K. Sakai Nagoya Math. J. Vol. 126 (1992), 125–140

DIFFEOMORPHISMS WITH PSEUDO ORBIT TRACING PROPERTY

KAZUHIRO SAKAI

We shall discuss a differentiable invariant that arises when we consider a class of diffeomorphisms having the pseudo orbit tracing property (abbrev. POTP).

Let M be a closed C^{∞} manifold and $\text{Diff}^1(M)$ be the space of diffeomorphisms of M endowed with the C^1 topology. We denote $\mathscr{P}^1(M)$ the C^1 interior of the set of all diffeomorphisms having POTP belonging to $\text{Diff}^1(M)$. Recently Aoki [1] proved that the C^1 interior of the set of all diffeomorphisms whose periodic points are hyperboric, $\mathscr{F}^1(M)$, is characterized as Axiom A diffeomorphisms with nocycle. After this Moriyasu [8] showed that $\mathscr{P}^1(M) \subset \mathscr{F}^1(M)$ and if dim M = 2then every $f \in \mathscr{P}^1(M)$ satisfies strong transversality.

In this paper the following two theorems will be proved.

THEOREM A. There exists a closed C^{∞} 3-manifold M such that set of all diffeomorphisms having POTP is not dense in Diff¹(M).

The Theorem answers to a problem stated in Morimoto [7].

THEOREM B. If M is a closed C^{∞} 3-manifold, then $\mathcal{P}^1(M)$ is characterized as Axiom A diffeomorphisms satisfying strong transversality.

A diffeomorphism f of M is quasi-Anosov if the fact that $||Df^n(v)||$ is bounded for all $n \in \mathbb{Z}$ implies that v = 0. Theorem A is easily obtained in combining with Franks and Robinson [2] and Sakai [12]. The set of all quasi-Anosov diffeomorphisms belonging to Diff¹(M), QA¹(M), is open and QA¹(M) $\subset \mathcal{F}^1(M)$. It is easy to see that when dim M = 2, every $f \in QA^1(M)$ is Anosov (see [5]). However an example of a diffeomorphism f' on the connected sum M' of two 3-tori that is quasi-Anosov but not Anosov was given in Franks and Robinson [2]. Since f'is Q-stable, there is C^1 neighborhood \mathcal{U} of f' in Diff¹(M') such that every $g \in \mathcal{U}$ is quasi-Anosov but not Anosov. Thus, by [12] every $g \in \mathcal{U}$ cannot have POTP,

Received February 21, 1991.

and so Theorem A is proved.

Before beginning the proof of Theorem B we give some notations and definitions.

Let (X, d) be a compact metric space, and let $f: X \to X$ be a homeomorphism. A sequence of points $\{x_i\}_{i=a}^{b-1} (-\infty \le a < b \le \infty)$ in X is called a δ -pseudo orbit of f if $d(f(x_i), x_{i+1}) < \delta$ for $a \le i \le b-1$. Given $\varepsilon > 0$ a sequence of points $\{x_i\}_{i=a}^{b}$ is said to be $f-\varepsilon$ -traced by a point $x \in X$ if $d(f^i(x), x_i) < \varepsilon$ for $a \le i \le b$. We say that f has the pseudo orbit tracing property (abbrev. POTP) if for $\varepsilon > 0$ there is $\delta > 0$ such that every δ -pseudo orbit for f can be $f-\varepsilon$ -traced by some point of X. For compact spaces the notions stated above are independent of compatible metrics used. It is easy to see that if f has POTP then the non-wandering set $\Omega(f)$ coincides with the chain recurrent set R(f) for f, where R(f) is the set of $x \in X$ such that for every $\delta > 0$, there is a δ -pseudo orbit of f from x to x (see [11]). For $x \in X$ and $\varepsilon > 0$ the local stable and unstable sets are defined by

$$W^{s}_{\varepsilon}(y, f) = \{ x \in X : d(f^{n}(x), f^{n}(y)) \le \varepsilon \text{ for all } n \ge 0 \},\$$
$$W^{u}_{\varepsilon}(x, f) = \{ y \in X : d(f^{-n}(x), f^{-n}(y)) \le \varepsilon \text{ for all } n \ge 0 \}.$$

Suppose that f has POTP. Then it is checked that for every $\varepsilon > 0$, there is $0 < \delta < \varepsilon/2$ such that if $d(x, y) < \delta$ $(x, y \in X)$ then

(1)
$$W^s_{\varepsilon}(x, f) \cap W^u_{\varepsilon}(y, f) \neq \phi.$$

Let M be as before and denote by d a Riemannian metric on M. Then for a hyperbolic set Λ of $f \in \text{Diff}^1(M)$ and for $x \in \Lambda$ the stable and unstable manifolds are defined by

$$W^{s}(x, f) = \{ y \in M : d(f^{n}(y), f^{n}(x)) \to 0 \text{ as } n \to \infty \}.$$
$$W^{u}(x, f) = \{ y \in M : d(f^{-n}(y), f^{-n}(x)) \to 0 \text{ as } n \to \infty \}.$$

When Λ can be written as the finite disjoint union $\Lambda = \Lambda_1 \cup \cdots \cup \Lambda_\ell$ of closed invariant sets Λ_i such that each of $f_{|\Lambda_i}$ is topologically transitive. Such a set Λ_1 is called a *basic set* with respect to Λ . The *stable set* $W^s(\Lambda_i, f)$ and *unstable set* $W^u(\Lambda_i, f)$ are defined by

$$W^{s}(\Lambda_{i}, f) = \{ y \in M : d(f^{n}(y), \Lambda_{i}) \to 0 \text{ as } n \to \infty \}.$$
$$W^{u}(\Lambda_{i}, f) = \{ y \in M : d(f^{-n}(y), \Lambda_{i}) \to 0 \text{ as } n \to \infty \}.$$

Then $W^{\sigma}(\Lambda_i, f) = \bigcup \{W^{\sigma}(x, f) : x \in \Lambda_i\}$ for $\sigma = s$, u. If $\varepsilon > 0$ is small

enough, then for $x \in \Lambda$ the local stable and unstable sets, $W^{\varepsilon}_{\varepsilon}(x, f)$ ($\sigma = s, u$), are C^1 disks tangent to certain subspaces $E^s(x)$ and $E^u(x)$, respectively, such that $x T_x M = E^s(x) \oplus E^u(x)$. Moreover there exists $0 < \lambda < 1$ such that

(2)
$$\begin{cases} d(f^n(y), f^n(z)) \leq \lambda^n d(y, z) \text{ for } y, z \in W^s_{\varepsilon}(x, f) \text{ and } n \geq 0. \\ d(f^{-n}(y), f^{-n}(z)) \leq \lambda^n d(y, z) \text{ for } y, z \in W^u_{\varepsilon}(x, f) \text{ and } n \geq 0 \end{cases}$$

(see Hirsch and Pugh [3]). Thus $W^{\sigma}_{\varepsilon}(x, f) \subset W^{\sigma}(x, f)$ for $x \in \Lambda$ $(\sigma = s, u)$ and

$$W^{s}(x, f) = \bigcup_{\substack{n \ge 0 \\ n \ge 0}} f^{-n}(W^{s}_{\varepsilon}(f^{n}(x), f)),$$

$$W^{u}(x, f) = \bigcup_{\substack{n \ge 0 \\ n \ge 0}} f^{n}(W^{u}_{\varepsilon}(f^{-n}(x), f)).$$

We denote $W^{\sigma}(x, f)$ by $W^{\sigma}(x)$ ($\sigma = s, u$) if there is no confusion.

