A CLASS OF POLYNOMIALS IN SELF-ADJOINT OPERATORS IN SPACES WITH AN INDEFINITE METRIC

C.-Y. LO

1. Introduction. Let H be a Hilbert space with the usual product $[x, y]$ and with an indefinite inner product (x, y) which, for some orthogonal decomposition

$$
H=H_{1} \oplus H_{2}
$$

in H, is defined by

$$
(x, y)=\left[x_{1}, y_{1}\right]-\left[x_{2}, y_{2}\right],
$$

where

$$
x=x_{1}+x_{2}, \quad y=y_{1}+y_{2}, \quad x_{1}, y_{1} \in H_{1} ; \quad x_{2}, y_{2} \in H_{2},
$$

and $\operatorname{dim} H_{1}=\kappa$, a fixed positive integer. Such a space H will be called a space Π_{κ} with an indefinite metric. Another axiomatic definition of the space Π_{κ} was given by I. S. Iohvidov and M. G. Kreĭn in (1); we follow their terminology here and use the results of their paper.

A linear operator A in Π_{κ} is called symmetric if it maps a dense domain ${ }^{1}$ $D(A)$ in Π_{κ} into Π_{κ} and has the property

$$
(A x, y)=(x, A y) \text { for all } x, y \in D(A)
$$

A linear operator A^{*} defined in Π_{κ} is called the adjoint of a linear operator A with a dense domain $D(A)$ in Π_{κ} if A^{*} is the maximum operator such that

$$
(A x, y)=\left(x, A^{*} y\right) \text { for all } x \in D(A) \text { and all } y \in D\left(A^{*}\right)
$$

A symmetric operator is said to be self-adjoint if $A=A^{*}$.
L. S. Pontryagin (2) proved that for any self-adjoint operator A there is a κ-dimensional invariant non-negative subspace \mathscr{J}. Let us consider the minimal polynomial $P_{\mu}(\lambda)$ (degree $P_{\mu}(\lambda)=\mu$) of the operator induced by A in \mathscr{J}. Then the operator ${ }^{2} P_{\mu}(A)$ annihilates \mathscr{J}. Let $\bar{P}_{\mu}(\lambda)$ be the complex conjugate of the polynomial $P_{\mu}(\lambda)$. We have for any vector $x \in D\left(A^{\mu}\right)$, $y \in \mathscr{J}$,

$$
\left(P_{\mu}(A) x, y\right)=\left(x, \bar{P}_{\mu}(A) y\right)=0,
$$

[^0]that is, the linear manifold $\left\{P_{\mu}(A) y: y \in D\left(A^{\mu}\right)\right\}$ is orthogonal to \mathscr{J}. Hence, by Lemma 1.2 (1), we can deduce that this linear manifold is non-positive, that is, for all $y \in D\left(A^{\mu}\right)$
$$
\left(P_{\mu}(A) y, P_{\mu}(A) y\right) \leqslant 0
$$

It is, therefore, natural to ask whether for any polynomial $P(\lambda)$ which satisfies the above condition, the operator $P(A)$ annihilates a certain кdimensional non-negative invariant subspace \mathscr{J} of the operator A. We shall show that the answer is affirmative (a similar assertion was proved by I. S. Iohvidov and M. G. Kreĭn (1) for unitary operators).

2. A class of polynomials.

Definition 2.1. A class \mathscr{N}_{A} of polynomials $P_{n}(\lambda)$ is said to be a class of definitizing ${ }^{3}$ polynomials with respect to a self-adjoint operator A in Π_{κ} if

$$
\left(P_{n}(A) x, P_{n}(A) x\right) \leqslant 0 \text { for all } x \in D\left(A^{m}\right)
$$

where $m\left(\geqslant n=\right.$ degree $\left.P_{n}(\lambda)\right)$ is a natural number.
The class \mathscr{N}_{A} is always not empty since $\bar{P}_{\mu}(\lambda) \in \mathscr{N}_{A}$ as shown in the Introduction.

