
1

Measure Theory and Laws
of Large Numbers

1.1 Introduction

If you’re reading this, you’ve probably already seen many different types of
random variables and have applied the usual theorems and laws of probabil-
ity to them. We will, however, show you there are some seemingly innocent
random variables for which none of the laws of probability apply. Mea-
sure theory, as it applies to probability, is a theory that carefully describes
the types of random variables the laws of probability apply to. This puts
the whole field of probability and statistics on a mathematically rigorous
foundation.

You are probably familiar with some proof of the famous strong law
of large numbers, which asserts that the long-run average of independent
and identically distributed (iid) random variables converges to the expected
value. One goal of this chapter is to show you a beautiful and more general
alternative proof of this result using the powerful ergodic theorem. In
order to do this, we will first take you on a brief tour of measure theory
and introduce you to the dominated convergence theorem, one of measure
theory’s most famous results and the key ingredient we need.

In Section 1.2, we construct an event, called a nonmeasurable event, to
which the laws of probability don’t apply. In Section 1.3, we introduce the
notions of countably and uncountably infinite sets and show you how the
elements of some infinite sets cannot be listed in a sequence. In Section 1.4,
we define a probability space and the laws of probability that apply to them.
In Section 1.5, we introduce the concept of a measurable random variable,
and in Section 1.6, we introduce the concepts of convergence and limits. In
Section 1.7, we define the expected value in terms of the Lebesgue integral.
In Section 1.8, we illustrate and prove the dominated convergence theorem,
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2 1 Measure Theory and Laws of Large Numbers

and Section 1.9, we discuss convergence in probability and distribution.
Lastly, in Section 1.10, we prove zero-one laws and the ergodic theorem
and use these to obtain the strong law of large numbers.

1.2 A Nonmeasurable Event

Consider a circle that has a radius equal to one. We say that two points on
the edge of the circle are in the same family if you can go from one point to
the other point by taking steps of length one unit around the edge of the
circle. By this we mean each step you take moves you an angle of exactly
one radian degree around the circle, and you are allowed to keep looping
around the circle in either direction.

Suppose each family elects one of its members to be the head of the
family. Here is the question: What is the probability a point X selected
uniformly at random along the edge of the circle is the head of its family?
It turns out this question has no answer.

The first thing to notice is that each family has an infinite number of
family members. Because the circumference of the circle is 2π, you can
never get back to your starting point by looping around the circle with
steps of length one. If it were possible to start at the top of the circle and
get back to the top going a steps clockwise and looping around b times,
then you would have a = b2π for some integers a, b, and hence π = a/(2b).
This is impossible because it’s well-known that π is an irrational number
and can’t be written as a ratio of integers.

It may seem to you like the probability should either be zero or one,
but we will show you why neither answer could be correct. It doesn’t even
depend on how the family heads are elected. Define the events A = {X
is the head of its family}, Ai = {X is i steps clockwise from the head of
its family}, and Bi = {X is i steps counterclockwise from the head of its
family}.

BecauseX was uniformly chosen, we must have P (A) = P (Ai) = P (Bi).
But because every family has a head, the sum of these probabilities should
equal one, or in other words,

1 = P (A) +

∞∑
i=1

(P (Ai) + P (Bi)).

Thus, if x = P (A) we get 1 = x +
∑∞

i=1 2x, which has no solution where
0 ≤ x ≤ 1. This means it’s impossible to compute P (A), and the answer
is neither zero nor one, nor any other possible number. The event A is
called a non-measurable event, because you can’t measure its probability
in a consistent way.
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1.3 Countable and Uncountable Sets 3

What’s going on here? It turns out that allowing only one head per
family, or any finite number of heads, is what makes this event nonmea-
surable. If we allowed more than one head per family and gave everyone
a 50% chance, independent of all else, of being a head of the family, then
we would have no trouble measuring the probability of this event. Or if we
let everyone in the top half of the circle be a family head, and again let
families have more than one head, the answer would be easy. Later we will
give a careful description of what types of events we can actually compute
probabilities for.

Being allowed to choose exactly one family head from each family re-
quires a special mathematical assumption called the axiom of choice. This
axiom famously can create all sorts of other logical mayhem, such as allow-
ing you to break a sphere into a finite number of pieces and rearrange them
into two spheres of the same size (the Banach–Tarski paradox). For this
reason, the axiom is controversial and has been the subject of much study
by mathematicians.

1.3 Countable and Uncountable Sets

You may now be asking yourself if the existence of a uniform random vari-
able X ∼ U(0, 1) also contradicts the laws of probability. We know that
for all x, P (X = x) = 0, but also P (0 ≤ X ≤ 1) = 1. Doesn’t this give a
contradiction because

P (0 ≤ X ≤ 1) =
∑

x∈[0,1]

P (X = x) = 0?

Actually, this is not a contradiction because a summation over an interval
of real numbers does not make any sense. Which values of x would you
use for the first few terms in the sum? The first term in the sum could use
x = 0, but it’s difficult to decide which value of x to use next.

In fact, infinite sums are defined in terms of a sequence of finite sums:

∞∑
i=1

xi ≡ lim
n→∞

n∑
i=1

xi,

so to have an infinite sum, it must be possible to arrange the terms in a
sequence. If an infinite set of items can be arranged in a sequence it is
called countable; otherwise it is called uncountable.

Obviously the integers are countable using the sequence 0, −1, +1, −2,
+2, . . .. The positive rational numbers are also countable if you express
them as a ratio of integers and list them in order by the sum of these
integers:
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4 1 Measure Theory and Laws of Large Numbers

The real numbers between zero and one, however, are not countable.
Here we will explain why. Suppose somebody thinks they have a method
of arranging them into a sequence x1, x2, ..., where we express them as
xj =

∑∞
i=1 dij10

−i so that dij ∈ {0, 1, 2, ..., 9} is the ith digit after the
decimal place of the jth number in their sequence. Then you can clearly
see that the number

y =

∞∑
i=1

(1 + I{dii = 1})10−i,

where I{A} equals one if A is true and zero otherwise is nowhere to be
found in their sequence. This is because y differs from xi in at least the
ith decimal place, so it is different from every number in their sequence.
Whenever someone tries to arrange the real numbers into a sequence, this
shows that they will always be omitting some of the numbers. This proves
that the real numbers in any interval are uncountable and that you can’t
take a sum over all of them.

So it’s true with X ∼ U(0, 1) that for any countable set A we have
P (X ∈ A) =

∑
x∈A P (X = x) = 0, but we can’t simply sum up the

probabilities like this for an uncountable set. There are, however, some
examples of uncountable sets A (the Cantor set, for example) that have
P (X ∈ A) = 0.

1.4 Probability Spaces

Let Ω be the set of points in a sample space, and let F be the collection
of subsets of Ω for which we can calculate a probability. These subsets are
called events and can be viewed as possible things that could happen. If we
let P be the function that gives the probability for any event in F , then the
triple (Ω,F , P ) is called a probability space. The collection F is usually
what is called a sigma field (also called a sigma algebra), which we define
next.

Definition 1.1 The collection of sets F is a sigma field, or a σ field, if it
has the following three properties:

1. Ω ∈ F

2. A ∈ F → Ac ∈ F

3. A1, A2, . . . ∈ F → ∪∞
i=1Ai ∈ F .

These properties say you can calculate the probability of the whole
sample space (Property 1), the complement of any event (Property 2), and
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1.4 Probability Spaces 5

the countable union of any sequence of events (Property 3). They also
imply that you can calculate the probability of the countable intersection
of any sequence of events because ∩∞

i=1Ai = (∪∞
i=1A

c
i )

c
.

To specify a σ field, people typically start with a collection of events A
and write σ(A) to represent the smallest σ field containing the collection of
events A. Thus σ(A) is called the σ field “generated” by A. It is uniquely
defined as the intersection of all possible sigma fields that contain A, and
in Exercise 3 at the end of this chapter, you will show such an intersection
is always a sigma field.

Example 1.2 Let Ω = {a, b, c} be the sample space, and letA = {{a, b}, {c}}.
Then A is not a σ field because {a, b, c} /∈ A, but σ(A) = {{a, b, c}, {a, b},
{c}, φ}, where φ = Ωc is the empty set.

Definition 1.3 A probability measure P is a function, defined on the sets
in a sigma field, which has the following three properties:

1. P (Ω) = 1, and

2. P (A) ≥ 0, and

3. P (∪∞
i=1Ai) =

∑∞
i=1 P (Ai) if ∀i �= j we have Ai ∩Aj = φ.

These properties imply that probabilities must be between zero and one
and say that the probability of a countable union of mutually exclusive
events is the sum of the probabilities.

