On Nearly Equilateral Simplices and Nearly l_{∞} Spaces

Gennadiy Averkov

Abstract

By $\mathrm{d}(X, Y)$ we denote the (multiplicative) Banach-Mazur distance between two normed spaces X and Y. Let X be an n-dimensional normed space with $\mathrm{d}\left(X, l_{\infty}^{n}\right) \leq 2$, where l_{∞}^{n} stands for \mathbb{R}^{n} endowed with the norm $\left\|\left(x_{1}, \ldots, x_{n}\right)\right\|_{\infty}:=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}$. Then every metric space (S, ρ) of cardinality $n+1$ with norm ρ satisfying the condition $\max D / \min D \leq 2 / \mathrm{d}\left(X, l_{\infty}^{n}\right)$ for $D:=\{\rho(a, b): a, b \in S, a \neq b\}$ can be isometrically embedded into X.

1 Introduction

The theory of embeddings of finite metric spaces into normed spaces is used in various applied disciplines, e.g., for qualitative analysis of large data sets (see [7, Chapter 15] and [5]). The spaces close to l_{∞}^{n} typically exhibit marginal properties in the indicated theory. More precisely, they are known to have the "richest" metric structure; cf. [5, §8.1.3] and a recent result from [1]. The theorem proved in this note provides another confirmation of the above informal statement.

The Banach-Mazur distance $\mathrm{d}(X, Y)$ between two n-dimensional normed spaces X and Y, with norms $\|\cdot\|_{X}$ and $\|\cdot\|_{Y}$, respectively, is the least $\alpha \geq 1$ such that for some bijective linear map T from X to Y one has $\|x\|_{X} \leq\|T x\|_{Y} \leq \alpha\|x\|_{X} \forall x \in X$.

Theorem 1.1 Let X be an n-dimensional normed space with $\alpha:=\mathrm{d}\left(X, l_{\infty}^{n}\right) \leq 2$. Let S be a set of cardinality $n+1$, and ρ be a metric satisfying

$$
\begin{equation*}
\frac{\max D}{\min D} \leq \frac{2}{\alpha} \tag{1.1}
\end{equation*}
$$

for $D:=\{\rho(a, b): a, b \in S, a \neq b\}$. Then the space (S, ρ) can be isometrically embedded into X.

Theorem 1.1 is similar to [3, Theorem 1.9], providing an analogous statement with l_{2}^{n} (n-dimensional Euclidean space) in place of l_{∞}^{n}. The metric space (S, ρ) can be viewed as an abstract n-dimensional simplex, which we wish to realize in certain normed spaces. The quantity $\max D / \min D$ estimates the distance of (S, ρ) to the equilateral metric space (i.e., the space with all non-zero distances equal). In fact, for $\alpha=2$ the only metric space (S, ρ) satisfying (1.1) is the equilateral one. For $\alpha=1$ the space X from Theorem 1.1 is necessarily isometric to l_{∞}^{n}, and the inequality (1.1) attains its weakest form $\max D / \min D \leq 2$.

[^0]Theorem 1.1 generalizes the result of Swanepoel and Villa [10] saying that any n-dimensional normed space X with $\mathrm{d}\left(X, l_{\infty}^{n}\right) \leq \frac{3}{2}$ contains $n+1$ points at pairwise distance one to each other. The proof of Theorem 1.1 extends the arguments from [10, Theorem B] by employing the observation that for every metric ρ on the set $S=\left\{s_{1}, \ldots, s_{n+1}\right\}$ of cardinality $n+1$ the mapping

$$
s_{i} \mapsto\left(\rho\left(s_{1}, s_{i}\right), \ldots, \rho\left(s_{n}, s_{i}\right)\right), \quad 1 \leq i \leq n+1
$$

is an isometric embedding of (S, ρ) into l_{∞}^{n} (see [9]). One of the ingredients of the proof is the Brouwer fixed point theorem (see also [2] for the use of that theorem in a similar context).

Let X^{n} be the class of all n-dimensional Banach spaces. It is known that

$$
C \cdot n \leq \max _{X, Y \in X^{n}} \mathrm{~d}(X, Y) \leq n
$$

for some universal constant $0<C<1$ (see [4] and [6, Section 4.1 and Theorem 5.2.1]). From these bounds it is seen that Theorem 1.1 can be applied to "rather many" n-dimensional Banach spaces if n is small, say $n=3$ or $n=4$, and to n-dimensional normed spaces which are "very close" to l_{∞}^{n} if n is large.