Before we investigate the class \mathscr{N}_{A}, we shall prove a few lemmas for later use. A linear operator U in Π_{κ} is said to be unitary if

$$
(U x, U x)=(x, x) \text { for all } x \in \Pi_{\kappa}
$$

and if U maps Π_{k} onto Π_{k}.
Definition 2.2. An operator U is said to be ζ-Cayley-Neumann connected with a self-adjoint operator A if the non-real complex conjugate numbers $\zeta, \bar{\zeta}$ are not proper values of A and if U is defined by the following formulae:

$$
y=(A x-\zeta x), U y=(A x-\bar{\zeta} x) \quad \text { for } x \in D(A)
$$

I. S. Iohvidov and M. G. Kreĭn $(1, \S 8)$ proved that such an operator U is unitary. The definition is, therefore, well-defined.

Lemma 2.3. If a unitary operator U is ζ-Cayley-Neumann connected with a self-adjoint operator A, then $A^{m} U=U A^{m}$ and $D\left(A^{m}\right)=U D\left(A^{m}\right)$ for any natural number m.

Proof. We shall prove that $(A-\zeta I) D\left(A^{n}\right)=D\left(A^{n-1}\right)$ for any natural number n. For $n=1$ the result is obvious since

$$
(A-\zeta I) D(A)=D(U)=\Pi_{\kappa}=D\left(A^{0}\right)
$$

For $n>1$ we can prove the above assertion by induction.

[^1]By Definition 2.2 we have $U=(A-\bar{\zeta} I)(A-\zeta I)^{-1}$. It follows that $U(A-\zeta I)=(A-\bar{\zeta} I)$. Hence we have
$A^{m} U(A-\zeta I) x=U(A-\zeta I) A^{m} x=U A^{m}(A-\zeta I) x \quad$ for all $x \in D\left(A^{m+1}\right)$.
Since $(A-\zeta I) D\left(A^{m+1}\right)=D\left(A^{m}\right)$, we know, for any $y \in D\left(A^{m}\right)$, that there exists an $x \in D\left(A^{m+1}\right)$ such that $y=(A-\zeta) x$. Therefore we have $A^{m} U y=U A^{m} y$ for all $y \in D\left(A^{m}\right)$; that is $U A^{m}=A^{m} U$.

Since $(A-\zeta I) D\left(A^{m+1}\right)=D\left(A^{m}\right)$ and, similarly, $(A-\bar{\zeta} I) D\left(A^{m+1}\right)=D\left(A^{m}\right)$, we have

$$
U D\left(A^{m}\right)=U(A-\zeta I) D\left(A^{m+1}\right)=(A-\zeta I) D\left(A^{m+1}\right)=D\left(A^{m}\right)
$$

The lemma is proved.
Lemma 2.4. If A is a self-adjoint operator in Π_{κ}, then $D\left(A^{m}\right)$, the domain of the operator A^{m}, is dense in Π_{κ} for any natural number m.

Proof. By definition we have $D(A)=\Pi_{k}$. For $m>1$ we prove this lemma by induction. As in Lemma 2.3 there exist non-real complex conjugate numbers ζ and $\bar{\zeta}$ which are not proper values of A such that $(A-\zeta I) D\left(A^{n+1}\right)=D\left(A^{n}\right)$ and $(A-\bar{\zeta} I) D(A)=\Pi_{k}$. Now let $x=(A-\bar{\zeta}) x^{\prime}$ be any vector in Π_{κ} such that $(x, y)=0$, for all $y \in D\left(A^{n+1}\right)$. It thus follows that for any $y \in D\left(A^{n+1}\right)$ we have

$$
0=\left((A-\bar{\zeta}) x^{\prime}, y\right)=\left(x^{\prime},(A-\zeta) y\right)
$$

that is,

$$
\left(x^{\prime}, z\right)=0 \quad \text { for all } \quad z \in D\left(A^{n}\right)
$$

Since $D\left(A^{n}\right)$ is dense in Π_{κ}, we have $x^{\prime}=\theta$, the zero vector. Hence $x=(A-\bar{\zeta} I) x^{\prime}=\theta$. It thus follows that $D\left(A^{n+1}\right)$ is dense in Π_{k}.