If f is Axiom A diffeomorphism then we have $M = \bigcup (W^{\sigma}(x) : x \in \Omega(f))$ for $\sigma = s$, u and $\Omega(f)$ is expressed as the union $\Omega(f) = \Lambda_1 \bigcup \cdots \bigcup \Lambda_\ell$ of disjoint basic sets for f. Such union is called the *spectral decomposition* for f. We say that f has a cycle if there is a subsequence $\{\Lambda_{i,i}\}_{i=1}^{s+1}$ $(2 \le s \le \ell)$ of $\{\Lambda_i\}_{i=1}^{\ell}$ such that $W^u(\Lambda_{i,i}) \cap W^s(\Lambda_{i,i+1}) \neq \phi$ $(1 \le j \le s)$ and $\Lambda_{i,s+1} = \Lambda_{i,1}$. We say that f satisfies the strong transversality condition if for all $x, y \in \Omega(f)$, $W^s(x)$ and $W^u(y)$ meet transversely. Remark that $W^s(\Lambda_i) \cap W^u(\Lambda_i) = \Lambda_i$ for $1 \le i \le \ell$.

Now to obtain the conclusion of Theorem B it is enough to see that every $f \in \mathscr{P}^1(M)$ satisfies strong transversality because f satisfies Axiom A as stated above.

Let $f \in \mathscr{P}^1(M)$ and $x \in M$. Then it was proved in [8] that if $0 < \dim W^{\sigma}(x) < \dim M$ for $\sigma = s$, u then $T_x W^s(x) \not\subset T_x W^u(x)$ and $T_x W^u(x) \not\subset T_x W^s(x)$. This tells us that if

(3)
$$\dim W^s(x) + \dim W^u(x) \ge \dim M,$$

then $W^{s}(x)$ and $W^{u}(x)$ meet transversely.

Therefore, to complete the proof of Theorem B it only remains to show (3).

Since $f \in \mathcal{P}^1(M)$ satisfies Axiom A, $\mathcal{Q}(f)$ is decomposed as $\mathcal{Q}(f) = \Lambda_1 \cup \cdots \cup \Lambda_{\ell}$, where each Λ_i is a basic set. Then by [4] for each *i* there exists a compact neighborhood $B(\Lambda_i)$ satisfying the following (4), (5) and (6).

(4) There exists a continuous extension $T_{B(\Lambda_i)}M = \tilde{E}_i^s \oplus \tilde{E}_i^u$ of $T_{\Lambda_i}M = E_i^s \oplus E_i^u$ such that for $x \in B(\Lambda_i) \cap f^{-1}(B(\Lambda_i))$,

$$D_{x}f(\widetilde{E}_{i}^{s}(x)) = \widetilde{E}_{i}^{s}(f(x)) \text{ and } ||D_{x}f|_{\widetilde{E}_{i}^{s}(x)}|| < \lambda,$$

and for $x \in B(\Lambda_i) \cap f(B(\Lambda_i))$.

$$D_x f^{-1}(\widetilde{E}_i^u(x)) = \widetilde{E}_i^u(f^{-1}(x)) \text{ and } \| D_x f^{-1}_{|\widetilde{E}_i^u(x)} \| < \lambda$$

(5) There exists $\varepsilon_1 > 0$ such that for every $0 < \varepsilon \leq \varepsilon_1$ there exist submanifolds $\widetilde{W}^{\sigma}_{\varepsilon}(x)$ $(x \in B(\Lambda_i), \sigma = s, u)$ satisfying

(6) There exists $\delta > 0$ such that if $d(x, y) < \delta(x, y \in B(\Lambda_i))$ then $\widetilde{W}^{s}_{\varepsilon}(x)$ and $\widetilde{W}^{u}_{\varepsilon}(y)$ meet transversely. For E and F subspaces of $T_{A_i}M$ define

 $\tan \sphericalangle (F, E) = \sup \left\{ \frac{\|w_2\|}{\|w_1\|} : w_1 \in E, w_2 \in E^{\perp}, \text{ and } w_1 + w_2 \in F - \{0\} \right\}.$

Then we find $\theta_{1,i} > 0$ satisfying $\tan \not \prec (E_i^s, E_i^{u\perp}) < \theta_{1,i}$ (See [10]). The continuity of \tilde{E}_i^{σ} ($\sigma = s, u$) ensures the existence of $\theta_{2,i} > 0$ satisfying $\tan \not \prec (\tilde{E}_i^s, \tilde{E}_i^{u\perp}) < \theta_{2,i}$.

CLAIM 1. Define $\theta_2 = \max \{ \theta_{2,i} : 1 \le i \le \ell \}$. For $0 < \theta < \theta_2^{-1} \cdot (2 + \theta_2)^{-1}$, there exists $K(\theta) > 0$ such that $K(\theta) \to 0$ as $\theta \to 0$ and for every $v \in T_x M$ ($x \in B(\Lambda_i)$) if $\tan \sphericalangle (v, \tilde{E}_i^u(x)) < \theta$ and $\{x, f(x), \cdots, f^N(x)\} \subset B(\Lambda_i)$ for some N > 0 then $\tan \sphericalangle (D_x f^N(v), \tilde{E}_i^u(f^N(x))) \le K(\theta) \cdot \lambda^{2N}$.

