A CLASS OF POLYNOMIALS IN SELF-ADJOINT OPERATORS IN SPACES WITH AN INDEFINITE METRIC

C.-Y. LO

1. Introduction. Let H be a Hilbert space with the usual product [x, y] and with an indefinite inner product (x, y) which, for some orthogonal decomposition

 $H = H_1 \oplus H_2$

in H, is defined by

$$(x, y) = [x_1, y_1] - [x_2, y_2],$$

where

$$x = x_1 + x_2, \quad y = y_1 + y_2, \qquad x_1, y_1 \in H_1; \quad x_2, y_2 \in H_2,$$

and dim $H_1 = \kappa$, a fixed positive integer. Such a space H will be called a space Π_{κ} with an indefinite metric. Another axiomatic definition of the space Π_{κ} was given by I. S. Iohvidov and M. G. Krein in (1); we follow their terminology here and use the results of their paper.

A linear operator A in Π_{κ} is called symmetric if it maps a dense domain¹ D(A) in Π_{κ} into Π_{κ} and has the property

$$(Ax, y) = (x, Ay)$$
 for all $x, y \in D(A)$.

A linear operator A^* defined in Π_{κ} is called the adjoint of a linear operator A with a dense domain D(A) in Π_{κ} if A^* is the maximum operator such that

 $(Ax, y) = (x, A^*y)$ for all $x \in D(A)$ and all $y \in D(A^*)$.

A symmetric operator is said to be self-adjoint if $A = A^*$.

L. S. Pontryagin (2) proved that for any self-adjoint operator A there is a κ -dimensional invariant non-negative subspace \mathscr{J} . Let us consider the minimal polynomial $P_{\mu}(\lambda)$ (degree $P_{\mu}(\lambda) = \mu$) of the operator induced by A in \mathscr{J} . Then the operator² $P_{\mu}(A)$ annihilates \mathscr{J} . Let $\bar{P}_{\mu}(\lambda)$ be the complex conjugate of the polynomial $P_{\mu}(\lambda)$. We have for any vector $x \in D(A^{\mu})$, $y \in \mathscr{J}$,

$$(P_{\mu}(A)x, y) = (x, \bar{P}_{\mu}(A)y) = 0,$$

Received September 28, 1966. This paper is part of the author's Ph.D. thesis supported by the National Research Council of Canada.

¹We shall always denote the domain of an operator A by D(A).

²We agree that $A^{0} = I$, the identity operator for any operator A.

that is, the linear manifold $\{P_{\mu}(A)y: y \in D(A^{\mu})\}$ is orthogonal to \mathscr{J} . Hence, by Lemma 1.2 (1), we can deduce that this linear manifold is non-positive, that is, for all $y \in D(A^{\mu})$

$$(P_{\mu}(A)y, P_{\mu}(A)y) \leq 0.$$

It is, therefore, natural to ask whether for any polynomial $P(\lambda)$ which satisfies the above condition, the operator P(A) annihilates a certain κ dimensional non-negative invariant subspace \mathcal{J} of the operator A. We shall show that the answer is affirmative (a similar assertion was proved by I. S. Iohvidov and M. G. Kreĭn (1) for unitary operators).

2. A class of polynomials.

Definition 2.1. A class \mathcal{N}_A of polynomials $P_n(\lambda)$ is said to be a class of definitizing³ polynomials with respect to a self-adjoint operator A in Π_{κ} if

$$(P_n(A)x, P_n(A)x) \leq 0$$
 for all $x \in D(A^m)$,

where $m \ (\ge n = \text{degree } P_n(\lambda))$ is a natural number.

The class \mathcal{N}_A is always not empty since $\bar{P}_{\mu}(\lambda) \in \mathcal{N}_A$ as shown in the Introduction.

Before we investigate the class \mathcal{N}_A , we shall prove a few lemmas for later use. A linear operator U in Π_{κ} is said to be unitary if

$$(Ux, Ux) = (x, x)$$
 for all $x \in \Pi_{\kappa}$

and if U maps Π_{κ} onto Π_{κ} .

Definition 2.2. An operator U is said to be ζ -Cayley-Neumann connected with a self-adjoint operator A if the non-real complex conjugate numbers ζ , $\overline{\zeta}$ are not proper values of A and if U is defined by the following formulae:

$$y = (Ax - \zeta x), Uy = (Ax - \overline{\zeta} x)$$
 for $x \in D(A)$.