Theorem 2.5. Let A be a self-adjoint operator in Π_{κ} and let $P_{n}(\lambda)$ be a polynomial of degree n. Then the polynomial $P_{n}(A)$ belongs to the class \mathscr{N}_{A} of definitizing polynomials if and only if there exists a к-dimensional non-negative invariant subspace \mathscr{J} of the operator A such that $P_{n}(A)$ annihilates \mathscr{J}.

Proof. The sufficiency was shown in the Introduction. It remains to prove the necessity.

Let $\bar{P}_{n}(\lambda)$ be the complex conjugate polynomial of $P_{n}(\lambda)$ and consider the subspace $N=\overline{\bar{P}_{n}(A) D\left(A^{m}\right)}(m \geqslant n)$ and its orthogonal complement M. It is easy to see that N is a non-positive subspace. By Theorem 4.1 ($1, \S 15$) we have

$$
\Pi_{\kappa}=M_{1} \oplus N_{1} \oplus(G \dot{+} F)
$$

where G is the common isotropic subspace, $\operatorname{dim} G=\operatorname{dim} F=q$, and F is skew-connected with $G ; M=M_{1} \oplus G, N=N_{1} \oplus G$, the subspace N_{1} being a negative subspace. Hence it is easy to see that M_{1} is a space of $\Pi_{k^{\prime}}$ type, where $\kappa^{\prime}=\kappa-q$.

Let U be a unitary operator which is ζ-Cayley-Neumann connected to
the operator A. We shall prove that $U M=M$. In fact, if $x \in M$ we have, by Lemma 2.3,

$$
\left(x, \bar{P}_{n}(A) y\right)=\left(U x, U \bar{P}_{n}(A) y\right)=\left(U x, \bar{P}_{n}(A) U y\right)=0
$$

for all $y \in D\left(A^{m}\right)$. Since $U D\left(A^{m}\right)=D\left(A^{m}\right)$, we have $U x \perp N$, and hence $U M \subset M$. Similarly, we have $U^{-1} M \subset M$. It thus follows that $U M=M$. Therefore by Theorem $4.4 \mathbf{(1 , § 1 6)}$ the operator U has a κ-dimensional non-negative invariant subspace $\mathscr{J}(\subset M)$. Hence by Theorem 2.7 (1, §8) it is also an invariant subspace of A. For any $x \in \mathscr{J}$ and all $y \in D\left(A^{m}\right)$, we have

$$
\left(x, \bar{P}_{n}(A) y\right)=\left(P_{n}(A) x, y\right)=0
$$

Since $D\left(A^{m}\right)$ is dense in Π_{κ}, by Lemma 2.4 we have $P_{n}(A) x=\theta$, for any $x \in \mathscr{J}$. The theorem is proved.

We shall show that all the polynomials $P_{n}(\lambda) \bar{P}_{n}(\lambda)$ have a common factor if $P_{n}(\lambda) \in \mathscr{N}_{A}$.

Let \mathscr{J}_{+}be a κ-dimensional non-negative invariant subspace of a selfadjoint operator A, let $\lambda_{i}\left(\operatorname{Im} \lambda_{j}>0\right), i=1,2, \ldots, r(0 \leqslant r \leqslant \kappa)$ and $\mu_{j}\left(\mu_{j}=\bar{\mu}_{j}\right), j=1,2, \ldots, s(0 \leqslant s \leqslant \kappa)$, be all the proper values of the operator induced by A in \mathscr{J}_{+}, and let σ_{i} and r_{j} be the multiplicities corresponding to λ_{i} and μ_{j}, respectively. The collection of the pairs (λ_{i}, σ_{i}), $i=1,2, \ldots, r$, and $\left(\mu_{i}, r_{j}\right), j=1,2, \ldots, s$, is invariant with respect to \mathscr{J}_{+} ($1, \S 16$, Theorem 4.5 and $\S 8$, Theorem 6). We define the characteristic polynomial of \mathscr{J}_{+}by the formulae:

$$
P_{\kappa}(\lambda)=\prod_{i=1}^{r}\left(\lambda-\lambda_{i}\right)^{\sigma_{i}} \prod_{j=1}^{s}\left(\lambda-\mu_{j}\right)^{r_{j}}, \quad \sum_{i=1}^{r} \sigma_{i}+\sum_{j=1}^{s} r_{j}=\kappa .
$$

Each fixed real proper value $\mu_{j}(j=1,2, \ldots, s)$ has corresponding to it a definite selection of elementary divisors (cf. 1, §4, Theorem 4)

$$
\left(\lambda-\mu_{j}\right)^{\rho j_{1}},\left(\lambda-\mu_{j}\right)^{\rho j_{2}}, \ldots, \quad\left(\lambda-\mu_{j}\right)^{\rho_{j_{k j}}}
$$

where $\rho_{j_{1}} \geqslant \rho_{j 2} \geqslant \ldots \geqslant \rho_{j_{k}} \geqslant 1$ and $\rho_{j_{1}}+\rho_{j 2}+\ldots+\rho_{j_{k_{j}}}=r_{j}$. The number k_{j} of the elementary divisors, unlike the number r_{j}, is, in general, not an invariant of A but depends on the choice of the subspace \mathscr{J}. The last equation shows that only a finite number of different choices of $\rho_{j_{1}}, \rho_{j_{2}}, \ldots, \rho_{j_{k_{j}}}$ is possible. In particular, we can select those of the subspaces for which the first exponent $\rho_{j_{1}}$ is a minimum. Let this minimum be $\rho\left(\mu_{j}\right)$. If we make a similar selection for each of the proper values $\mu_{j}(j=1,2, \ldots, s)$, we obtain an invariant subspace \mathscr{J}_{+}in which the operator A corresponds not only to a unique characteristic polynomial $P_{\kappa}(\lambda)$ but also to a unique minimal polynomial

$$
P_{\mu}(\lambda)=\prod_{i=1}^{r}\left(\lambda-\lambda_{i}\right)^{p_{i}} \prod_{j=1}^{s}\left(\lambda-\mu_{j}\right)^{\rho\left(\mu_{j}\right)}
$$

where the number $p_{i}(i=1,2, \ldots, r), \rho\left(\mu_{j}\right)\left(j=1,2, \ldots, r_{j}\right)$, and

$$
\mu=\sum_{i=1}^{r} p_{i}+\sum_{j=1}^{s} \rho\left(\mu_{j}\right)
$$

are also invariant of A.
We can carry these arguments further. From the subspaces \mathscr{J}_{+}with $\rho_{j_{1}}=\rho\left(\mu_{j}\right)$ we can select those with minimal $\rho_{j_{2}}$, then those with minimal $\rho_{j_{3}}$, and so on. In this way we can prescribe those subspaces \mathscr{J}_{+}in which A corresponds to elementary divisors of minimal degree (in the sense that exponents are selected on the dictionary principle, beginning with the first; thereby obtaining the "shortest" Jordan chains).

Definition 2.6. A κ-dimensional non-negative subspace \mathscr{J}_{+}invariant with respect to a self-adjoint operator A is called regular if the Jordan chain for operator A in \mathscr{J}_{+}is the shortest in the sense explained above. The polynomial $P_{2 \mu}(\lambda)=P_{\mu}(\lambda) \bar{P}_{\mu}(\lambda)$ (where $P_{\mu}(\lambda)$ is defined above) is called the characteristic polynomial of the self-adjoint operator A.