Example 1.4 Dice. If you roll a pair of dice, the 36 points in the sample
space are Ω = {(1, 1), (1, 2), ..., (5, 6), (6, 6)}. We can let F be the collection
of all possible subsets of Ω, and it’s easy to see that it is a sigma field. Then
we can define

P (A) =
|A|
36

,

where |A| is the number of sample space points in A. Thus, if A = {(1, 1),
(3, 2)}, then P (A) = 2/36, and it’s easy to see that P is a probability
measure.

Example 1.5 The unit interval. Suppose we want to pick a uniform random
number between zero and one. Then the sample space equals Ω = [0, 1],
the set of all real numbers between zero and one. We can let F be the
collection of all possible subsets of Ω, and it’s easy to see that it is a sigma
field. But it turns out that it’s not possible to put a probability measure
on this sigma field. Because one of the sets in F would be similar to the set
of heads of the family (from the nonmeasurable event example), this event
cannot have a probability assigned to it. So this sigma field is not a good
one to use in probability.
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6 1 Measure Theory and Laws of Large Numbers

Example 1.6 The unit interval again. Again with Ω = [0, 1], suppose we
use the sigma field F = σ({x}x∈Ω), the smallest sigma field generated by
all possible sets containing a single real number. This is a nice enough
sigma field, but it would never be possible to find the probability for some
interval, such as [0.2, 0.4]. You can’t take a countable union of single real
numbers and expect to get an uncountable interval somehow. So this is
not a good sigma field to use.

If we want to put a probability measure on the real numbers between
zero and one, what sigma field can we use? The answer is the Borel sigma
field B, the smallest sigma field generated by all intervals of the form [x, y)
of real numbers between zero and one: B = σ([x, y)x<y∈Ω). The sets in this
sigma field are called Borel sets. We will see that most reasonable sets you
would be interested in are Borel sets, although sets similar to the one in
the “heads of the family” example are not Borel sets.

We can then use the special probability measure, which is called a
Lebesgue measure (named after the French mathematician Henri Lebesgue),
defined by P ([x, y)) = y − x, for 0 ≤ x ≤ y ≤ 1, to give us a uniform dis-
tribution. Defining it for just these intervals is enough to uniquely specify
the probability of every set in B. (This fact can be shown to follow from
Theorem 1.65, which is discussed later). And actually, you can do almost
all of probability starting from just a uniform(0,1) random variable, so this
probability measure is pretty much all you need.

Example 1.7 If B is the Borel sigma field on [0,1], is {.5} ∈ B? Yes,
because {0.5} = ∩∞

i=1[0.5, 0.5 + 1/i). Also note that {1} = [0, 1)c ∈ B.

Example 1.8 If B is the Borel sigma field on [0,1], is the set of rational
numbers between zero and one Q ∈ B? The argument from the previous
example shows {x} ∈ B for all x, so each number by itself is a Borel set,
and we then get Q ∈ B because Q is countable union of such numbers. Also
note that this then means Qc ∈ B, so the set of irrational numbers is also
a Borel set.

There are some Borel sets that can’t directly be written as a countable
intersection or union of intervals like the preceding, but you usually don’t
run into them.

From the definition of probability, we can derive many of the famous
formulas you may have seen before such as

P (A ∪B) = P (A) + P (B)− P (A ∩B),
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1.4 Probability Spaces 7

and extending this by induction,

P (∪n
i=1Ai) =

∑
i

P (Ai)−
∑
i<j

P (Ai ∩Aj)

+
∑

i<j<k

P (Ai ∩Aj ∩Ak) · · ·

· · ·+ (−1)n+1P (A1 ∩A2 · · · ∩An),

where the last formula is usually called the inclusion–exclusion formula.
Next we give a couple of examples applying these. In these examples,
the sample space is finite, and in such cases unless otherwise specified, we
assume the corresponding sigma field is the set of all possible subsets of the
sample space.

Example 1.9 Cards. A deck of n cards is well shuffled many times. (a)
What’s the probability the cards all get back to their initial positions? (b)
What’s the probability at least one card is back in its initial position?

Solution Because there are n! different ordering for the cards and all are
approximately equally likely after shuffling, the answer to Part (a) is ap-
proximately 1/n!. For the answer to Part (b), let Ai = {card i is back in
its initial position} and let A = ∪∞

i=1Ai be the event at least one card is
back in its initial position. Because P (Ai1 ∩ Ai2 ∩ ... ∩ Aik) = (n− k)!/n!,
and because the number of terms in the kth sum of the inclusion–exclusion
formula is

(
n
k

)
, we have

P (A) =
n∑

k=1

(−1)k+1

(
n

k

)
(n− k)!

n!

=

n∑
k=1

(−1)k+1

k!

≈ 1− 1/e

for large n.

Example 1.10 Coins. If a fair coin is flipped n times, what is the chance
of seeing at least k heads in row?

Solution We will show you that the answer is

(n+1)/(k+1)∑
m=1

(−1)m+1
[(

n−mk
m

)
2−m(k+1) +

(
n−mk
m−1

)
2−m(k+1)+1

]
.
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8 1 Measure Theory and Laws of Large Numbers

When we define the event Ai = {a run of a tail immediately followed by k
heads in a row starts at flip i}, and A0 = {the first k flips are heads}, we
can use the inclusion–exclusion formula to get this solution because

P (at least k heads in row) = P (∪n−k−1
i=0 Ai)

and

P (Ai1Ai2 · · ·Aim) =

⎧⎨⎩
0 if flips for any events overlap

2−m(k+1) otherwise and i1 > 0
2−m(k+1)+1 otherwise and i1 = 0

and the number of sets of indices i1 < i2 < · · · < im, where the runs that
do not overlap equal

(
n−mk

m

)
if i1 > 0 (imagine the k heads in each of the

m runs are invisible, so this is the number of ways to arrange m tails in
n−mk visible flips) and

(
n−mk
m−1

)
if i1 = 0.

An important property of the probability function is that it is a contin-
uous function on the events of the sample space Ω. To make this precise,
let An, n ≥ 1 be a sequence of events, and define the event lim inf An as

lim inf An ≡ ∪∞
n=1 ∩∞

i=n Ai.

Because lim inf An consists of all outcomes of the sample space that are
contained in ∩∞

i=nAi for some n, it follows that lim inf An consists of all
outcomes that are contained in all but a finite number of the events An, n ≥
1.

Similarly, the event lim supAn is defined by

lim supAn = ∩∞
n=1 ∪∞

i=n Ai.

Because lim supAn consists of all outcomes of the sample space that are
contained in ∪∞

i=nAi for all n, it follows that lim supAn consists of all
outcomes that are contained in an infinite number of the events An, n ≥ 1.
Sometimes the notation {An i.o.} is used to represent lim supAn, where i.o.
stands for infinitely often and means that an infinite number of the events
An occur.

Note that by their definitions

lim inf An ⊂ lim supAn.

Definition 1.11 If lim supAn = lim inf An, we say that limn An exists
and define it by

lim
n

An = lim supAn = lim inf An.
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1.4 Probability Spaces 9

Example 1.12 (a) Suppose that An, n ≥ 1 is an increasing sequence of
events, in that An ⊂ An+1, n ≥ 1. Then ∩∞

i=nAi = An, showing that

lim inf An = ∪∞
n=1An.

Also, ∪∞
i=nAi = ∪∞

i=1Ai, showing that

lim supAn = ∪∞
n=1An.

Hence,
lim
n

An = ∪∞
i=1Ai.

(b) If An, n ≥ 1 is a decreasing sequence of events, in that An+1 ⊂ An, n ≥
1, then it similarly follows that

lim
n

An = ∩∞
i=1Ai.

The following result is known as the continuity property of probabilities.

Proposition 1.13 If limn An = A, then limn P (An) = P (A).

Proof We prove it first for when An is either an increasing or decreasing
sequence of events. Suppose An ⊂ An+1, n ≥ 1. Then, with A0 defined to
be the empty set,

P (limAn) = P (∪∞
i=1Ai)

= P (∪∞
i=1Ai(∪i−1

j=1Aj)
c)

= P (∪∞
i=1AiA

c
i−1)

=

∞∑
i=1

P (AiA
c
i−1)

= lim
n→∞

n∑
i=1

P (AiA
c
i−1)

= lim
n→∞

P (∪n
i=1AiA

c
i−1)

= lim
n→∞

P (∪n
i=1Ai)

= lim
n→∞

P (An).