I. S. Iohvidov and M. G. Kreĭn (1, §8) proved that such an operator U is unitary. The definition is, therefore, well-defined.

LEMMA 2.3. If a unitary operator U is ζ -Cayley–Neumann connected with a self-adjoint operator A, then $A^m U = UA^m$ and $D(A^m) = UD(A^m)$ for any natural number m.

Proof. We shall prove that $(A - \zeta I)D(A^n) = D(A^{n-1})$ for any natural number *n*. For n = 1 the result is obvious since

$$(A - \zeta I)D(A) = D(U) = \prod_{\kappa} = D(A^{0}).$$

For n > 1 we can prove the above assertion by induction.

³The word "definitizing" appeared in the translation of the paper by I. S. Iohvidov and M. G. Krein; see *Spectral theory of operators in spaces with an indefinite metric.* II, Transl. Amer. Math. Soc. (2), 34 (1963), 283-374.

By Definition 2.2 we have $U = (A - \overline{\zeta}I)(A - \zeta I)^{-1}$. It follows that $U(A - \zeta I) = (A - \overline{\zeta}I)$. Hence we have

$$A^m U(A - \zeta I)x = U(A - \zeta I)A^m x = UA^m (A - \zeta I)x$$
 for all $x \in D(A^{m+1})$.

Since $(A - \zeta I)D(A^{m+1}) = D(A^m)$, we know, for any $y \in D(A^m)$, that there exists an $x \in D(A^{m+1})$ such that $y = (A - \zeta)x$. Therefore we have $A^m Uy = UA^m y$ for all $y \in D(A^m)$; that is $UA^m = A^m U$.

Since $(A - \zeta I)D(A^{m+1}) = D(A^m)$ and, similarly, $(A - \zeta I)D(A^{m+1}) = D(A^m)$, we have

$$UD(A^{m}) = U(A - \zeta I)D(A^{m+1}) = (A - \zeta I)D(A^{m+1}) = D(A^{m}).$$

The lemma is proved.

LEMMA 2.4. If A is a self-adjoint operator in Π_{κ} , then $D(A^m)$, the domain of the operator A^m , is dense in Π_{κ} for any natural number m.

Proof. By definition we have $D(A) = \prod_{\kappa}$. For m > 1 we prove this lemma by induction. As in Lemma 2.3 there exist non-real complex conjugate numbers ζ and $\overline{\zeta}$ which are not proper values of A such that $(A - \zeta I)D(A^{n+1}) = D(A^n)$ and $(A - \overline{\zeta}I)D(A) = \prod_{\kappa}$. Now let $x = (A - \overline{\zeta})x'$ be any vector in \prod_{κ} such that (x, y) = 0, for all $y \in D(A^{n+1})$. It thus follows that for any $y \in D(A^{n+1})$ we have

 $0 = ((A - \bar{\zeta})x', y) = (x', (A - \zeta)y),$

that is,

$$(x', z) = 0$$
 for all $z \in D(A^n)$.

Since $D(A^n)$ is dense in Π_{κ} , we have $x' = \theta$, the zero vector. Hence $x = (A - \overline{\zeta}I)x' = \theta$. It thus follows that $D(A^{n+1})$ is dense in Π_{κ} .

THEOREM 2.5. Let A be a self-adjoint operator in Π_{κ} and let $P_n(\lambda)$ be a polynomial of degree n. Then the polynomial $P_n(A)$ belongs to the class \mathcal{N}_A of definitizing polynomials if and only if there exists a κ -dimensional non-negative invariant subspace \mathcal{J} of the operator A such that $P_n(A)$ annihilates \mathcal{J} .

Proof. The sufficiency was shown in the Introduction. It remains to prove the necessity.

Let $\bar{P}_n(\lambda)$ be the complex conjugate polynomial of $P_n(\lambda)$ and consider the subspace $N = \overline{\bar{P}_n(A)D(A^m)}$ $(m \ge n)$ and its orthogonal complement M. It is easy to see that N is a non-positive subspace. By Theorem 4.1 (1, § 15) we have

$$\Pi_{\kappa} = M_1 \oplus N_1 \oplus (G + F),$$

where G is the common isotropic subspace, dim $G = \dim F = q$, and F is skew-connected with G; $M = M_1 \oplus G$, $N = N_1 \oplus G$, the subspace N_1 being a negative subspace. Hence it is easy to see that M_1 is a space of $\prod_{\kappa'}$ type, where $\kappa' = \kappa - q$.

