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On Nearly Equilateral Simplices and
Nearly l∞ Spaces

Gennadiy Averkov

Abstract. By d(X,Y ) we denote the (multiplicative) Banach–Mazur distance between two normed

spaces X and Y. Let X be an n-dimensional normed space with d(X, ln
∞

) ≤ 2, where ln
∞

stands

for R
n endowed with the norm ‖(x1, . . . , xn)‖∞ := max{|x1|, . . . , |xn|}. Then every metric space

(S, ρ) of cardinality n + 1 with norm ρ satisfying the condition max D/ min D ≤ 2/ d(X, ln
∞

) for

D := {ρ(a, b) : a, b ∈ S, a 6= b} can be isometrically embedded into X.

1 Introduction

The theory of embeddings of finite metric spaces into normed spaces is used in var-

ious applied disciplines, e.g., for qualitative analysis of large data sets (see [7, Chap-

ter 15] and [5]). The spaces close to ln
∞

typically exhibit marginal properties in the

indicated theory. More precisely, they are known to have the “richest” metric struc-

ture; cf. [5, §8.1.3] and a recent result from [1]. The theorem proved in this note

provides another confirmation of the above informal statement.

The Banach–Mazur distance d(X,Y ) between two n-dimensional normed spaces

X and Y, with norms ‖ · ‖X and ‖ · ‖Y , respectively, is the least α ≥ 1 such that for

some bijective linear map T from X to Y one has ‖x‖X ≤ ‖Tx‖Y ≤ α‖x‖X ∀x ∈ X.

Theorem 1.1 Let X be an n-dimensional normed space with α := d(X, ln
∞

) ≤ 2. Let

S be a set of cardinality n + 1, and ρ be a metric satisfying

(1.1)
max D

min D
≤

2

α

for D := {ρ(a, b) : a, b ∈ S, a 6= b} . Then the space (S, ρ) can be isometrically embed-

ded into X.

Theorem 1.1 is similar to [3, Theorem 1.9], providing an analogous statement

with ln2 (n-dimensional Euclidean space) in place of ln
∞

. The metric space (S, ρ) can

be viewed as an abstract n-dimensional simplex, which we wish to realize in certain

normed spaces. The quantity max D/min D estimates the distance of (S, ρ) to the

equilateral metric space (i.e., the space with all non-zero distances equal). In fact, for

α = 2 the only metric space (S, ρ) satisfying (1.1) is the equilateral one. For α = 1

the space X from Theorem 1.1 is necessarily isometric to ln
∞

, and the inequality (1.1)

attains its weakest form max D/ min D ≤ 2.

Received by the editors August 23, 2007.
Published electronically May 11, 2010.
AMS subject classification: 52A21, 51F99, 52C99.

394

https://doi.org/10.4153/CMB-2010-055-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-055-1


On Nearly Equilateral Simplices and Nearly l∞ Spaces 395

Theorem 1.1 generalizes the result of Swanepoel and Villa [10] saying that any

n-dimensional normed space X with d(X, ln
∞

) ≤ 3
2

contains n + 1 points at pairwise

distance one to each other. The proof of Theorem 1.1 extends the arguments from

[10, Theorem B] by employing the observation that for every metric ρ on the set

S = {s1, . . . , sn+1} of cardinality n + 1 the mapping

si 7→
(

ρ(s1, si), . . . , ρ(sn, si)
)

, 1 ≤ i ≤ n + 1,

is an isometric embedding of (S, ρ) into ln
∞

(see [9]). One of the ingredients of the

proof is the Brouwer fixed point theorem (see also [2] for the use of that theorem in

a similar context).

Let X
n be the class of all n-dimensional Banach spaces. It is known that

C · n ≤ max
X,Y∈Xn

d(X,Y ) ≤ n

for some universal constant 0 < C < 1 (see [4] and [6, Section 4.1 and Theo-

rem 5.2.1]). From these bounds it is seen that Theorem 1.1 can be applied to “rather

many” n-dimensional Banach spaces if n is small, say n = 3 or n = 4, and to

n-dimensional normed spaces which are “very close” to ln
∞

if n is large.

2 Proof

Let S = {s1, . . . , sn+1}. In what follows i, j, k are integer indices. For 1 ≤ i, j ≤ n + 1

we put ρi, j := ρ(si , s j). Without loss of generality let

(2.1) min D = 1.