Now, suppose that An+1 ⊂ An, n ≥ 1. Because Ac
n is an increasing se-

quence of events, the preceding implies that

P (∪∞
i=1A

c
i ) = lim

n→∞
P (Ac

n),

or equivalently,
P ((∩∞

i=1Ai)
c) = 1− lim

n→∞
P (An)
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10 1 Measure Theory and Laws of Large Numbers

or
P (∩∞

i=1Ai) = lim
n→∞

P (An),

which completes the proof whenever An is a monotone sequence. Now,
consider the general case, and let Bn = ∪∞

i=nAi. Noting that Bn+1 ⊂ Bn,
and applying the preceding yields

P (lim supAn) = P (∩∞
n=1Bn)

= lim
n→∞

P (Bn). (1.1)

Also, with Cn = ∩∞
i=nAi,

P (lim inf An) = P (∪∞
n=1Cn)

= lim
n→∞

P (Cn) (1.2)

because Cn ⊂ Cn+1. But

Cn = ∩∞
i=nAi ⊂ An ⊂ ∪∞

i=nAi = Bn,

showing that
P (Cn) ≤ P (An) ≤ P (Bn). (1.3)

Thus, if lim inf An = lim supAn = limAn, then we obtain from Equations
1.1 and 1.2 that the upper and lower bounds of Equation 1.3 converge to
each other in the limit, and this proves the result.

1.5 Random Variables

Suppose you have a function X that assigns a real number to each point in
the sample space Ω and you also have a sigma field F . We say that X is
an F-measurable random variable if you can compute its entire cumulative
distribution function using probabilities of events in F or, equivalently, that
you would know the value of X if you were told which events in F actually
happen. We define the notation {X ≤ x} ≡ {ω ∈ Ω : X(ω) ≤ x}, so X is
F measurable if {X ≤ x} ∈ F for all x. This is often written in shorthand
notation as X ∈ F .

Example 1.14 Ω = {a, b, c}, A = {{a, b, c}, {a, b}, {c}, φ}, and we define
three random variables X,Y, Z as follows:

ω X Y Z
a 1 1 1
b 1 2 7
c 2 2 4
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1.5 Random Variables 11

Which of the random variables X,Y, and Z are A measurable? Because
{Y ≤ 1} = {a} /∈ A, then Y is not A measurable. For the same reason, Z
is not A measurable. The variable X is A measurable because {X ≤ 1} =
{a, b} ∈ A, and {X ≤ 2} = {a, b, c} ∈ A. In other words, you can always
figure out the value of X using just the events in A, but you can’t always
figure out the values of Y and Z.

Definition 1.15 For a random variable X we define

σ(X) = σ({X ≤ x},∀x)

to be the sigma field generated by all events of the type {X ≤ x}, where
σ(X) is the sigma field generated by X.

Alternatively, we can define σ(X) as the intersection of all possible sigma
fields F where X is F measurable; such an uncountable intersection is a
sigma field, as in Exercise 3 at the end of this chapter. Intuitively, σ(X)
contains just enough events to know the value of X when you know which
of the events occur.

Definition 1.16 For random variables X,Y we say that X is Y measurable
if X ∈ σ(Y ).

Example 1.17 In the previous example, is Y ∈ σ(Z)? Yes, because σ(Z) =
{{a, b, c}, {a}, {a, b}, {b}, {b, c}, {c}, {c, a}, φ}, the set of all possible sub-
sets of Ω. Is X ∈ σ(Y )? No, because {X ≤ 1} = {a, b} /∈ σ(Y ) =
{{a, b, c}, {b, c}, {a},φ}.

To see why σ(Z) is as given, note that {Z ≤ 1} = {a}, {Z ≤ 4} = {a, c},
{Z ≤ 7} = {a, b, c}, {a}c = {b, c}, {a, b}c = {c}, {a} ∪ {c} = {a, c},
{a, b, c}c = φ, and {a, c}c = {b}.

Example 1.18 Suppose X and Y are random variables taking values be-
tween zero and one and are measurable with respect to the Borel sigma
field B. Is Z = X + Y also measurable with respect to B? Well, we must
show that {Z ≤ z} ∈ B for all z. We can write

{X + Y > z} = ∪q∈Q({X > q} ∩ {Y > z − q}),

whereQ is the set of rational numbers. Because {X > q} ∈ B, {Y > z−q} ∈
B, and Q is countable, this means that {X + Y ≤ z} = {X + Y > z}c ∈ B
and thus Z is measurable with respect to B.
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12 1 Measure Theory and Laws of Large Numbers

Example 1.19 The function F (x) = P (X ≤ x) is called the distribution
function of the random variable X. If xn ↓ x then the sequence of events
An = {X ≤ xn}, n ≥ 1, is a decreasing sequence with a limit that is

lim
n

An = ∩nAn = {X ≤ x}.

Consequently, the continuity property of probabilities yields

F (x) = lim
n→∞

F (xn),

showing that a distribution function is always right continuous. On the
other hand, if xn ↑ x, then the sequence of events An = {X ≤ xn}, n ≥ 1,
is an increasing sequence, implying that

lim
n→∞

F (xn) = P (∪nAn) = P (X < x) = F (x)− P (X = x).

Two events are independent if knowing that one occurs does not change
the chance that the other occurs. This is formalized in the following defi-
nition.

Definition 1.20 Sigma fields F1, . . . ,Fn are independent if whenever Ai ∈
Fi for i = 1, . . . , n, we have P (∩n

i=1Ai) =
∏n

i=1 P (Ai).

Using this we say that random variables X1, . . . , Xn are independent if the
sigma fields σ(X1), . . . , σ(Xn) are independent, and we say eventsA1, . . . , An

are independent if IA1
, . . . , IAn

are independent random variables.

Remark 1.21 One interesting property of independence is that it’s possible
that events A,B,C are not independent even if each pair of the events are
independent. For example, if we make three independent flips of a fair coin
and let A represent the event exactly one head comes up in the first two
flips, let B represent the event exactly one head comes up in the last two
flips, and let C represent the event exactly one head comes up among the
first and last flip. Then each event has probability 1/2, the intersection of
each pair of events has probability 1/4, but we have P (ABC) = 0.

In our next example, we derive a formula for the distribution of the
convolution of geometric random variables.

Example 1.22 Suppose we have n coins that we toss in sequence, moving
from one coin to the next in line each time a head appears. That is, we
continue using a coin until it lands heads, and then we switch to the next
one. Let Xi denote the number of flips made with coin i. Assuming that
all coin flips are independent and that each lands heads with probability p,
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1.6 Convergence, Limits, sup, and inf 13

we know from our first course in probability that Xi is a geometric random
variable with parameter p and that the total number of flips made has a
negative binomial distribution with probability mass function

P (X1 + · · ·+Xn = m) =

(
m− 1

n− 1

)
pn(1− p)m−n, m ≥ n.

The probability mass function of the total number of flips when each coin
has a different probability of landing heads is easily obtained using the
following proposition.

Proposition 1.23 If X1, . . . , Xn are independent geometric random vari-
ables with parameters p1, . . . , pn, where pi �= pj if i �= j, then, with qi =
1− pi, for k ≥ n− 1

P (X1 + · · ·+Xn > k) =
n∑

i=1

qki
∏
j �=i

pj
pj − pi

.

Proof We will prove Ak,n = P (X1 + · · · + Xn > k) is as given using
induction on k + n. Because A1,1 = q1, we will assume as our induction
hypothesis that Ai,j is as given previously for all i + j < k + n. Then,
depending on whether or not the event {Xn > 1} occurs, we get

Ak,n = qnAk−1,n + pnAk−1,n−1

= qn

n∑
i=1

qk−1
i

∏
j �=i

pj
pj − pi

+ pn

n−1∑
i=1

qk−1
i

pn − pi
pn

∏
j �=i

pj
pj − pi

=

n∑
i=1

qki
∏
j �=i

pj
pj − pi

,

which completes the proof by induction.

1.6 Convergence, Limits, sup, and inf

A sequence of real numbers x1, x2, . . . converges to a limit x, and we write
this as limn→∞ xn = x or limn xn = x or xn → x if for any ε > 0 the values
in the sequence beyond some point are all within ε of x. We write xn ↑ x if
xn → x and the sequence is nondecreasing, and we write xn ↓ x if xn → x
and the sequence is nonincreasing.

If Xn is a sequence of random variables and we write Xn → X, we mean
that if we observe the sequence and then consider it as a sequence of real
numbers, we will always have Xn → X.
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14 1 Measure Theory and Laws of Large Numbers

Example 1.24 If xn = n/(n+1) for n = 1, 2, . . . then we have xn ↑ 1. This
is because xn is nondecreasing, and given any ε > 0, we can let n = 1/ε
and 1− xi = 1/(i+ 1) < ε when when i > n.

Example 1.25 If xn = n/(n + 1) when n is even and xn = 0 when n is
odd, we say that the sequence has no limit. Because for n ≥ 1 we have
x2n ≥ 2/3 and x2n+1 = 0, when ε = 1/3 we can never find an n such that
all the values beyond the nth value are less than ε from the same number.