Proof. Let $x \in B(\Lambda_i)$ be fixed. For $v \in T_x M - \{0\}$, let $v = v^s + v^u = (v)_1 + (v)_2$, where $v^s \in \tilde{E}_i^s$, $v^u \in \tilde{E}_i^u$, $(v)_1 \in \tilde{E}_i^u$, and $(v)_2 \in \tilde{E}_i^{u_1}$. Clearly $(v^s)_2 = (v)_2$, $(v^s)_1 + v^u = (v)_1$, $(v^u)_1 = v^u$ and $(v^u)_2 = 0$. Since $f^j(x) \in B(\Lambda_i)$ for $0 \leq j \leq N$ and $\tan \not \in (\tilde{E}_i^s, \tilde{E}_i^{u_1}) < \theta_2$,

$$\frac{\| (D_x f^N(v^s))_1 \|}{\| (D_x f^N(v))_2 \|} < \theta_2$$

and since $f^{i}(x) \in B(\Lambda_{i})$ for $0 \leq j \leq N$,

$$\frac{\|D_x f^N(v^u)\|}{\|D_x f^N(v^s)\|} \ge \lambda^{-2N} \frac{\|v^u\|}{\|v^s\|}.$$

It is checked that

$$\frac{\|v^{s}\|}{\|v^{u}\|} \leq \frac{(1+\theta_{2})\|(v)_{2}\|}{\|(v)_{1}\| - \theta_{2}\|(v)_{2}\|} = \frac{1+\theta_{2}}{\|(v)_{1}\| - \theta_{2}} \leq \frac{1+\theta_{2}}{\|(v)_{2}\| - \theta_{2}} \leq \frac{1+\theta_{2}}{1/\theta + \theta_{2}} = \frac{\theta(1+\theta_{2})}{1-\theta + \theta_{2}} \text{ and}$$

$$\frac{\|(D_x f^N(v))_2\|}{\|(D_x f^N(v))_1\|} \le \left|\frac{\|(D_x f^N(v^s))_1\|}{\|(D_x f^N(v^s))_2\|} - \frac{\|(D_x f^N(v^u))_1\|}{\|(D_x f^N(v^s))_2\|}\right|^{-1}.$$

From these inequalities we have

$$\begin{split} \left| \frac{\| (D_x f^N(v^u))_1 \|}{\| (D_x f^N(v^s))_2 \|} - \frac{\| (D_x f^N(v^s))_1 \|}{\| (D_x f^N(v^s))_2 \|} \right| \geq \lambda^{-2N} \frac{\| v^u \|}{\| v^s \|} - \theta_2 \geq \\ \geq \lambda^{-2N} \frac{1 - \theta \theta_2}{\theta (2 + \theta_2)} - \theta_2 = \lambda^{-2N} \left(\frac{1 - \theta \theta_2}{\theta (1 + \theta_2)} - \lambda^{2N} \cdot \theta_2 \right), \end{split}$$

and so

$$\frac{\left\| (D_x f^{N}(v))_2 \right\|}{\left\| (D_x f^{N}(v))_1 \right\|} \leq \lambda^{2N} \cdot K(\theta),$$

where $K(\theta) = \left(\frac{1-\theta \ \theta_2}{\theta (1+\theta^2)} - \theta_2\right)^{-1}$.

For A a closed set of M, denote by $B_r(A)$ the closed neighborhood of A with radius r > 0.

CLAIM 2. Let Λ_i and Λ_j be the basic sets. Suppose that $2 \ge \operatorname{Ind} \Lambda_j \ge \operatorname{Ind} \Lambda_j$ ≥ 1 where $\operatorname{Ind} \Lambda$ denotes the dimension of the stable subbundle E^s of a basic set Λ . Then there are $r_1 > 0$ $(B_{r_1}(\Lambda_i) \subset B(\Lambda_i)$ and $\theta > 0$ such that if $x \in \Lambda_j$ and $y \in W^s(x) \cap B_{r_1}(\Lambda_i)$, then $\tan \sphericalangle (T_y W^s(x), \tilde{E}_i^u(y)) > \theta$.

Proof. If this is false, for every n > 0 there are $x_n \in \Lambda_j$ (Ind $\Lambda_j \ge \text{Ind } \Lambda_i$) and $y_n \in W^s(x_n) \cap B_{1/n}(\Lambda_i)$ such that $\tan \sphericalangle (T_{y_n}W^s(x_n), \tilde{E}_i^u(y_n)) < 1/n$. Then, by (5) and (6) there are $z_n \in \Lambda_i$ and $w_n = \widetilde{W}_{\varepsilon_1}^s(y_n) \cap \widetilde{W}_{\varepsilon_1}^u(z_n)$. Since $y_n \to \Lambda_i$ as $n \to \infty$, there is a strictly increasing sequence $J_n > 0$ such that $f^k(y_n) \in B(\Lambda_i)$ for $0 \le k \le J_n$ and $f^{J_{n+1}}(y_n) \notin B(\Lambda_i)$. Put $\tau = \inf \{d(x, \Lambda_i) : x \in B(\Lambda_i) \text{ and } f^{-1}(x) \notin B(\Lambda_i)\} > 0$. Since

(7)
$$d(f^{j}(y_{n}), f^{j}(w_{n})) \leq \lambda^{j} d(y_{n}, w_{n}) \text{ for } 0 \leq j \leq J_{n},$$

there is N > 0 such that for every $n \ge N$, $f^{J_n}(y_n) \in B(\Lambda_i) \setminus B_{\tau}(\Lambda_i)$ and $f^{J_n}(w_n) \notin B_{\tau/2}(\Lambda_i)$. Thus it is checked that there exists $c_1 > 0$ such that for every n > 0,

(8)
$$f'(B_{c_1}(f^{J_n}(y_n))) \cap B_{c_1}(f^{J_n}(y_n)) = \phi \text{ for all } j > 0.$$

Indeed, if for every m > 0 there are $n_m > 0$, $j_m > 0$ and $x'_m \in B_{\frac{1}{m}}(f^{Jn_m}(y_{n_m}))$ such that $f^{j_m}(x'_m) \in B_{\frac{1}{m}}(f^{Jn_m}(y_{n_m}))$, then $y = \lim_{m \to \infty} f^{Jn_m}(y_{n_m}) \in R(f)$, which is

https://doi.org/10.1017/S0027763000004025 Published online by Cambridge University Press

a contradiction since $y \notin \Omega(f) = R(f)$.