2 Proof

Let $S=\left\{s_{1}, \ldots, s_{n+1}\right\}$. In what follows i, j, k are integer indices. For $1 \leq i, j \leq n+1$ we put $\rho_{i, j}:=\rho\left(s_{i}, s_{j}\right)$. Without loss of generality let

$$
\begin{equation*}
\min D=1 \tag{2.1}
\end{equation*}
$$

Then (1.1) amounts to

$$
\begin{equation*}
\max D \leq \frac{2}{\alpha} \tag{2.2}
\end{equation*}
$$

Choosing an appropriate coordinate system we may assume that

$$
\begin{equation*}
\|x\| \leq\|x\|_{\infty} \leq \alpha\|x\| \tag{2.3}
\end{equation*}
$$

where $\|\cdot\|$ denotes the norm of X. In what follows we shall consider vectors from $\mathbb{R}^{n(n+1) / 2}$, whose coordinates will be indexed by the elements of the set

$$
I:=\{(i, j): 1 \leq i<j \leq n+1\} .
$$

Let us introduce the $n(n+1) / 2$-dimensional cube

$$
P:=\prod_{(i, j) \in I}[0,2(\alpha-1) / \alpha]=[0,2(\alpha-1) / \alpha]^{n(n+1) / 2}
$$

Given the variable vector

$$
\begin{equation*}
z:=\left(z_{i, j}\right)_{(i, j) \in I} \in P \tag{2.4}
\end{equation*}
$$

consider the vector functions

$$
\begin{aligned}
p_{1}(z): & =\left(\rho_{1,1}, \ldots, \rho_{n, 1}\right) \\
& \vdots \\
p_{j}(z):= & \left(\rho_{1, j}+z_{1, j}, \ldots, \rho_{j-1, j}+z_{j-1, j}, \rho_{j, j}, \ldots, \rho_{n, j}\right) \quad \text { for } 2 \leq j \leq n, \\
& \vdots \\
p_{n+1}(z):= & \left(\rho_{1, n+1}+z_{1, n+1}, \ldots, \rho_{n, n+1}+z_{n, n+1}\right)
\end{aligned}
$$

with values in \mathbb{R}^{n}. Given $1 \leq i<j \leq n+1$, we have

$$
\left\|p_{j}(z)-p_{i}(z)\right\|_{\infty}=\max \left\{R_{i, j}^{1}(z), R_{i, j}^{2}(z), R_{i, j}^{3}(z), R_{i, j}^{4}(z)\right\}
$$

where

$$
\begin{aligned}
& R_{i, j}^{1}(z):=\max \left\{\left|\rho_{k, i}-\rho_{k, j}+z_{k, i}-z_{k, j}\right|: 1 \leq k \leq i-1\right\}, \\
& R_{i, j}^{2}(z):=\left|\rho_{i, i}-\rho_{i, j}-z_{i, j}\right|, \\
& R_{i, j}^{3}(z):=\max \left\{\left|\rho_{k, i}-\rho_{k, j}-z_{k, j}\right|: i+1 \leq k \leq j-1\right\}, \\
& R_{i, j}^{4}(z):=\max \left\{\left|\rho_{k, i}-\rho_{k, j}\right|: j \leq k \leq n\right\} .
\end{aligned}
$$

Let us estimate $R_{i, j}^{1}(z), \ldots, R_{i, j}^{4}(z)$. For $1 \leq i<j \leq n+1$ and $1 \leq k \leq n+1$ with $k \notin\{i, j\}$, we get

$$
\begin{aligned}
& \left|\rho_{k, i}-\rho_{k, j}+z_{k, i}-z_{k, j}\right| \underset{\substack{2.1],[2.22,[2.4]}}{\leq} \quad \begin{array}{l}
\left|\rho_{k, i}-\rho_{k, j}\right|+\left|z_{k, i}-z_{k, j}\right| \\
\\
\\
\frac{2}{\alpha}-1+\frac{2(\alpha-1)}{\alpha}=1 \stackrel{(2.1)}{\leq} \rho_{i, j},
\end{array} \\
& \left|\rho_{i, i}-\rho_{i, j}-z_{i, j}\right| \quad=\quad \rho_{i, j}+z_{i, j}, \\
& \begin{array}{|c|l}
\left|\rho_{k, i}-\rho_{k, j}-z_{k, j}\right| & \leq \\
{\left[\begin{array}{ll}
{[2.1, \underline{2.22},[2.4]} \\
\leq
\end{array}\right.} & \left|\rho_{k, i}-\rho_{k, j}\right|+\left|z_{k, j}\right| \\
\left(\frac{2}{\alpha}-1\right)+\frac{2(\alpha-1)}{\alpha}=1 \stackrel{[2.1]}{\leq} \rho_{i, j},
\end{array} \\
& \left|\rho_{k, i}-\rho_{k, j}\right| \quad \leq \quad \rho_{i, j} .
\end{aligned}
$$