If xi for i ∈ S are real numbers with indices in a set S we write

x = sup
i∈S

xi

if xi ≤ x for all i and for any y < x there is some i ∈ S such that xi > y.
We say that x is the supremum of the set {xi : i ∈ S}, which means it
is the smallest possible upper bound for the set. Here S may be either a
countable or an uncountable set. We also define the infimum of a set as the
largest possible lower bound so that if

x = inf
i∈S

xi

it means xi ≥ x for all i and for any y > x there is some i ∈ S such that
xi < y.

Example 1.26 If S = {1, 2, . . .} and xi = i, we have that supi∈S xi = ∞
and infi∈S xi = 1. Also note that there is no maximum value of xi, so
maxi∈S xi does not exist.

Every set of real numbers has a supremum and an infimum, although
these may not actually be in the set. Infinite sets may not have a maximum
or minimum value within them, although finite sets always do.

1.7 Expected Value

A random variable X is continuous if there is a function f , called its
density function, so P (X ≤ x) =

∫ x
−∞ f(t)dt for all x. A random variable

is discrete if it can only take a countable number of different values. In
elementary textbooks, you usually see two separate definitions for expected
value:

E[X] =

{ ∑
i xiP (X = xi) if X is discrete∫

xf(x)dx if X is continuous with density f.
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1.7 Expected Value 15

But it’s possible to have a random variable that is neither continuous
nor discrete. For example, with U ∼ U(0, 1), the variable X = UIU>0.5

is neither continuous nor discrete. It’s also possible to have a sequence of
continuous random variables that converges to a discrete random variable or
vice versa. For example, ifXn = U/n, then eachXn is a continuous random
variable, but limn→∞ Xn is a discrete random variable (which equals zero).
This means it would be better to have a single more general definition that
covers all types of random variables. We introduce this next.

A simple random variable is one that can take on only a finite number
of different possible values, and its expected value is defined as in the first
paragraph in this section for discrete random variables. Using these, we
next define the expected value of a more general nonnegative random vari-
able. We will later define it for general random variables X by expressing
it as the difference of two nonnegative random variables X = X+ − X−,
where x+ = max(0, x) and x− = max(−x, 0).

Definition 1.27 If X ≥ 0, then we define

E[X] ≡ sup
all simple variables Y≤X

E[Y ].

We write Y ≤ X for random variablesX,Y to mean P (Y ≤ X) = 1; this
is sometimes written as “Y ≤ X almost surely” and abbreviated “Y ≤ X
a.s.” For example, if X is nonnegative and a ≥ 0, then Y = aIX≥a is a
simple random variable such that Y ≤ X. And by taking a supremum over
all simple variables, we of course mean the simple random variables must
be measurable with respect to some given sigma field. Given a nonnegative
random variable X, one concrete choice of simple variables is the sequence
Yn = min(�2nX�/2n, n), where �x� denotes the integer portion of x. In
Exercise 18 at the end of this chapter, we ask you to show that Yn ↑ X and
E[X] = limn E[Yn].

Another consequence of the definition of expected value is that if Y ≤ X,
then E[Y ] ≤ E[X].

Example 1.28 Markov’s inequality. Suppose X ≥ 0. Then, for any a > 0
we have that a IX≥a ≤ X. Therefore, E[a IX≥a] ≤ E[X] or, equivalently,

P (X ≥ a) ≤ E[X]/a,

which is known as Markov’s inequality.

Example 1.29 Chebyshev’s inequality. A consequence of Markov’s inequal-
ity is that for a > 0

P (|X| ≥ a) = P (X2 ≥ a2) ≤ E[X2]/a2,

a result known as Chebyshev’s inequality.
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16 1 Measure Theory and Laws of Large Numbers

Given any random variable X ≥ 0 with E[X] < ∞, and any ε > 0,
we can find a simple random variable Y with E[X] − ε ≤ E[Y ] ≤ E[X].
Our definition of the expected value also gives what is called the Lebesgue
integral of X with respect to the probability measure P and is sometimes
denoted E[X] =

∫
XdP .

So far we have only defined the expected value of a nonnegative random
variable. For the general case, we first define X+ = XIX≥0 and X− =
−XIX<0 so that we can define E[X] = E[X+]−E[X−], with the convention
that E[X] is undefined if E[X+] = E[X−] = ∞.

Remark 1.30 The definition of expected value covers random variables that
are neither continuous nor discrete, but if X is continuous with density
function f, it is equivalent to the familiar definition E[X] =

∫
xf(x)dx.

For example, when 0 ≤ X ≤ 1 the definition of the Riemann integral in
terms of Riemann sums implies, with �x� denoting the integer portion of x,∫ 1

0

xf(x)dx = lim
n→∞

n−1∑
i=0

∫ (i+1)/n

i/n

xf(x)dx

≤ lim
n→∞

n−1∑
i=0

i+ 1

n
P

(
i/n ≤ X ≤ i+ 1

n

)

= lim
n→∞

n−1∑
i=0

i/nP

(
i/n ≤ X ≤ i+ 1

n

)
= lim

n→∞
E[�nX�/n]

≤ E[X],

where the last line follows because �nX�/n ≤ X is a simple random vari-
able.

Using that the density function g of 1−X is g(x) = f(1−x), we obtain

1− E[X] = E[1−X]

≥
∫ 1

0

xf(1− x)dx

=

∫ 1

0

(1− x)f(x)dx

= 1−
∫ 1

0

xf(x)dx.

Remark 1.31 At this point, you may think it might be possible to express
any random variable as sums or mixtures of discrete and continuous random
variables, but this is not true. Let X ∼ U(0, 1) be a uniform random
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variable, and let di ∈ {0, 1, 2, ..., 9} be the ith digit in its decimal expansion
so that X =

∑∞
i=1 di10

−i. The random variable Y =
∑∞

i=1 min(1, di)10
−i is

not discrete and has no intervals over which it is continuous. This variable
Y can take any value (between zero and one) having a decimal expansion
that uses only the digits 0 and 1, which are a set of values C called a Cantor
set. Because C contains no intervals, Y is not continuous. And Y is not
discrete because C is uncountable; every real number between zero and one,
using its base two expansion, corresponds to a distinct infinite sequence of
binary digits.

Another interesting fact about a Cantor set is, although C is uncount-
able, P (X ∈ C) = 0. Let Ci be the set of real numbers between zero and
one that have a decimal expansion using only the digits 0 and 1 up to the
ith decimal place. Then it’s easy to see that P (X ∈ Ci) = 0.2i and because
P (X ∈ C) ≤ P (X ∈ Ci) = 0.2i for any i, we must have P (X ∈ C) = 0.
The set C is called an uncountable set having measure zero.

Proposition 1.32 If E|X|, E|Y | < ∞ then (a) E [aX + b] = aE[X] + b for
constants a, b, and (b) E [X + Y ] = E [X] + E [Y ].

Proof In this proof we assume X,Y ≥ 0, a > 0, and b = 0. The general
cases will follow using E[X + Y ] = E[X+ + Y +]− E[X− + Y −],

E[b+X] = sup
Y≤b+X

E[Y ] = sup
Y≤X

E[b+ Y ] = b+ sup
Y≤X

E[Y ] = b+ E[X],

and −aX + b = a(−X) + b.

For Part (a) if X is simple we have

E[aX] =
∑
x

axP (X = x) = aE[X],

and because for every simple variable Z ≤ X there corresponds another
simple variable aZ ≤ aX, and vice versa, we get

E[aX] = sup
aZ≤aX

E[aZ] = sup
Z≤X

aE[Z] = aE[X],

where the supremums are over simple random variables.
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18 1 Measure Theory and Laws of Large Numbers

For Part (b) if X,Y are simple we have

E[X + Y ] =
∑
z

zP (X + Y = z)

=
∑
z

z
∑

x,y:x+y=z

P (X = x, Y = y)

=
∑
z

∑
x,y:x+y=z

(x+ y)P (X = x, Y = y)

=
∑
x,y

(x+ y)P (X = x, Y = y)

=
∑
x,y

xP (X = x, Y = y) +
∑
x,y

yP (X = x, Y = y)

=
∑
x

xP (X = x) +
∑
y

yP (Y = y)

= E[X] + E[Y ],

and applying this in the following second line, we get

E[X] + E[Y ] = sup
A≤X,B≤Y

E[A] + E[B]

= sup
A≤X,B≤Y

E[A+B]

≤ sup
A≤X+Y

E[A]

= E[X + Y ],

where the supremums are over simple random variables. We then use this
inequality in the following third line:

E[min(X + Y, n)] = 2n− E[2n−min(X + Y, n)]

≤ 2n− E[n−min(X,n) + n−min(Y, n)]

≤ 2n− E[n−min(X,n)]− E[n−min(Y, n)]

= E[min(X,n)] + E[min(Y, n)]

≤ E[X] + E[Y ],

and we use Part (a) in the first and fourth lines and min(X + Y, n) ≤
min(X,n) + min(Y, n) in the second line.

