Design 127(3), 397.

Tiller, M. (2001). Introduction to Physical Modeling With Modelica. Dor-
drecht: Kluwer Academic.

Tu, Y. (2000). How robust is the Internet? Nature 406, 353–354.
Wang, X.F., & Chen, G. (2001). Synchronization in scale-free dynamical net-

works: robustness and fragility. IEEE Transactions on Circuits and Sys-
tems I: Fundamental Theory and Applications 49(1), 54–62.

Wang, X.F., & Chen, G. (2002). Synchronization in small-world dynamical
networks. Internationl Journal of Bifurcation and Chaos in Applied Sci-
ences ad Engineering 12(1), 187–192.

Wang, Y., Chakrabarti, D., Wang, C., & Faloutsos, C. (2003). Epidemic
spreading in real networks: an eigenvalue viewpoint. Proc. 22nd Int.
Symp. Reliable Distributed Systems, pp. 25–34, Florence, Italy, October
6–8.

Wu, J., Barahona, M., Tan, Y.J., & Deng, H.Z. (2011). Spectral measure of
structural robustness in complex networks. IEEE Transactions on Sys-
tems, Man and Cybernetics, Part A: Systems and Humans 41(6),
1244–1252.

Youn, B.D., Hu, C., & Wang, P. (2011). Resilience-driven system design of
complex engineered systems. Journal of Mechanical Design 133(10),
101011.

Zhang, Y., Kurtoglu, T., Tumer, I.Y., & O’Halloran, B. (2011). System level
reliability analysis for conceptual design of electrical power systems.
Proc. Conf. Systems Engineering Research (CSER), Los Angeles, April
15–16.

Christopher Hoyle is currently an Assistant Professor and Ar-
thur Hitsman Faculty Scholar in design in the Mechanical En-
gineering Department at Oregon State University. He received
his PhD from Northwestern University in Mechanical Engi-
neering in 2009 and his master’s degree in mechanical engi-
neering from Purdue University in 1994. He was previously
a Design Engineer and an Engineering Manager at Motorola,
Inc., for 10 years before enrolling in the PhD program. His cur-
rent research interests are focused upon decision making in en-
gineering design, with emphasis on the early design phase. His
research contributions are to the field of decision-based de-
sign, specifically in linking consumer preferences and enter-
prise-level objectives with the engineering design process.
His areas of expertise are uncertainty propagation methodolo-
gies, Bayesian statistics and modeling, stochastic consumer
choice modeling, optimization, and design automation. He
is coauthor of the book Decision-Based Design: Integrating
Consumer Preferences into Engineering Design.

Hoda Mehrpouyan is a PhD candidate in mechanical engi-
neering in the Complex Engineered Systems Design Labora-
tory at Oregon State University. She received her MS degree
in software engineering and management from Linköping
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