Similarly we can find $c_2 > 0$ such that for every n > 0

(9)
$$f^{j}(B_{c_{2}}(f^{J_{n}}(w_{n}))) \cap B_{c_{2}}(f^{J_{n}}(w_{n})) = \phi \text{ for all } j > 0.$$

Take and fix $0 \le \theta' \le \theta_2^{-1}(2 + \theta_2)^{-1}$. Then there is N' > N such that for every $n \ge N'$, $\tan \le (T_{y_n} W^s(x_n), \tilde{E}_i^u(y_n)) \le \theta'$. By Claim 1, $\tan \le (D_{y_n} f^{J_n}(T_{y_n} W^s(x_n)), \tilde{E}_i^u(f^{J_n}(y_n))) \to 0$ as $n \to \infty$, and so

$$\tan \not\leq (D_{y_n} f^{J_n}(T_{y_n} W^s(x_n)), \mathscr{E}_{f^{J_n}(w_n), f^{J_n}(w_n)}(\widetilde{E}^u_i(f^{J_n}(w_n)))) \to 0$$

as $n \to \infty$ (by (7)). Here $\mathscr{E}_{x \circ y}$ denotes the parallel transform from $T_x M$ to $T_y M$. Then, from (7), (8) and (9) there are $n \ge N'$ and $g \in \text{Diff}^1(M)$ arbitrarily near to f such that $W^s(x_n, g) \cap W^u(z_n, g) \neq \phi$ and $W^s(x_n, g)$ does not meet transversely to $W^u(z_n, g)$, thus contradiction since $g \in \mathscr{P}^1(M)$.

CLAIM 3 (Lemma IV. 8 of Mañé [6]). Let E^1 and E^2 be Banach spaces with norm $\|\cdot\|$, and denote by $B^i_r(p)$ the ball of radius r in E^i centered at p. Let C > 0and $\varepsilon' > 0$ be constants such that ε' is so small that $\varepsilon' C < 1$. For $\rho_0 > 0$ take 0 < r $\leq \rho_0$ and $0 < \varepsilon \leq \varepsilon'$ satisfying

(10)
$$\frac{\varepsilon(1+\varepsilon')}{1-\varepsilon'C} < \frac{r-\varepsilon}{C} \text{ and } \frac{\varepsilon(1+\varepsilon')}{1-\varepsilon'C} < r.$$

(a) $\psi(0) = 0$, $\|\psi(w_1) - \psi(w_2)\| \le \varepsilon' \|w_1 - w_2\|$

Suppose that $\psi: B^1_{\rho_0}(0) \to E^2$ and $\varphi: B^2_r(p) \to E^1$ are maps satisfying

(b)
$$\|\varphi(p)\| < \varepsilon$$
, $\|\varphi(w_1) - \varphi(w_2)\| \le C \|w_1 - w_2\|$
for $w_1, w_2 \in B^1_{\rho_0}(0)$,
(b) $\|\varphi(p)\| < \varepsilon$, $\|\varphi(w_1) - \varphi(w_2)\| \le C \|w_1 - w_2\|$
for $w_1, w_2 \in B^2_r(p)$, and
(c) $\|p\| < \varepsilon$.

Then graph $\varphi \cap$ graph $\psi \neq \phi$, where graph $\psi = \{(w, \psi(w)) : w \in B^1_{\rho_0}(0)\}$ and graph $\varphi = \{(\varphi(w), w) : w \in B^2_r(p)\}.$

Firstly we show for every $0 < \rho_1 < \min\{r, \frac{1-\varepsilon}{C}\}$, $\varphi(B^2_{\rho_1}(p)) \subset B^1_r(0)$. Take and fix $y \in B^2_{\rho_1}(p)$. Since $||y - p|| < \rho_1 < \frac{r-1}{C}$, we have $C ||y - p|| + \varepsilon < r$. Thus

$$\| \varphi(y) \| \le \| \varphi(\rho) \| + C \| y - p \| \le \varepsilon + C \| y - p \| < r.$$

From this a map $\psi \circ \varphi : B^2_{\rho_1}(p) \to E^2$ is well defined. Since $\| \psi(\varphi(p)) - \psi(0) \| \le \varepsilon' \| \varphi(0) - 0 \| = \varepsilon' \| \varphi(0) \| < \varepsilon' \varepsilon$, we have $\| \psi(\varphi(p)) \| < \varepsilon' \varepsilon$ (by (a)). Therefore, for $w_1, w_2 \in B^2_{\rho_1}(p)$

$$\| \psi \varphi(w_1) - \psi \varphi(w_2) \| \le \varepsilon' \| \varphi(w_1) - \varphi(w_2) \| \le \varepsilon' C \| w_1 - w_2 \|;$$

i.e. $\psi \circ \varphi : B_{\rho_1}^2(p) \to E^2$ is contracting. If we choose $\frac{\varepsilon(1 + \varepsilon')}{1 + \varepsilon' C} < \rho_2 < \min \{r, \frac{r - \varepsilon}{C}\}$, then for every $y \in B_{\rho_2}^2(p)$,

$$\begin{split} \| \, \phi \varphi(y) - p \, \| &\leq \| \, \phi \varphi(y) - \phi \varphi(p) \, \| + \| \, \phi \varphi(p) - p \, \| \leq \\ &\leq \varepsilon' C \, \| \, y - p \, \| + \| \, \phi \varphi(p) \, \| + \| \, p \, \| \leq \\ &\leq \varepsilon' C \rho_2 + \varepsilon' \varepsilon + \varepsilon < \rho_2. \end{split}$$

Thus $\psi \circ \varphi : B^2_{\rho_2}(p) \to B^2_{\rho_2}(p)$ is a contraction. Thus there exists $z \in B^2_{\rho_2}(p)$ such that $\psi \cdot \varphi(z) = z$.

Theorem B will be proved under the above claims. The technique of the proof is to derive a contradiction in proving the existence of a cycle among basic sets $\Lambda_1, \dots, \Lambda_\ell$ under the assumption that f does not satisfy strong transversality. Remark that the dimension of M is 3. To prove Theorem B it is enough to see that

for $x \in M \setminus \Omega(f)$, dim $W^{s}(x) + \dim W^{u}(x) \ge \dim M$ as explained before.

Suppose that there is $x \in M \setminus \Omega(f)$ such that $\dim W^s(x) + \dim W^u(x) < \dim M = 3$ (i.e. $\dim W^s(x) = \dim W^u(x) = 1$). Since $f \in \mathscr{P}^1(M)$, there are $g \in \mathscr{P}^1(M)$ and $\alpha > 0$ such that f = g on a neighborhood of $\Omega(f)$, dim $W^{\sigma}(x, g) = \dim W^{\sigma}(x)$ for $\sigma = s$, u and for the components $C^{\sigma}(x)$ of x in $W^{\sigma}(x, g) \cap B_{\alpha}(x)$ ($\sigma = s, u$), $C^s(x) \cap C^u(x) = \{x\}$.