This means for any given simple Z ≤ X + Y we can pick n larger than
the maximum value of Z so that E[Z] ≤ E[min(X +Y, n)] ≤ E[X] +E[Y ],
and taking the supremum over all simple Z ≤ X + Y gives E[X + Y ] ≤
E[X] + E[Y ] and the result is proved.
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1.8 Almost Sure Convergence and the Dominated Convergence Theorem 19

Proposition 1.33 If X is a nonnegative integer valued random variable,
then

E [X] =
∞∑

n=0

P (X > n).

Proof Because E[X] = p1 + 2p2 + 3p3 + 4p4 . . . (see Exercise 7 at the end
of this chapter), where pi = P (X = i), we rewrite this as

E[X] = p1 + p2 + p3 + p4 . . .
+ p2 + p3 + p4 . . .

+ p3 + p4 . . .
+ p4 . . . .

Notice that the columns equal p1, 2p2, 3p3, . . ., respectively, whereas the
rows equal P (X > 0), P (X > 1), P (X > 2), . . ., respectively.

Example 1.34 WithX1, X2 . . . independent U(0, 1) random variables, com-
pute the expected value of

N = min

{
n :

n∑
i=1

Xi > 1

}
.

Solution Using E[N ] =
∑∞

n=0 P (N > n), and noting that

P (N > 0) = P (N > 1) = 1,

and

P (N > n) =

∫ 1

0

∫ 1−x1

0

∫ 1−x1−x2

0

· · ·
∫ 1−x1−x2−···−xn−1

0

dxn · · · dx1

= 1/n!,

we get E[N ] = e.

1.8 Almost Sure Convergence and the
Dominated Convergence Theorem

For a sequence of nonrandom real numbers, recall that we write xn → x or
limn→∞ xn = x if for any ε > 0 there exists a value n such that |xm−x| < ε
for all m > n. Intuitively, this means eventually the sequence never leaves
an arbitrarily small neighborhood around x. It doesn’t simply mean that
you can always find terms in the sequence that are arbitrarily close to x, but
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20 1 Measure Theory and Laws of Large Numbers

rather it means that eventually all terms in the sequence become arbitrarily
close to x. When xn → ∞, it means that for any k > 0 there exists a value
n such that xm > k for all m > n.

The sequence of random variables Xn, n ≥ 1, is said to converge almost
surely to the random variable X, written as Xn −→as X, or limn→∞ Xn =
X a.s., if with

lim
n

Xn = X.

The following proposition presents an alternative characterization of
almost sure convergence.

Proposition 1.35 Xn −→as X if and only if for any ε > 0

P (|Xn −X| < ε for all n ≥ m) → 1 as m → ∞.

Proof Suppose first that Xn −→as X. Fix ε > 0, and for m ≥ 1, define
the event

Am = {|Xn −X| < ε for all n ≥ m}.

Because Am,m ≥ 1, is an increasing sequence of events, the continuity
property of probabilities yields that

lim
m

P (Am) = P (lim
m

Am)

= P (|Xn −X| < ε for all n sufficiently large)

≥ P (lim
n

Xn = X)

= 1.

To go the other way, assume that for any ε > 0

P (|Xn −X| < ε for all n ≥ m) → 1 as m → ∞.

Let εi, i ≥ 1, be a decreasing sequence of positive numbers that converge
to 0, and let

Am.i = {|Xn −X| < εi for all n ≥ m}.

Because Am.i ⊂ Am+1.i and, by assumption, limm P (Am,i) = 1, it follows
from the continuity property that

1 = P ( lim
m→∞

Am.i) = P (Bi),

where Bi = {|Xn −X| < εi for all n sufficiently large}. But Bi, i ≥ 1, is
a decreasing sequence of events, so invoking the continuity property once
again yields

1 = lim
i→∞

P (Bi) = P (lim
i

Bi),
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which proves the result because

lim
i

Bi = {for all i, |Xn −X| < εi for all n sufficiently large}

= {lim
n

Xn = X}.

Remark 1.36 The reason for the word almost in “almost surely” is because
P (A) = 1 doesn’t necessarily mean that Ac is the empty set. For example,
if X ∼ U(0, 1), we know that P (X �= 1/3) = 1 even though {X = 1/3} is
a possible outcome.

The dominated convergence theorem is one of the fundamental building
blocks of all limit theorems in probability. It tells you something about
what happens to the expected value of random variables in a sequence if
the random variables are converging almost surely. Many limit theorems in
probability involve an almost surely converging sequence, and being able to
accurately say something about the expected value of the limiting random
variable is important.

Given a sequence of random variables X1, X2, . . ., it may seem to you at
first thought that Xn → X a.s. should imply limn→∞ E[Xn] = E[X]. This
is sometimes called interchanging limit and expectation, because E[X] =
E[limn→∞ Xn]. But this interchange is not always valid, and the next ex-
ample illustrates this.

Example 1.37 Suppose U ∼ U(0, 1) and Xn = nIn<1/U . Regardless of
what U turns out to be, as soon as n gets larger than 1/U , we see that the
terms Xn in the sequence will all equal zero. This means Xn → 0 a.s., but
at the same time we have E[Xn] = nP (U < 1/n) = n/n = 1 for all n, and
thus limn→∞ E[Xn] = 1. Interchanging limit and expectation is not valid
in this case.

What’s going wrong here? In this case, Xn can increase beyond any
level as n gets larger and larger, and this can cause problems with the
expected value. The dominated convergence theorem says that if Xn is
always bounded in absolute value by some other random variable with
finite mean, then we can interchange limit and expectation. We will first
state the theorem, give some examples, and then give a proof. The proof
is a nice illustration of the definition of expected value.

Proposition 1.38 The dominated convergence theorem. Suppose Xn → X
a.s., and there is a random variable Y with E[Y ] < ∞ such that |Xn| < Y
for all n. Then

E[ lim
n→∞

Xn] = lim
n→∞

E[Xn].
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22 1 Measure Theory and Laws of Large Numbers

This is often used in the form where Y is a nonrandom constant, and
then it’s called the bounded convergence theorem. Before we prove it, we
first give a couple of examples and illustrations.

Example 1.39 Suppose U ∼ U(0, 1) and Xn = U/n. It’s easy to see that
Xn → 0 a.s., and the theorem would tell us that E[Xn] → 0. In fact, in
this case we can easily calculate E[Xn] =

1
2n → 0. The theorem applies

using Y = 1 because |Xn| < 1.

Example 1.40 WithX ∼ N(0, 1), letXn = min(X,n), and noticeXn → X
almost surely. Because Xn < |X|, we can apply the theorem using Y = |X|
to tell us E[Xn] → E[X].

Example 1.41 Suppose X ∼ N(0, 1) and let Xn = XIX≥−n − nIX<−n.
Again Xn → X, so using Y = |X| the theorem tells us E[Xn] → E[X].

Proof Proof of the dominated convergence theorem. To be able to directly
apply the definition of expected value, in this proof we assume Xn ≥ 0. To
prove the general result, we can apply the same argument to Xn + Y ≥ 0
with the bound |Xn + Y | < 2Y.

Our approach will be to show that for any ε > 0 we have, for all suffi-
ciently large n, both (a) E[Xn] ≥ E[X] − 3ε and (b) E[Xn] ≤ E[X] + 3ε.
Because ε is arbitrary, this will prove the theorem.

First, let Nε = min{n : |Xi − X| < ε for all i ≥ n}, and note that
Xn −→as X implies that P (Nε < ∞) = 1. To Part (a), note first that for
any m

Xn + ε ≥ min(X,m)−mINε>n.

The preceding is true when Nε > n because in this case the right-hand side
is nonpositive; it is also true when Nε ≤ n because in this case Xn+ε ≥ X.
Thus,

E[Xn] + ε ≥ E[min(X,m)]−mP (Nε > n).

Now, |X| ≤ Y implies that E[X] ≤ E[Y ] < ∞. Consequently, using the
definition of E[X], we can find a simple random variable Z ≤ X with
E[Z] ≥ E[X] − ε. Because Z is simple, we can then pick m large enough
so Z ≤ min(X,m), and thus

E[min(X,m)] ≥ E[Z] ≥ E[X]− ε.

Then Nε < ∞ implies, by the continuity property, that mP (Nε > n) < ε
for sufficiently large n. Combining this with the preceding shows that for
sufficiently large n

E[Xn] + ε ≥ E[X]− 2ε,

which is Part (a).
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For Part (b), apply Part (a) to the sequence of nonnegative random
variables Y − Xn, which converges almost surely to Y − X with a bound
|Y −Xn| < 2Y . We get E[Y −Xn] ≥ E[Y −X]− 3ε, and rearranging and
subtracting E[Y ] from both sides gives Part (b).