It is obvious that $\bar{P}_{\mu}(\lambda)$ and $P_{\mu}(\lambda)$ belong to \mathscr{N}_{A} and that any minimal polynomial $P_{m}(\lambda)$ of the operator induced by A in \mathscr{J}_{+}is divisible in $P_{\mu}(\lambda)$.

Theorem 2.6. Let A be a self-adjoint operator in Π_{κ} and let $P_{n}(\lambda)$ and $\bar{P}_{n}(\lambda)$ be complex conjugate polynomials of degree n. Then the polynomial $P_{n}(\lambda)$ belongs to the class \mathscr{N}_{A} of definitizing polynomials if and only if $P_{n}(\lambda) \bar{P}_{n}(\lambda)$ is divisible by the characteristic polynomial of the operator A.

Proof. The sufficiency is obvious. Now let us show the necessity. Let us define, for a polynomial

$$
P_{n}(\lambda)=\prod_{i=1}^{n}\left(\lambda-\lambda_{i}\right),
$$

the polynomial

$$
P_{n}{ }^{\prime}(\lambda)=\prod_{i=1}^{n}\left(\lambda-\lambda_{i}{ }^{\prime}\right),
$$

where $\lambda_{i}{ }^{\prime}=\lambda_{i}$ if $\operatorname{Im} \lambda_{i} \geqslant 0$ and $\lambda_{i}{ }^{\prime}=\bar{\lambda}_{i}$ if $\operatorname{Im} \lambda_{i}<0$. Clearly, $P_{n}{ }^{\prime}(\lambda) \in \mathcal{N}_{A}$ if $P_{n}(\lambda) \in \mathscr{N}_{A}$. By Theorem 2.5 there exists a κ-dimensional non-negative invariant subspace \mathscr{J} of the operator A such that $P_{n}{ }^{\prime}(A)$ annihilates $\mathscr{\theta}$. Hence $P_{n}{ }^{\prime}(\lambda)$ is divisible by the minimal polynomial $P_{m}(\lambda)$ of the operator induced by A in \mathscr{J}. It thus follows that the characteristic polynomial of \mathscr{J} has no root which has a negative imaginary part. Hence $P_{m}(\lambda)$ is divisible by $P_{\mu}(\lambda)$. Since $P_{n}(\lambda) \overline{P_{n}}(\lambda)=P_{n}{ }^{\prime}(\lambda) \overline{P_{n}}(\lambda)$, we have $P_{n}(\lambda) \overline{P_{n}}(\lambda)$ is divisible by $P_{\mu}(\lambda) \overline{P_{\mu}}(\lambda)$. The theorem is proved.

Acknowledgments. It is a pleasure to express my gratitude to Professor I. Halperin for suggesting the problem to me and for his encouragement and guidance.

References

1. I. S. Iohvidov and M. G. Kreinn, Spectral theory of operators in spaces with an indefinite metric. I, Transl. Amer. Math. Soc. (2), 13 (1960), 105-176; II, Transl. Amer. Math. Soc. (2), 34 (1963), 283-374.
2. L. S. Pontryagin, Hermitian operators in spaces with indefinite metric, Izv. Akad. Nauk SSSR Ser. Mat., 8 (1944), 243-280. (Russian)

Laurentian University, Sudbury, Ontario

[^0]: Received September 28, 1966. This paper is part of the author's Ph.D. thesis supported by the National Research Council of Canada.
 ${ }^{1}$ We shall always denote the domain of an operator A by $D(A)$.
 ${ }^{2}$ We agree that $A^{0}=I$, the identity operator for any operator A.

[^1]: ${ }^{3}$ The word "definitizing" appeared in the translation of the paper by I. S. Iohvidov and M. G. Kreĭn; see Spectral theory of operators in spaces with an indefinite metric. II, Transl. Amer. Math. Soc. (2), 34 (1963), 283-374.