Let $\Omega(g) = \Lambda_1(g) \cup \cdots \cup \Lambda_{\ell}(g)$ be a spectral decomposition for g. Then there are $1 \leq i \neq j \leq \ell$, $y \in \Lambda_i(g)$ and $z \in \Lambda_j(g)$ such that $W^s(x, g) =$ $W^s(z, g)$. and $W^u(x, g) = W^u(y, g)$. For simplicity suppose $y \in \Lambda_1(g)$ and $z \in \Lambda_2(g)$. Let $0 < \varepsilon_0 < r_1/2$ be a number as in (2) and fix N > 0 such that $g^{-N}(x) \in W^u_{\varepsilon_0/2}(g^{-N}(y), g)$ and $g^N(x) \in W^s_{\varepsilon_0/2}(g^N(z), g)$. Given the connected component $C_{g_{(x)}^{-N}}$ of $g^{-N}(x)$ in $B_{\varepsilon_0/4}(g^{-N}(x)) \cap W^u_{\varepsilon_0}(g^{-N}(y),g)$, we have $C_{g_{(x)}^{-N}}$ $= B_{\varepsilon_0/4}(g^{-N}(x)) \cap W^u_{\varepsilon_0}(g^{-N}(y),g)$. Thus there is $0 < \varepsilon \leq \varepsilon_0/8$ such that $B_{\varepsilon}(g^N(x)) \cap g^{2N}(C_{\varepsilon_{(x)}^{-N}})$ is the connected component of $g^N(x)$ in $B_{\varepsilon}(g^N(x)) \cap$

Denote by $C_{g^{N}(x)}$ the connected component of $g^{N}(x)$ in $B_{\varepsilon}(g^{N}(x)) \cap g^{2N}(C_{g^{-N}(x)})$, and take and fix $0 < \varepsilon_{2} \le \varepsilon/2$ such that $d(v, w) < \varepsilon_{2}$ $(v, w \in M)$ implies $d(g^{-2N}(v), g^{-N}(w)) < \varepsilon_{0}/8$.

CLAIM 4. Fix any $w \in C_{g^N(x)} \cap B_{\varepsilon_2}(g^N(x)) \setminus \{g^N(x)\}$. If there exists $0 < r' < \varepsilon_2$ such that $B_{r'}(w) \cap C_{g^N(x)} \subset C_{g^N(x)} \setminus \{g^N(x)\}$, and if for every $w' \in B_{r'}(w) \cap C_{g^N(x)}$, dim $W^s(w', g) = 1$, then dim $W^s(v, g) = 1$ for every $v \in B_{\delta'}(w) \setminus C_{g^N(x)}$. Here $0 < \delta' = \delta'(r', g) < r'$ is a number satisfying the property (1).

Proof. Note that if there is $v \in B_{\delta'}(w) \setminus C_{g_{X}}$ such that dim $W^s(v, g) = 2$, then $W^s(v, g) \cap (B_{r'}(w) \cap C_{g_{X}}) = \phi$. Since $w \in C_{g_{X}} \cap B_{\varepsilon_2}(g^N(x))$, we have $g^{-2N}(w) \in B_{\varepsilon_0/8}(g^{-N}(x)) \cap W^u_{\varepsilon_0}(g^{-N}(y), g)$ and hence

(11)
$$d(g^{-2N-n}(w), g^{-N-n}(x)) \le \varepsilon_0/8 \text{ for all } n \ge 0$$

Since $d(v, w) < \delta'$, by (1) there is $v' \in M$ such that $d(g^n(v'), g^n(v)) < r' < \varepsilon_0$ for all $n \ge 0$ and $d(g^{-n}(v'), g^{-n}(w)) < r' < \varepsilon/2 < \varepsilon_0/8$ for all $n \ge 0$. Thus

(12)
$$v' \in W^s(v, g).$$

By using (11) it is checked that $d(g^{-2N-n}(v'), g^{-N-n}(x)) < \varepsilon_0/4$ for all $n \ge 0$ (i.e. $g^{-2N}(v') \in C_{g^{-N}(x)}$) Thus $v' \in g^{2N}(C_{g^{-N}(x)}) \cap B_{\varepsilon}(g^N(x)) = Cg_{N \choose x}$ (since $d(v', g^N(x)) \le d(v', w) + d(w, g^N(x)) < \varepsilon/2 + \varepsilon_2 < \varepsilon$). Since d(v', w) < r', we have $v' \in B_{r'}(w) \cap C_{g_{N r}}$. By (12)

$$W^2(v, g) \cap (B_{r'}(w) \cap Cg_{N_r}) \neq \phi$$

which is a contradiction.

For $n \ge 1$ denote as $C_{g^{N+n}(x)}$ the connected component of $g^{N+n}(x)$ in $B_{\varepsilon}(g^{N+n}(z)) \cap g(C_{g^{N+n-1}(x)})$. Note that $C_{g^{N+n}(x)} \subset g(C_{g^{N+n-1}(x)})$ for all $n \ge 1$.

CLAIM 5. For every n > 0 and $0 < \delta \leq \varepsilon_0$, there is N' > n such that for every $w \in B_{1/N'}(g^{N+N'}(x))$,

$$C_w \cap W^u_{\delta/2}(g^{N+N'}(z), g) \neq \phi,$$

where C_w is the connected component of w in $W^s(w, g) \cap B_{\varepsilon_0}(w)$.

Proof. If this is false, then there are $n_0 > 0$, $\delta_0 > 0$ and $w_n \in B_{1/n}(g^{N+n}(x))$ for all $n \ge n_0$ such that $C_{w_n} \cap W^u_{\xi_0}(g^{N+n}(z), g) = \phi$. Let $r_1 > 0$ and $\theta > 0$ be numbers given in Claim 2 for $g \in \mathcal{P}^1(M)$. Clearly

$$d(w_n, g^{N+n}(z)) \le d(w_n, g^{N+n}(x)) + d(g^{N+n}(x), g^{N+n}(z))$$

$$\le 1/n + \lambda^n d(g^N(x), g^N(z)) \to 0$$

as $n \to \infty$ by (2).