Let U be a unitary operator which is ζ -Cayley-Neumann connected to

C.-Y. LO

the operator A. We shall prove that UM = M. In fact, if $x \in M$ we have, by Lemma 2.3,

$$(x, \bar{P}_n(A)y) = (Ux, U\bar{P}_n(A)y) = (Ux, \bar{P}_n(A)Uy) = 0$$

for all $y \in D(A^m)$. Since $UD(A^m) = D(A^m)$, we have $Ux \perp N$, and hence $UM \subset M$. Similarly, we have $U^{-1}M \subset M$. It thus follows that UM = M. Therefore by Theorem 4.4 (1, §16) the operator U has a κ -dimensional non-negative invariant subspace \mathscr{J} ($\subset M$). Hence by Theorem 2.7 (1, §8) it is also an invariant subspace of A. For any $x \in \mathscr{J}$ and all $y \in D(A^m)$, we have

$$(x, \bar{P}_n(A)y) = (P_n(A)x, y) = 0.$$

Since $D(A^m)$ is dense in Π_{κ} , by Lemma 2.4 we have $P_n(A)x = \theta$, for any $x \in \mathscr{J}$. The theorem is proved.

We shall show that all the polynomials $P_n(\lambda)\overline{P}_n(\lambda)$ have a common factor if $P_n(\lambda) \in \mathcal{N}_A$.

Let \mathscr{J}_+ be a κ -dimensional non-negative invariant subspace of a selfadjoint operator A, let λ_i (Im $\lambda_j > 0$), $i = 1, 2, \ldots, r$ ($0 \leq r \leq \kappa$) and μ_j ($\mu_j = \bar{\mu}_j$), $j = 1, 2, \ldots, s$ ($0 \leq s \leq \kappa$), be all the proper values of the operator induced by A in \mathscr{J}_+ , and let σ_i and r_j be the multiplicities corresponding to λ_i and μ_j , respectively. The collection of the pairs (λ_i, σ_i), $i = 1, 2, \ldots, r$, and (μ_i, r_j), $j = 1, 2, \ldots, s$, is invariant with respect to \mathscr{J}_+ (1, §16, Theorem 4.5 and §8, Theorem 6). We define the characteristic polynomial of \mathscr{J}_+ by the formulae:

$$P_{\kappa}(\lambda) = \prod_{i=1}^{r} (\lambda - \lambda_i)^{\sigma_i} \prod_{j=1}^{s} (\lambda - \mu_j)^{r_j}, \qquad \sum_{i=1}^{r} \sigma_i + \sum_{j=1}^{s} r_j = \kappa.$$

Each fixed real proper value μ_j (j = 1, 2, ..., s) has corresponding to it a definite selection of elementary divisors (cf. 1, §4, Theorem 4)

$$(\lambda - \mu_j)^{\rho_{j_1}}, \ (\lambda - \mu_j)^{\rho_{j_2}}, \ldots, \ \ (\lambda - \mu_j)^{\rho_{j_{k_j}}},$$

where $\rho_{j_1} \ge \rho_{j_2} \ge \ldots \ge \rho_{j_{k_j}} \ge 1$ and $\rho_{j_1} + \rho_{j_2} + \ldots + \rho_{j_{k_j}} = r_j$. The number k_j of the elementary divisors, unlike the number r_j , is, in general, not an invariant of A but depends on the choice of the subspace \mathscr{J} . The last equation shows that only a finite number of different choices of $\rho_{j_1}, \rho_{j_2}, \ldots, \rho_{j_{k_j}}$ is possible. In particular, we can select those of the subspaces for which the first exponent ρ_{j_1} is a minimum. Let this minimum be $\rho(\mu_j)$. If we make a similar selection for each of the proper values μ_j $(j = 1, 2, \ldots, s)$, we obtain an invariant subspace \mathscr{J}_+ in which the operator A corresponds not only to a unique characteristic polynomial $P_s(\lambda)$ but also to a unique minimal polynomial

$$P_{\mu}(\lambda) = \prod_{i=1}^{r} (\lambda - \lambda_{i})^{p_{i}} \prod_{j=1}^{s} (\lambda - \mu_{j})^{\rho(\mu_{j})},$$

where the number p_i (i = 1, 2, ..., r), $\rho(\mu_j)$ $(j = 1, 2, ..., r_j)$, and

$$\mu = \sum_{i=1}^{r} p_{i} + \sum_{j=1}^{s} \rho(\mu_{j})$$

are also invariant of A.