Then (1.1) amounts to

(2.2) max D ≤
2

α
.

Choosing an appropriate coordinate system we may assume that

(2.3) ‖x‖ ≤ ‖x‖∞ ≤ α‖x‖,

where ‖ · ‖ denotes the norm of X. In what follows we shall consider vectors from

R
n(n+1)/2, whose coordinates will be indexed by the elements of the set

I := {(i, j) : 1 ≤ i < j ≤ n + 1} .

Let us introduce the n(n + 1)/2-dimensional cube

P :=
∏

(i, j)∈I

[ 0, 2(α − 1)/α] = [0, 2(α − 1)/α]n(n+1)/2.
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Given the variable vector

(2.4) z := (zi, j)(i, j)∈I ∈ P

consider the vector functions

p1(z) := (ρ1,1, . . . , ρn,1),

...

p j(z) := (ρ1, j + z1, j , . . . , ρ j−1, j + z j−1, j , ρ j, j , . . . , ρn, j) for 2 ≤ j ≤ n,

...

pn+1(z) := (ρ1,n+1 + z1,n+1, . . . , ρn,n+1 + zn,n+1)

with values in R
n. Given 1 ≤ i < j ≤ n + 1, we have

‖p j(z) − pi(z)‖∞ = max{R1
i, j(z), R2

i, j(z), R3
i, j(z), R4

i, j(z)},

where

R1
i, j(z) := max

{

|ρk,i − ρk, j + zk,i − zk, j | : 1 ≤ k ≤ i − 1
}

,

R2
i, j(z) := |ρi,i − ρi, j − zi, j |,

R3
i, j(z) := max

{

|ρk,i − ρk, j − zk, j | : i + 1 ≤ k ≤ j − 1
}

,

R4
i, j(z) := max

{

|ρk,i − ρk, j | : j ≤ k ≤ n
}

.

Let us estimate R1
i, j(z), . . . , R4

i, j(z). For 1 ≤ i < j ≤ n + 1 and 1 ≤ k ≤ n + 1 with

k 6∈ {i, j}, we get

|ρk,i − ρk, j + zk,i − zk, j | ≤ |ρk,i − ρk, j | + |zk,i − zk, j |
(2.1),(2.2),(2.4)

≤ 2
α − 1 + 2(α−1)

α = 1
(2.1)

≤ ρi, j ,

|ρi,i − ρi, j − zi, j | = ρi, j + zi, j ,

|ρk,i − ρk, j − zk, j | ≤ |ρk,i − ρk, j | + |zk, j |
(2.1),(2.2),(2.4)

≤
(

2
α − 1

)

+ 2(α−1)
α = 1

(2.1)

≤ ρi, j ,

|ρk,i − ρk, j | ≤ ρi, j .

Consequently, R1
i, j(z), R3

i, j(z), R4
i, j(z) are not greater than ρi, j and R2

i, j(z) = ρi, j +

zi, j . Hence

(2.5) ‖pi(z) − p j(z)‖∞ = ρi, j + zi, j .
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We define mapping F(z) := (Fi, j(z))(i, j)∈I from P to Π(i, j)∈I R = R
n(n+1)/2 by

Fi, j(z) := ρi, j + zi, j − ‖pi(z) − p j(z)‖.

The mapping F(z) is continuous. The range of Fi, j(z) can be found as follows:

Fi, j(z)
(2.3)

≥ ρi, j + zi, j − ‖pi(z) − p j(z)‖∞
(2.5)
= 0,

Fi, j(z)
(2.3)

≤ ρi, j + zi, j −
1

α
‖pi(z) − p j(z)‖∞

(2.5)
=

α − 1

α
(ρi, j + zi, j)

(2.2),(2.4)

≤
α − 1

α

( 2

α
+

2(α − 1)

α

)

=
2(α − 1)

α
.

The above inequalities can be reformulated as the inclusion F(P) ⊆ P. Thus, the

Brouwer fixed point theorem (see [8, p. 107]) yields the existence of z ′ ∈ P with

F(z ′) = z ′. This implies the equality ‖pi(z ′) − p j(z ′)‖ = ρi, j for 1 ≤ i < j ≤ n + 1,
i.e., the mapping si 7→ pi(z ′) is an isometric embedding of S into X.
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