For a moment we treat a neighborhood of $g^{N+n}(z)$ as it were \mathbf{R}^3 . Let $E_n^1 = T_{g^{N+n}(x)}W^u_{\delta_0}(g^{N+n}(z), g), E_n^2 = T_{g^{N+n}(x)}W^s_{\delta_0}(g^{N+n}(z), g)$ and fix $n_1 > 0$ such that $d(g^{N+n}(x), g^{N+n}(z)) < r_1$ for $n \ge n_1$. Remark that $g^{N+n}(z) \in \Lambda_2(g)$ and put $p_n = \tilde{E}_2^u(g^{N+n}(x)) \cap E_n^2$ for $n \ge n_1$. Then

(*)
$$d(p_n, g^{N+n}(z)) \to 0 \text{ as } n \to \infty.$$

Thus, by Claim 2 there are constants $C = C(\theta) > 0$, $r_2 = r_2(\theta) > 0$ and $n_2 \ge n_1$ such that for every $n \ge n_2$ there is a map $\varphi_n : B_{r_2}^2(p_n) \to E_n^1$ satisfying

$$(**) \qquad || \varphi_n(p_n) || \to 0 \text{ as } n \to \infty \text{ and}$$

$$\begin{cases} || \varphi_n(w'_1) - \varphi_n(w'_2) || \le C || w'_1 - w'_2 || \text{ for } w'_1, w'_2 \in B^2_{r_2}(p_n), \\ \\ \text{graph } \varphi_n \subset C_{w_n}. \end{cases}$$

Fix $0 < \varepsilon' < 1$ such that $0 < C\varepsilon' < 1$. Then there are $0 < \rho_0 < \delta_0$ and maps $\psi_n : B^1_{\rho_0}(0) \to E^2_n$ for n > 0 such that

$$\begin{cases} \phi_n(0) = 0, \\ \| \phi_n(w_1') - \phi_n(w_2') \| \le \varepsilon \| w_1' - w_2' \| \text{ for } w_1', w^{\mathfrak{e}} \in B^1_{\rho_0}(0) \text{ and} \\ \text{graph } \phi_n \subset W^{\mathfrak{u}}_{\delta_0}(g^{N+n}(z), g) \text{ for } n > 0. \end{cases}$$

Put $r = \min \{ \rho_0, r_2 \}$ and fix $0 < \varepsilon \le \varepsilon'$ such that satisfies (10). Then, from (*) and (**) we can take an integer $n_3 \ge n_2$ such that for every $n \ge n_3$, ϕ_n and φ_n satisfy the assumptions of Claim 3. Thus

$$C_{w_n} \cap W^u_{\delta 0}(g^{N+n}(z), g) \neq \phi.$$

This is a contradiction.

Take and fix n > 0 such that $d(g^{N+n}(x))$, $g^{N+n}(z)) < \delta/2$ where $0 < \delta = \delta(\varepsilon, g) < \varepsilon$ is a number given in (1). Let $N' = N'(n, \delta) \ge n$ be as in Claim 5 and put

$$B^{u}_{\delta/2}(g^{N+N'}(z)) = B_{\delta/2}(g^{N+N'}(z)) \cap W^{u}_{\varepsilon_{0}}(g^{N+N'}(z), g).$$

CLAIM 6. There exists $w \in B^{u}_{\delta/2}(g^{N+N'}(z)) \setminus \{g^{N+N'}(z)\}$ such that dim $W^{s}(w, g) = 1$ and $C_{w} \cap C_{g^{N+n'}(x)} = \phi$ where C_{w} is the connected component of w in $W^{s}(w, g) \cap B_{\varepsilon_{0}}(g^{N+N'}(z))$.

Before beginning with the proof of the Claim 6 we remark the following properties. *Remarks.* (i) For every tubular neighborhood U of $W^s_{\varepsilon_0}(g^{N+N'}(z), g)$, there is no sink periodic point p of g such that $U \setminus W^s_{\varepsilon_0}(g^{N+N'}(z), g) \subset W^s(p, g)$.

To prove this, we suppose that there is a sink p satisfying $U \setminus W^s_{\varepsilon_0}(g^{N+N'}(z), g) \subset W^s(p, g)$. Then there are N'' > N' and $0 < \varepsilon'' \le \varepsilon$ such that for every $n \ge N''$ and $0 < \hat{\varepsilon} \le \varepsilon''$, $C_{g^{N+n}(x)} \cap B_{\hat{\varepsilon}}(g^{N+n}(z)) \subset U$. For $n \ge N''$ we put

$$S^{u}(g^{N+n}(z)) = \partial B^{u}_{\varepsilon_{0}}(g^{N+n}(z)),$$

and for $0 < \hat{\varepsilon} \leq \varepsilon$ let $\hat{\delta} > 0$ be a number as in the definition of POTP of g. Then for every $\hat{\delta}$ there are $n_1(\hat{\delta})$, $n_2(\hat{\delta}) \geq N''$ such that

$$d(g^{N+n_1(\hat{\delta})}(x), g^{N+n_1(\hat{\delta})}(z)) < \frac{\hat{\delta}}{2}$$

and

$$d(g^{N+n_1(\hat{\delta})}(z), w) < \frac{\hat{\delta}}{2}$$

for every $w \in g^{-n_2(\hat{\delta})}(S^{\mathrm{u}}(g^{N+n_1(\hat{\delta})+n_2(\hat{\delta})}(z)))$. Thus for every $w \in g^{-n_2(\hat{\delta})}(S^{\mathrm{u}}(g^{N+n_1(\hat{\delta})+n_2(\hat{\delta})}(z)))$,

$$\{\cdots, g^{N+n_1(\hat{\delta})-2}(x), g^{N+n_1(\hat{\delta})-1}(x), w, g(w), \cdots\}$$

is a $\hat{\delta}$ -pseudo orbit for g. However it is easy to see that if we fix $\hat{\varepsilon}$ small enough, then there exists a $\hat{\delta}$ -pseudo orbit among them which can not be $g - \hat{\varepsilon}$ -traced since

$$C_{g^{N+n_1(\widehat{\delta})}(x)} \cap B_{\widehat{\varepsilon}}(g^{N+n_2(\widehat{\delta})}(x)) \subset U.$$

(ii) There is no stable manifold $W^s(w, g)$ with dim $W^s(w, g) = 2$ and $\overline{W^s(w, g)} \supset W^s(g^{N+N'}(z), g)$ such that there is a sequence of points $\{w_n\}$ in $W^s(w, g) \cap C_{g^{N+N'}(x)} \setminus \{g^{N+N'}(x)\}$ satisfying $w_n \to g^{N+N'}(x)$ and $d_s(w_n, w_{n+1}) \to 0$

0 as $n \to \infty$. Here d_s is a metric on $W^s(w, g)$ induced from $\|\cdot\|$.

In fact, if there exists such a stable manifold then we can find $v \in g^{-2N-N'}(W^s(w, g))$ such that

$$\tan \measuredangle (T_v W^s(g^{-2N+N'}(w), g), \widetilde{E}_1^u(v)) < \theta,$$

where $\theta > 0$ is a number given in Claim 2 for g. This is absurd since $W^s(w, g) \not\subset W^s(\Lambda_1(g), g)$.