Consequently, $R_{i, j}^{1}(z), R_{i, j}^{3}(z), R_{i, j}^{4}(z)$ are not greater than $\rho_{i, j}$ and $R_{i, j}^{2}(z)=\rho_{i, j}+$ $z_{i, j}$. Hence

$$
\begin{equation*}
\left\|p_{i}(z)-p_{j}(z)\right\|_{\infty}=\rho_{i, j}+z_{i, j} \tag{2.5}
\end{equation*}
$$

We define mapping $F(z):=\left(F_{i, j}(z)\right)_{(i, j) \in I}$ from P to $\Pi_{(i, j) \in I} \mathbb{R}=\mathbb{R}^{n(n+1) / 2}$ by

$$
F_{i, j}(z):=\rho_{i, j}+z_{i, j}-\left\|p_{i}(z)-p_{j}(z)\right\| .
$$

The mapping $F(z)$ is continuous. The range of $F_{i, j}(z)$ can be found as follows:

$$
\begin{aligned}
F_{i, j}(z) & \stackrel{\sqrt[{[2 .} 3]{\geq}}{\geq} \rho_{i, j}+z_{i, j}-\left\|p_{i}(z)-p_{j}(z)\right\|_{\infty} \stackrel{\sqrt[{[2.5}]]{=}}{ } 0 \\
F_{i, j}(z) & \stackrel{(2.3)}{\leq} \rho_{i, j}+z_{i, j}-\frac{1}{\alpha}\left\|p_{i}(z)-p_{j}(z)\right\|_{\infty} \stackrel{\sqrt[2.5]{=}}{=} \frac{\alpha-1}{\alpha}\left(\rho_{i, j}+z_{i, j}\right) \\
& \stackrel{[2.2],[2.4}{\leq} \frac{\alpha-1}{\alpha}\left(\frac{2}{\alpha}+\frac{2(\alpha-1)}{\alpha}\right)=\frac{2(\alpha-1)}{\alpha}
\end{aligned}
$$

The above inequalities can be reformulated as the inclusion $F(P) \subseteq P$. Thus, the Brouwer fixed point theorem (see [8, p. 107]) yields the existence of $z^{\prime} \in P$ with $F\left(z^{\prime}\right)=z^{\prime}$. This implies the equality $\left\|p_{i}\left(z^{\prime}\right)-p_{j}\left(z^{\prime}\right)\right\|=\rho_{i, j}$ for $1 \leq i<j \leq n+1$, i.e., the mapping $s_{i} \mapsto p_{i}\left(z^{\prime}\right)$ is an isometric embedding of S into X.

References

[1] G. Averkov and N. Düvelmeyer, Embedding metric spaces into normed spaces and estimates of metric capacity. Monatsh. Math. 152(2007), no. 3, 197-206. doi:10.1007/s00605-007-0472-6
[2] P. Braß, On equilateral simplices in normed spaces. Beiträge Algebra Geom. 40(1999), no. 2, 303-307.
[3] B. V. Dekster, Simplexes with prescribed edge lengths in Minkowski and Banach spaces. Acta Math. Hungar. 86(2000), no. 4, 343-358. doi:10.1023/A:1006727810727
[4] E. D. Gluskin, The diameter of the Minkowski compactum is roughly equal to n. Funktsional. Anal. i Prilozhen. 15(1981), no. 1, 72-73.
[5] P. Indyk and J. Matoušek, Low-distortion embeddings of finite metric spaces. In: Handbook of discrete and computational geometry. Second ed., Chapman and Hall/CRC Press, Boca Raton, FL, 2004, pp. 177-196.
[6] J. Lindenstrauss and V. D. Milman, The local theory of normed spaces and its applications to convexity. In: Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 1149-1220.
[7] J. Matoušek, Lectures on discrete geometry. Graduate Texts in Mathematics, 212, Springer-Verlag, New York, 2002.
[8] J. R. Munkres, Elements of algebraic topology. Addison-Wesley, Menlo Park, CA, 1984.
[9] I. J. Schoenberg, Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44(1938), no. 3, 522-536. doi:10.2307/1989894
[10] K. J. Swanepoel and R. Villa, A lower bound for the equilateral number of normed spaces. Proc. Amer. Math. Soc. 136(2008), no. 1, 127-131. doi:10.1090/S0002-9939-07-08916-2

Institute for Mathematical Optimization, Faculty of Mathematics, University of Magdeburg, Magdeburg, Germany
e-mail: gennadiy.averkov@ovgu.de

[^0]: Received by the editors August 23, 2007.
 Published electronically May 11, 2010.
 AMS subject classification: 52A21, 51F99, 52C99.