Remark 1.42 Part (a) in the proof holds for nonnegative random variables
even without the upper bound Y and under the weaker assumption that
infm>n Xm → X as n → ∞. This result is usually referred to as Fatou’s
lemma, which states that for any ε > 0 we have E[Xn] ≥ E[X] − ε for
sufficiently large n, or equivalently that infm>n E[Xm] ≥ E[X] − ε for
sufficiently large n. This result is usually denoted as lim infn→∞ E[Xn] ≥
E[lim infn→∞ Xn].

A result called the monotone convergence theorem can also be proved.

Proposition 1.43 The monotone convergence theorem. If

0 ≤ Xn ↑ X,

then E[Xn] ↑ E[X].

Proof If E[X] < ∞, we can apply the dominated convergence theorem
using the bound |Xn| < X.

Consider now the case where E[X] = ∞. For anym, we have min(Xn,m)
→ min(X,m). Because E[min(X,m)] < ∞, it follows by the dominated
convergence theorem that

lim
n

E[min(Xn,m)] = E[min(X,m)].

But because E[Xn] ≥ E[min(Xn,m)], this implies

lim
n

E[Xn] ≥ lim
m→∞

E[min(X,m)].

Because E[X] = ∞, it follows that for any K there is a simple random
variable A ≤ X such that E[A] > K. Because A is simple, A ≤ min(X,m)
for sufficiently large m. Thus, for any K

lim
m→∞

E[min(X,m)] ≥ E[A] > K,

proving that limm→∞ E[min(X,m)] = ∞ and completing the proof.

We now present a couple of corollaries of the monotone convergence
theorem.

Corollary 1.44 If Xi ≥ 0, then E[
∑∞

i=1 Xi] =
∑∞

i=1 E[Xi].
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24 1 Measure Theory and Laws of Large Numbers

Proof

∞∑
i=1

E[Xi] = lim
n

n∑
i=1

E[Xi]

= lim
n

E

[
n∑

i=1

Xi

]

= E

[ ∞∑
i=1

Xi

]
,

where the final equality follows from the monotone convergence theorem
because

∑n
i=1 Xi ↑

∑∞
i=1 Xi.

Corollary 1.45 If X and Y are independent, then

E[XY ] = E[X]E[Y ].

Proof Suppose first that X and Y are simple. Then we can write

X =
n∑

i=1

xiI{X=xi}, Y =

m∑
j=1

yjI{Y=yj}.

Thus,

E[XY ] = E

[∑
i

∑
j

xiyjI{X=xi,Y=yj}

]
=
∑
i

∑
j

xiyjE[I{X=xi,Y=yj}]

=
∑
i

∑
j

xiyjP (X = xi, Y = yj)

=
∑
i

∑
j

xiyjP (X = xi)P (Y = yj)

= E[X]E[Y ].

Next, suppose X,Y are general nonnegative random variables. For any n,
define the simple random variables

Xn =

{
k/2n, if k

2n < X ≤ k+1
2n , k = 0, . . . , n2n − 1.

n, if X > n

Define random variables Yn in a similar fashion, and note that

Xn ↑ X, Yn ↑ Y, XnYn ↑ XY.
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1.9 Convergence in Probability and in Distribution 25

Hence, by the monotone convergence theorem,

E[XnYn] → E[XY ].

But Xn and Yn are simple, so

E[XnYn] = E[Xn]E[Yn] → E[X]E[Y ],

with the convergence again following by the monotone convergence theorem.
Thus, E[XY ] = E[X]E[Y ] when X and Y are nonnegative. The general
case follows by writing X = X+ −X−, Y = Y + − Y −, using

E[XY ] = E[X+Y +]− E[X+Y −]− E[X−Y +] + E[X−Y −]

and applying the result to each of the four preceding expectations.

1.9 Convergence in Probability and in Distribu-
tion

In this section, we introduce two forms of convergence that are weaker than
almost sure convergence. However, before giving their definitions, we will
start with a useful result, known as the Borel–Cantelli lemma.

Proposition 1.46 If
∑

j P (Aj) < ∞, then P (lim supAk) = 0.

Proof Suppose
∑

j P (Aj) < ∞. Now,

P (lim supAk) = P (∩∞
n=1 ∪∞

i=n Ai).

Hence, for any n

P (lim supAk) ≤ P (∪∞
i=nAi)

≤
∞∑
i=n

P (Ai),

and the result follows by letting n → ∞.

Remark Because
∑

n IAn
is the number of events An, n ≥ 1, that occur,

the Borel–Cantelli theorem states that if the expected number of events
An, n ≥ 1, that occur is finite, then the probability that an infinite number
of them occur is zero. Thus, the Borel–Cantelli lemma is equivalent to the
rather intuitive result that if there is a positive probability that an infinite
number of the events An occur, and then the expected number of them
that occur is infinite.

The converse of the Borel–Cantelli lemma requires that the indicator
variables for each pair of events be negatively correlated.
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26 1 Measure Theory and Laws of Large Numbers

Proposition 1.47 Let the events Ai, i ≥ 1, be such that

Cov(IAi
, IAj

) = E[IAi
IAj

]− E[IAi
]E[IAj

] ≤ 0, i �= j.

If
∑∞

i=1 P (Ai) = ∞, then P (lim supAi) = 1.

Proof Let Nn =
∑n

i=1 IAi
be the number of the events A1, . . . , An that

occur, and let N =
∑∞

i=1 IAi
be the total number of events that occur.

Let mn = E[Nn] =
∑n

i=1 P (Ai), and note that limn mn = ∞. Using the
formula for the variance of a sum of random variables learned in your first
course in probability, we have

Var(Nn) =

n∑
i=1

Var(IAi
) + 2

∑
i<j

Cov(IAi
, IAj

)

≤
n∑

i=1

Var(IAi
)

=

n∑
i=1

P (Ai)[1− P (Ai)]

≤ mn.

Now, by Chebyshev’s inequality, for any x < mn

P (Nn < x) = P (mn −Nn > mn − x)

≤ P (|Nn −mn| > mn − x)

≤ Var(Nn)

(mn − x)2

≤ mn

(mn − x)2
.

Hence, for any x, limn→∞ P (Nn < x) = 0. Because P (N < x) ≤ P (Nn <
x), this implies that

P (N < x) = 0.

Consequently, by the continuity property of probabilities,

0 = lim
k→∞

P (N < k)

= P

(
lim
k
{N < k}

)
= P (∪k{N < k})
= P (N < ∞).

Hence, with a probability of one, an infinite number of the events Ai

occur.
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1.9 Convergence in Probability and in Distribution 27

Example 1.48 Consider independent flips of a coin that lands heads with
probability p > 0. For fixed k, let Bn be the event that flips n, n+1, . . . , n+
k−1 all land heads. Because the events Bn, n ≥ 1, are positively correlated,
we cannot directly apply the converse to the Borel–Cantelli lemma to obtain
that, with a probability of 1; an infinite number of them occur. However,
by letting An be the event that flips nk+1, . . . , nk+ k all land heads, then
because the set of flips these events refer to are nonoverlapping, it follows
that they are independent. Because

∑
n P (An) =

∑
n p

k = ∞, we obtain
from Borel–Cantelli that P (lim supAn) = 1. But lim supAn ⊂ lim supBn,
so the preceding yields the result P (lim supBn) = 1.

Remark 1.49 The converse of the Borel–Cantelli lemma is usually stated
as requiring the events Ai, i ≥ 1, to be independent. Our weakening of this
condition can be useful, as the next example shows.

Example 1.50 Consider an infinite collection of balls that are numbered
0, 1, . . . and an infinite collection of boxes also numbered 0, 1, . . . . Suppose
that ball i, i ≥ 0, is to be put in box i +Xi, where Xi, i ≥ 0, are iid with
probability mass function

P (Xi = j) = pj
∑
j≥0

pj = 1.

Suppose also that the Xi are not deterministic, so pj < 1 for all j ≥ 0. If
Aj denotes the event that box j remains empty, then

P (Aj) = P (Xj �= 0, Xj−1 �= 1, . . . , X0 �= j)

= P (X0 �= 0, X1 �= 1, . . . , Xj �= j)

≥ P (Xi �= i, for all i ≥ 0).

But

P (Xi �= i, for all i ≥ 0)

= 1− P (∪i≥0{Xi = i})
= 1− p0 −

∑
i≥1

P (X0 �= 0, . . . , Xi−1 �= i− 1, Xi = i)

= 1− p0 −
∑
i≥1

pi

i−1∏
j=0

(1− pj).

Now, there is at least one pair k < i such that pipk ≡ p > 0. Hence, for
that pair

pi

i−1∏
j=0

(1− pj) ≤ pi(1− pk) = pi − p,
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28 1 Measure Theory and Laws of Large Numbers

implying that

P (Aj) ≥ P (Xi �= i, for all i ≥ 0) ≥ p > 0.