(iii) If there is a sequence of points $\{w_n\}$ in $C_{g^{N+N'}(x)}$ such that $w_n \to g^{N+N'}(x)$, $r(W^s(w_n, g)) \to 0$ as $n \to \infty$ and dim $W^s(w_n, g) = 2$ for all $n \ge 0$, then Claim 6 is true. Here $r(W^s(w, g))$ denotes the maximal radius of a closed ball in $(W^s(w, g))$ centered at w with respect to d_s .

Indeed, fix n > 0 and let $\theta > 0$ be a number given in Claim 2 for g. Suppose that there is $v \notin W^s(w_n, g)$ such that dim $W^s(v, g) = 2$ and $\partial W^s(w_n, g)$ $\bigcap W^s(v, g) \neq \phi$. If we pick a point $v' \in \partial W^s(w_n, g) \cap W^s(v, g)$, then there are sufficiently large m > 0 and $v'' \in W^s(g^m(w_n), g)$ arbitrarily near to $g^m(v')$

such that

$$\tan \sphericalangle (T_{v''}W^s(g^m(w_n),g), \widetilde{E}_1^u(v'')) < \theta.$$

This is a contradiction. Thus $\partial W^s(w_n, g)$ consists of two 1-dimensional stable manifolds (since $\bigcup \{W^s(p, g) : p \text{ is a sink periodic point of } g\}$ is open in M).

Proof of Claim 6. We divides the proof into two cases. *Case* 1. For every

$$w \in C_{g^{N+N'}(x)} \cap B_{1/2N'}(g^{N+N'}(z)) \setminus \{g^{N+N'}(z)\}$$

and 0 < r' < 1/N' such that

$$B_{r'}(w) \cap C_{g^{N+N'}(x)} \subset C_{g^{N+N'}(x)} \setminus \{g^{N+N'}(x)\}.$$

there is $w' \in B_{r'}(w) \cap C_{g^{N+N'}(x)}$ such that dim $W^s(w', g) \ge 2$.

Note that $\bigcup \{W^s(\Lambda_k(g), g) : \Lambda_k(g) \text{ is an attractor}\}\ \text{is an open set of } M$. By Remarks (i), (ii) and (iii) we may assume that there is $w \in W^u_{\delta/2}(g^{N+N'}(z), g) \setminus \{g^{N+N'}(z)\}\ \text{such that dim } W^s(w, g) = 2, \ \overline{C_w} \cap W^s(g^{N+N'}(z), g) \neq \phi \ \text{and } C_w \cap C_{g^{N+N'}(x)} = \phi.$ Here C_w denotes the connected component of w in $W^s(w, g) \cap B_{\varepsilon_0}(g^{N+N'}(z)).$

For every $0 < \beta \leq \varepsilon$, let $0 < \gamma(\beta) \leq \beta$ be a number as in the definition of POTP of g. Take $v \in B_{\gamma(\beta)}(g^{N+N'}(x)) \cap C_w$. Then

$$\{\cdots, g^{N+N'-2}(x), g^{N+N'-1}(x), v, g(v), \cdots\}$$

is a $\gamma(\beta)$ -pseudo orbit of g. Thus there exists $\hat{v} \in C_{g^{N+N'}(x)}$ such that $d(g^n(v), g^n(\hat{v})) < \beta$ for all $n \in \mathbb{Z}$, On the other hand, since $v \notin W^s(\Lambda_2(g), g)$, there exists $n_{v,\beta} > 0$, such that $g^i(v) \in B_{r_1/2}(\Lambda_2(g))$ for $0 \le i \le n_{v,\beta}$ and $g^{n_{v,\beta}+1}(v) \notin B_{r_1/2}(\Lambda_2(g))$. Thus we have $B_{\varepsilon}(g^i(v)) \subset B_{r_1}(\Lambda_2(g))$ for $0 \le i \le n_{v,\beta}$. Let be $C_{\hat{v}}$ be the connected component of \hat{v} in $C_{g^{N+N'}(x)} \cap B_{\varepsilon}(\hat{v})$. Then, by the hyperbolicity

of
$$B_{r_1}(\Lambda_2(g))$$
 there is $0 < \varepsilon_3 \le \varepsilon$ such that

$$\inf_{v, \ \theta} d_u(\partial(g^{r_{v,\beta}}(C_{\hat{v}})), g^{r_{v,\beta}}(\hat{v})) \ge \varepsilon_3$$

where d_u denotes a metric on unstable manifolds induced from $\|\cdot\|$. Since $g \in \mathscr{P}^1(M)$ and $g^i(C_{\hat{v}}) \cap g^i(C_{\omega}) = \phi$ for $0 \le i \le n_{v,\beta}$, by using the methods stated in the proofs of Claims 2 and 4 we can find $g' \in \text{Diff}^1(M)$ arbitrarily near to g such that $g'|_{\mathfrak{g}(g)} = g|_{\mathfrak{g}(g)}, W^s(g^{n_{v,\beta}}(v), g') \cap W^u(g^{n_{v,\beta}}(\hat{v}), g') \ne \phi$, and $W^2(g^{n_{v,\beta}}(v), g')$ does not meet transversely to $W^u(g^{n_{v,\beta}}(\hat{v}), g')$. This is a contradiction.

Case 2. There exists

$$w \in C_{g^{N+N'}(x)} \cap B_{1/2N'} (g^{N+N'}(x)) \setminus \{g^{N+N'}(x)\}$$

and $0 \leq r' \leq 1/2N'$ such that

$$B_{r'}(w) \cap C_{g^{N+N'}(x)} \subset C_{g^{N+N'}(x)} \setminus \{g^{N+N'}(x)\}$$

and for every $w' \in B_{r'}(w) \cap C_{g^{N+N'}(x)}$, dim $W^s(w', g) = 1$.

By Claim 4, there is $0 < \delta' = \delta'(r', g) < 1/2N'$. such that for every $v \in B_{\delta'}(w) \setminus C_{g^{N+N'}(x)}$, dim $W^s(v, g) = 1$. Denote by C_v the connected component of v in $W^s(v, g) \cap B_{\varepsilon_0}(v)$ for $v \in B_{\delta'}(w) \setminus C_{g^{N+N'}(x)}$. Take and fix $v \in B_{\delta'}(w) \setminus C_{g^{N+N'}(x)}$ such that $C_v \cap C_{g^{N+N'}(x)} = \phi$. Then there is $v' = C_v \cap W^u_{\delta/2}(g^{N+N'}(z), g) \neq \phi$ by Claim 5 (since $v \in B_{1/2N'}(g^{N+N'}(x))$). This completes the proof of Claim 6.