We can carry these arguments further. From the subspaces \mathscr{J}_+ with $\rho_{j_1} = \rho(\mu_j)$ we can select those with minimal ρ_{j_2} , then those with minimal ρ_{j_3} , and so on. In this way we can prescribe those subspaces \mathscr{J}_+ in which A corresponds to elementary divisors of minimal degree (in the sense that exponents are selected on the dictionary principle, beginning with the first; thereby obtaining the "shortest" Jordan chains).

Definition 2.6. A κ -dimensional non-negative subspace \mathscr{J}_+ invariant with respect to a self-adjoint operator A is called *regular* if the Jordan chain for operator A in \mathscr{J}_+ is the shortest in the sense explained above. The polynomial $P_{2\mu}(\lambda) = P_{\mu}(\lambda)\bar{P}_{\mu}(\lambda)$ (where $P_{\mu}(\lambda)$ is defined above) is called the *characteristic polynomial of the self-adjoint operator* A.

It is obvious that $\bar{P}_{\mu}(\lambda)$ and $P_{\mu}(\lambda)$ belong to \mathcal{N}_{A} and that any minimal polynomial $P_{m}(\lambda)$ of the operator induced by A in \mathcal{J}_{+} is divisible in $P_{\mu}(\lambda)$.

THEOREM 2.6. Let A be a self-adjoint operator in Π_{κ} and let $P_n(\lambda)$ and $\bar{P}_n(\lambda)$ be complex conjugate polynomials of degree n. Then the polynomial $P_n(\lambda)$ belongs to the class \mathcal{N}_A of definitizing polynomials if and only if $P_n(\lambda)\bar{P}_n(\lambda)$ is divisible by the characteristic polynomial of the operator A.

Proof. The sufficiency is obvious. Now let us show the necessity. Let us define, for a polynomial

$$P_n(\lambda) = \prod_{i=1}^n (\lambda - \lambda_i),$$

the polynomial

$$P_n'(\lambda) = \prod_{i=1}^n (\lambda - \lambda_i'),$$

where $\lambda_i' = \lambda_i$ if Im $\lambda_i \ge 0$ and $\lambda_i' = \bar{\lambda}_i$ if Im $\lambda_i < 0$. Clearly, $P_n'(\lambda) \in \mathcal{N}_A$ if $P_n(\lambda) \in \mathcal{N}_A$. By Theorem 2.5 there exists a κ -dimensional non-negative invariant subspace \mathscr{J} of the operator A such that $P_n'(A)$ annihilates \mathscr{I} . Hence $P_n'(\lambda)$ is divisible by the minimal polynomial $P_m(\lambda)$ of the operator induced by A in \mathscr{J} . It thus follows that the characteristic polynomial of \mathscr{J} has no root which has a negative imaginary part. Hence $P_m(\lambda)$ is divisible by $P_{\mu}(\lambda)$. Since $P_n(\lambda)\overline{P_n}(\lambda) = P_n'(\lambda)\overline{P_n'}(\lambda)$, we have $P_n(\lambda)\overline{P_n}(\lambda)$ is divisible by $P_{\mu}(\lambda)\overline{P_{\mu}}(\lambda)$. The theorem is proved.

Acknowledgments. It is a pleasure to express my gratitude to Professor I. Halperin for suggesting the problem to me and for his encouragement and guidance.

C.-Y. LO

References

- I. S. Iohvidov and M. G. Krein, Spectral theory of operators in spaces with an indefinite metric. I, Transl. Amer. Math. Soc. (2), 13 (1960), 105–176; II, Transl. Amer. Math. Soc. (2), 34 (1963), 283–374.
- 2. L. S. Pontryagin, Hermitian operators in spaces with indefinite metric, Izv. Akad. Nauk SSSR Ser. Mat., 8 (1944), 243-280. (Russian)

Laurentian University, Sudbury, Ontario