Hence,
∑

j P (Aj) = ∞. Conditional on box j being empty, each ball be-
comes more likely to be put in box i, i �= j, so for i < j,

P (Ai|Aj) =

i∏
k=0

P (Xk �= i− k|Aj)

=

i∏
k=0

P (Xk �= i− k|Xk �= j − k)

≤
i∏

k=0

P (Xk �= i− k)

= P (Ai),

which is equivalent to Cov(IAi
, IAj

) ≤ 0. Hence, by the converse of the
Borel–Cantelli lemma we can conclude that, with a probability of one, there
will be an infinite number of empty boxes.

We say that the sequence of random variables Xn, n ≥ 1, converges in
probability to the random variable X, written Xn −→p X, if for any ε > 0

P (|Xn −X| > ε) → 0 as n → ∞.

An immediate corollary of Proposition 1.35 is that almost sure convergence
implies convergence in probability. The following example shows that the
converse is not true.

Example 1.51 Let Xn, n ≥ 1 be independent random variables such that

P (Xn = 1) = 1/n = 1− P (Xn = 0).

For any ε > 0, P (|Xn| > ε) = 1/n → 0; hence, Xn −→p 0. However,
because

∑∞
n=1 P (Xn = 1) = ∞, it follows from the converse to the Borel–

Cantelli lemma that Xn = 1 for infinitely many values of n, showing that
the sequence does not converge almost surely to zero.

Let Fn be the distribution function of Xn, and let F be the distribution
function of X. We say that Xn converges in distribution to X if

lim
n→∞

Fn(x) = F (x)

for all x at which F is continuous. (That is, convergence is required at all
x for which P (X = x) = 0.)

https://doi.org/10.1017/9781009179928.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009179928.002


1.9 Convergence in Probability and in Distribution 29

To understand why convergence in distribution only requires that Fn(x)
→ F (x) at points of continuity of F , rather than at all values x, let Xn be
uniformly distributed on (0, 1/n). Then, it seems reasonable to suppose that
Xn converges in distribution to the random variable X that is identically
zero. However,

Fn(x) =

⎧⎨⎩
0, if x < 0
nx, if 0 ≤ x ≤ 1/n,
1, if x > 1/n

whereas the distribution function of X is

F (x) =

{
0, if x < 0
1, if x ≥ 0.

Thus, limn Fn(0) = 0 �= F (0) = 1. On the other hand, for all points of
continuity of F (that is, for all x �= 0), we have that limn Fn(x) = F (x),
so with the definition given, it is indeed true that Xn −→d X.

We now show that convergence in probability implies convergence in
distribution.

Proposition 1.52

Xn −→p X ⇒ Xn −→d X.

Proof Suppose that Xn −→p X. Let Fn be the distribution function of
Xn, n ≥ 1, and let F be the distribution function of X. Now, for any ε > 0

Fn(x) = P (Xn ≤ x, X ≤ x+ ε) + P (Xn ≤ x, X > x+ ε)

≤ F (x+ ε) + P (|Xn −X| > ε),

where the preceding used

Xn ≤ x, X > x+ ε ⇒ |Xn −X| > ε.

Letting n go to infinity yields, upon using Xn −→p X,

lim sup
n→∞

Fn(x) ≤ F (x+ ε). (1.4)

Similarly,

F (x− ε) = P (X ≤ x− ε, Xn ≤ x) + P (X ≤ x− ε, Xn > x)

≤ Fn(x) + P (|Xn −X| > ε).
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30 1 Measure Theory and Laws of Large Numbers

Letting n → ∞ gives

F (x− ε) ≤ lim inf
n→∞

Fn(x). (1.5)

Combining Equations 1.4 and 1.5 shows that

F (x− ε) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x+ ε).

Letting ε → 0 shows that if x is a continuity point of F then

F (x) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x),

and the result is proved.

Proposition 1.53 If Xn −→d X, then

E[g(Xn)] → E[g(X)]

for any bounded continuous function g.

To focus on the essentials, we will present a proof of Proposition 1.53
when all the random variables Xn and X are continuous. Before doing so,
we will prove a couple of lemmas.

Lemma 1.54 Let G be the distribution function of a continuous random
variable, and let G−1 (x) ≡ inf {t : G(t) ≥ x} , be its inverse function. If U
is a uniform (0, 1) random variable, then G−1(U) has distribution function
G.

Proof Because

inf {t : G(t) ≥ U} ≤ x ⇔ G(x) ≥ U

implies

P (G−1(U) ≤ x) = P (G(x) ≥ U) = G(x),

we get the result.

Lemma 1.55 Let Xn −→d X, where Xn is continuous with distribution
function Fn, n ≥ 1, and X is continuous with distribution function F . If
Fn(xn) → F (x),where 0 < F (x) < 1 then xn → x.
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Proof Suppose there is an ε > 0 such that xn ≤ x − ε for infinitely many
n. If so, then Fn(xn) ≤ Fn(x− ε) for infinitely many n, implying that

F (x) = lim inf
n

Fn(xn) ≤ lim
n

Fn(x− ε) = F (x− ε),

which is a contradiction. We arrive at a similar contradiction upon as-
suming there is an ε > 0 such that xn ≥ x + ε for infinitely many n.
Consequently, we can conclude that for any ε > 0, |xn − x| > ε for only a
finite number of n, thus proving the lemma.

Proof of Proposition 1.53 Let U be a uniform (0, 1) random variable, and
set Yn = F−1

n (U), n ≥ 1, and Y = F−1(U). Note that from Lemma 1.54
it follows that Yn has distribution Fn and Y has distribution F . Because

Fn(F
−1
n (u)) = u = F (F−1(u)),

it follows from Lemma 1.55 that F−1
n (u) → F−1(u) for all u. Thus,

Yn −→as Y. By continuity, this implies that g(Yn) −→as g(Y ), and
because g is bounded, the dominated convergence theorem yields that
E[g(Yn)] → E[g(Y )]. But Xn and Yn both have distribution Fn, whereas X
and Y both have distribution F , so E[g(Yn)] = E[g(Xn)] and E[g(Y )] =
E[g(X)].

Remark 1.56 The key to our proof of Proposition 1.53 was showing that, if
Xn −→d X, we can define random variables Yn, n ≥ 1, and Y such that Yn

has the same distribution as Xn for each n, and Y has the same distribution
as X, and are such that Yn −→as Y. This result (which is true without the
continuity assumptions we made) is known as Skorokhod’s representation
theorem.

Skorokhod’s representation and the dominated convergence theorem im-
mediately yield the following.

Corollary 1.57 If Xn −→d X and there exists a constant M < ∞ such that
|Xn| < M for all n, then

lim
n→∞

E[Xn] = E[X].

Proof Let Fn denote the distribution of Xn, n ≥ 1, and F that of X. Let
U be a uniform (0, 1) random variable, and for n ≥ 1, set Yn = F−1

n (U),
and Y = F−1(U). Note that the hypotheses of the corollary imply that
Yn −→as Y and, because Fn(M) = 1 = 1− Fn(−M), also that |Yn| ≤ M.
Thus, by the dominated convergence theorem

E[Yn] → E[Y ],
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32 1 Measure Theory and Laws of Large Numbers

which proves the result because Yn has distribution Fn, and Y has distri-
bution F .

Proposition 1.53 can also be used to give a simple proof of Weierstrass’
approximation theorem.

Corollary 1.58 Weierstrass’ approximation theorem. Any continuous func-
tion f defined on the interval [0, 1] can be expressed as a limit of polynomial
functions. Specifically, if

Bn(t) =

n∑
i=0

f(i/n)

(
n

i

)
ti(1− t)n−i,

then f(t) = limn→∞ Bn(t).

Proof Let Xi, i ≥ 1, be a sequence of iid random variables such that

P (Xi = 1) = t = 1− P (Xi = 0).

Because E[X1+···+Xn

n ] = t, it follows from Chebyshev’s inequality that for
any ε > 0

P

(∣∣∣∣X1 + · · ·+Xn

n
− t

∣∣∣∣ > ε

)
≤ Var([X1 + · · ·+Xn]/n)

ε2
=

p(1− p)

nε2
.

Thus, X1+···+Xn

n →p t, implying that X1+···+Xn

n →d t. Because f is a
continuous function on a closed interval, it is bounded and so Proposition
1.53 yields

E

[
f

(
X1 + · · ·+Xn

n

)]
→ f(t).

But X1 + · · ·+Xn is a binomial (n, t) random variable; thus,

E

[
f

(
X1 + · · ·+Xn

n

)]
= Bn(t),

and the proof is complete.

1.10 Law of Large Numbers and Ergodic Theo-
rem

Definition 1.59 For a sequence of random variables X1, X2, ... the tail sigma
field T is defined as

T =

∞⋂
n=1

σ(Xn, Xn+1, ...).