It is checked that for every $w \in B^{u}_{\delta/2}(g^{N+N'}(z))$,

$$W^s(w, g) \cap C_{g^{N+N'(z)}} \neq \phi.$$

Indeed, since $d(w,g^{N+N'}(x)) < \delta$ for $w \in B^u_{\delta/2}(g^{N+N'}(z))$, there is $w' \in M$ such that

$$d(g^n(w'), g^n(w)) < \varepsilon$$
 for all $n \ge 0$

and

(13)
$$d(g^{-n}(w'), g^{N+N'-n}(x)) < \varepsilon \text{ for all } n \ge 0$$

Thus $g^{-2N+N'}(w') \in C_{g_{(x)}^{-N}}$ and so $g^{-N'}(w') \in g^{2N}(C_{g_{(x)}^{-N}})$. Since $g^{-N'}(w') \in B_{\varepsilon}(g^{N}(x))$ (by (13)), we have $g^{-N'}(w') \in C_{g_{(x)}^{N}}$ and hence $w' \in C_{g^{N+N'}(x)}$. Thus $W^{s}(w, g) \cap C_{g^{N+N'}(x)} \neq \phi$ since $w' \in W^{s}(w, g)$.

Let $W \in B^u_{\delta/2}(g^{N+N'}(z)) \setminus \{g^{N+N'}(z)\}$ be as in Claim 6. Then $w \in W^u(\Lambda_i(g), g)$ and dim $W^s(w, g) = 1$. Since $M = \bigcup_{i=1}^{\ell} W^s(\Lambda_i(g), g)$, we may

suppose that $w \in W^s(\Lambda_3(g),g)$. Clearly $\operatorname{Ind} \Lambda_3(g) = 1$ and $w \in W^u(\Lambda_2(g),g) \cap W^s(\Lambda_3(g),g) \neq \phi$.

It is easy to see that $\Lambda_2(g) \neq \Lambda_3(g)$. For, if $\Lambda_2(g) = \Lambda_3(g)$ then $w \in W^u(\Lambda_2(g), g) \cap W^s(\Lambda_2(g), g) = \Lambda_2(g)$. Thus $C_{\mathcal{B}_{(x)}^{N+N}} \cap W^s_{\varepsilon}(w, g) = \phi$. However, since

$$\{\cdots, g^{-1}(x), x, g(x), \cdots, g^{N+N'-1}(z), w, g(w), \cdots\}$$

is a δ -pseudo orbit of g, we have $C_{g^{N+N'}(x)} \cap W^s_{\varepsilon}(w, g) = \phi$. This is a contradiction. Hence $\Lambda_2(g) \neq \Lambda_3(g)$.

Since $w \in B^{u}_{\delta/2}(g^{N+N'}(z))$, we have $W^{s}(w, g) \cap C_{\mathcal{E}^{N+N'}_{(x)}} \neq \phi$. Thus $W^{s}(\Lambda_{1}(g),g) \cap W^{u}(\Lambda_{3}(g),g) \neq \phi$.

The conclusions obtained above is summarized as follows

(14)
$$\begin{cases} \operatorname{Ind} A_3(g) = 1\\ A_2(g) \neq A_3(g).\\ W^{\mathrm{u}}(A_2(g), g) \cap W^{\mathrm{s}}(A_3(g), g) \neq \phi \text{ and}\\ W^{\mathrm{u}}(A_1(g), g) \cap W^{\mathrm{s}}(A_3(g), g) \neq \phi. \end{cases}$$

By (14) there exists a cycle among basic sets of g. Indeed, since there are $z_1 \\\in \\ A_1(g)$ and $z_2 \\\in \\ A_2(g)$ such that $W^u(z_1, g) \\\cap W^s(z_2, g) \\\neq \\ \phi$ and dim $W^u(z_1, g) \\\cap W^s(z_2, g) \\= 1$, by (14) we can find $z_3 \\\in \\ A_3(g) \\\neq \\A_2(g)$ such that $W^u(z_1, g) \\\cap W^s(z_3, g) \\\neq \\\phi$, dim $W^s(z_3, g) \\= 1$ and $W^u(A_2(g), g) \\\cap W^s(A_3(g), g) \\\neq \\\phi$. Since $W^u(z_1, g) \\\cap W^s(z_3, g) \\\neq \\\phi$ and dim $W^u(z_1, g) \\\subseteq \\$ and $W^u(z_1, g) \\\in \\$ and $W^u(z_1, g) \\\in \\$ by the same manner we can find $z_4 \\\in \\ A_4(g) \\\neq \\A_3(g), g) \\\in \\$ by the same manner we can find $z_4 \\\in \\$ and $W^u(A_3(g), g) \\\cap \\W^s(A_4(g), g) \\\neq \\\phi$. In this repetition we have a cycle among basic sets $A_1(g), \\\cdots, \\ A_\ell(g)$ and reach a contradiction. We finish the proof of Theorem B.

KAZUHIRO SAKAI

REFERENCES

- [1] N. Aoki, The set of Axiom A diffeomorphisms with no cycle, to appear in Bol. Soc. Bras. Math.
- [2] J. Franks and C. Robinson, A quasi-Anosov diffeomorphism that is not Anosov, Trans. AMS., **223** (1976), 267-278.
- [3] M. Hirsch and C. Pugh, Stable manifolds and hyperbolic sets, in Global Analysis, Proc. Sympos. Pure Math. AMS., 14 (1970), 133-163.
- [4] M. Hirsch, J. Palis, C. Pugh and M. Shub, Neighborhoods of hyperbolic sets, Invent. Math., 9 (1970), 121-134.
- [5] R. Mañé, Quasi-Anosov diffeomorphisms and hyperbolic manifolds, Trans. AMS., 229 (1977), 351-370.
- [6] —, A proof of the C^1 stability conjecture, Publ. Math. IHES., **66** (1987), 161–210.
- [7] A. Morimoto, The method of pseudo orbit tracing property and stability, Tokyo Univ. Seminary Notes 39, 1979. (In Japanese.)
- [8] K. Moriyasu, Topological stability of diffeomorphisms, Nagoya Math J., 123 (1991), 91-102.
- [9] J. Palis, On the $C^1 \Omega$ -stability conjecture, Publ. Math. IHES, **66** (1987), 211–215.
- [10] F. Przytycki, Anosov endomorphisms, Studia Math., 58 (1976), 249–283.
- [11] C. Robinson, Stability theorem and hyperbolicity in dynamical systems, Rocky Mountain J. Math., 7 (1977), 425-437.
- [12] K. Sakai, Quasi-Anosov diffemorphisms and pseudo orbit tracing property, Nagoya Math. J., 111 (1988), 111-114.

Kisarazu National College of Technology Kisarazu, Chiba 292 Japan