Events A ∈ T are called tail events.
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Although it may seem as though there are no events remaining in the
preceding intersection, there are a lot of examples of interesting tail events.
Intuitively, with a tail event you can ignore any finite number of the vari-
ables and still be able to tell whether or not the event occurs. Next are
some examples.

Example 1.60 Consider a sequence of random variables X1, X2, ... hav-
ing tail sigma field T and satisfying |Xi| < ∞ for all i. For the event
Ax = {limn→∞

1
n

∑n
i=1 Xi = x}, it’s easy to see that Ax ∈ T because to

determine if Ax happens you can ignore any finite number of the random
variables; their contributions end up becoming negligible in the limit.

For the event Bx = {supi Xi = x}, it’s easy to see that B∞ ∈ T because
it depends on the long-run behavior of the sequence. Note that B7 /∈ T
because it depends, for example, on whether or not X1 ≤ 7.

Example 1.61 Consider a sequence of random variables X1, X2, ... having
tail sigma field T , but this time let it be possible for Xi = ∞ for some
i. For the event Ax = {limn→∞

1
n

∑n
i=1 Xi = x}, we now have Ax /∈ T

because any variable along the way that equals infinity will affect the limit.

Remark 1.62 The previous two examples also motivate the subtle differ-
ence between Xi < ∞ and Xi < ∞ almost surely. The former means it’s
impossible to see X5 = ∞, and the latter only says it has probability zero.
An event that has probability zero could still be a possible occurrence. For
example, if X is a uniform random variable between zero and one, we can
write X �= 0.2 almost surely even though it is possible to see X = 0.2.

One approach for proving an event always happens is to first prove that
its probability must either be zero or one, and then rule out zero as a
possibility. This first type of result is called a zero-one law, because we are
proving the chance must either be zero or one. A nice way to do this is to
show an event A is independent of itself, and hence P (A) = P (A

⋂
A) =

P (A)P (A), and thus P (A) = 0 or 1. We use this approach next to prove
a famous zero-one law for independent random variables, and we will use
this in our proof of the law of large numbers.

First, we need the following definition. Events with probability either
zero or one are called trivial events, and a sigma field is called trivial if
every event in it is trivial.

Theorem 1.63 Kolmogorov’s Zero-One Law. A sequence of independent
random variables has a trivial tail sigma field.

Before we give a proof we need the following result. To show that a ran-
dom variable Y is independent of an infinite sequence of random variables
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X1, X2, ..., it suffices to show that Y is independent of X1, X2, ..., Xn for
every finite n < ∞. In elementary courses, this result is often given as a
definition, but it can be justified using measure theory in the next propo-
sition. We define σ(Xi, i ∈ A) ≡ σ(∪i∈Aσ(Xi)) to be the smallest sigma
field generated by the collection of random variables Xi, i ∈ A.

Proposition 1.64 Consider the random variables Y and X1, X2, ..., where
σ(Y ) is independent of σ(X1, X2, ..., Xn) for every n < ∞. Then σ(Y ) is
independent of σ(X1, X2, ...).

Before we prove this proposition, we show how this implies Kolmogorov’s
zero-one law

Proof Proof of Kolmogorov’s zero-one law. We will argue that any event
A ∈ T is independent of itself, and thus P (A) = P (A ∩ A) = P (A)P (A)
and so P (A) = 0 or 1. Note that the tail sigma field T is independent of
σ(X1, X2, ..., Xn) for every n < ∞ (because T ⊆ σ(Xn+1, Xn+2, ...)), so
by the previous proposition, it is also independent of σ(X1, X2, ...). Thus,
because T ⊆ σ(X1, X2, ...), it also is independent of T .

Now we prove the proposition.

Proof Proof of Proposition 1.64. Pick any A ∈ σ(Y ). You might at first
think that H ≡ ∪∞

n=1σ(X1, X2, ..., Xn) is the same as F ≡ σ(X1, X2, ...),
and then the theorem would follow immediately because by assumption A
is independent of any event in H. But it is not true that H and F are the
same; H may not even be a sigma field. Also, the tail sigma field T is a
subset of F but not necessarily of H. It is, however, true that F ⊆ σ(H) (in
fact, it turns out that σ(H) = F) because σ(X1, X2, ...) ≡ σ(∪∞

n=1σ(Xn))
and ∪∞

n=1σ(Xn) ⊆ H. We will use F ⊆ σ(H) later.

Define the collection of events G to contain any B ∈ F , where for every
ε > 0 we can find a corresponding approximating event C ∈ H where
P (B∩Cc)+P (Bc∩C) ≤ ε. Because A is independent of any event C ∈ H,
we can see that A must also be independent of any event B ∈ G because,
using the corresponding approximating event C for any desired ε > 0,

P (A ∩B) = P (A ∩B ∩ C) + P (A ∩B ∩ Cc)

≤ P (A ∩ C) + P (B ∩ Cc)

≤ P (A)P (C) + ε

= P (A)(P (C ∩B) + P (C ∩Bc)) + ε

≤ P (A)P (B) + 2ε
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and

1− P (A ∩B) = P (Ac ∪Bc)

= P (Ac) + P (A ∩Bc)

= P (Ac) + P (A ∩Bc ∩ C) + P (A ∩Bc ∩ Cc)

≤ P (Ac) + P (Bc ∩ C) + P (A ∩ Cc)

≤ P (Ac) + ε+ P (A)P (Cc)

= P (Ac) + ε+ P (A)(P (Cc ∩B) + P (Cc ∩Bc))

≤ P (Ac) + 2ε+ P (A)P (Bc)

= 1 + 2ε− P (A)P (B),

which when combined gives

P (A)P (B)− 2ε ≤ P (A ∩B) ≤ P (A)P (B) + 2ε.

Because ε is arbitrary, this shows σ(Y ) is independent of G. We obtain
the proposition by showing F ⊆ σ(H) ⊆ G and thus that σ(Y ) is indepen-
dent of F , as follows. First note we immediately have H ⊆ G, and thus
σ(H) ⊆ σ(G), and we will be finished if we can show σ(G) = G.

To show that G is a sigma field, clearly Ω ∈ G and Bc ∈ G whenever
B ∈ G. Next let B1, B2, ... be events in G. To show that ∪∞

i=1Bi ∈ G, pick
any ε > 0 and let Ci be the corresponding approximating events that satisfy
P (Bi ∩ Cc

i ) + P (Bc
i ∩ Ci) < ε/2i+1. Then pick n so that∑

i>n

P (Bi ∩Bc
i−1 ∩Bc

i−2 ∩ · · · ∩Bc
1) < ε/2.

In the following, we use the approximating event C ≡ ∪n
i=1Ci ∈ H to get

P (∪iBi ∩ Cc) + P ((∪iBi)
c ∩ C)

≤ P

(
n⋃

i=1

Bi ∩ Cc

)
+ ε/2 + P

((
n⋃

i=1

Bi

)c

∩ C

)
≤
∑
i

P (Bi ∩ Cc
i ) + P (Bc

i ∩ Ci) + ε/2

≤
∑
i

ε/2i+1 + ε/2

= ε,

and thus ∪∞
i=1Bi ∈ G.

A more powerful theorem, called the extension theorem, can be used to
prove Kolmogorov’s zero-one law. We state it without proof.

Theorem 1.65 The extension theorem. Suppose you have random vari-
ables X1, X2, ..., and you consistently define probabilities for all events in
σ(X1, X2, ..., Xn) for every n. This implies a unique value of the probability
of any event in σ(X1, X2, ...).
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Remark 1.66 To see how this implies Kolmogorov’s zero-one law, spec-
ify probabilities under the assumption that A is independent of any event
B ∈ ∪∞

n=1Fn. The extension theorem will say that A is independent of
σ(∪∞

n=1Fn).

We will prove the law of large numbers using the more powerful ergodic
theorem. This means we will show that the long-run average for a sequence
of random variables converges to the expected value under more general
conditions then just for independent random variables. We will define these
more general conditions next.

Given a sequence of random variablesX1, X2, . . ., suppose (for simplicity
and without loss of generality) that there is a one-to-one correspondence
between events of the form {X1 = x1, X2 = x2, X3 = x3...} and elements of
the sample space Ω. An event A is called an invariant event if the occurrence
of

{X1 = x1, X2 = x2, X3 = x3...} ∈ A

implies both

{X1 = x2, X2 = x3, X3 = x4...} ∈ A

and

{X1 = x0, X2 = x1, X3 = x2...} ∈ A.

In other words, an invariant event is not affected by shifting the sequence of
random variables to the left or right. For example, A = {supn≥1 Xn = ∞}
is an invariant event if Xn < ∞ for all n because supn≥1 Xn = ∞ implies
both supn≥1 Xn+1 = ∞ and supn≥1 Xn−1 = ∞.

On the other hand, the event A = {limn X2n = 0} is not invariant
because if a sequence x2, x4, ... converges to zero it doesn’t necessarily mean
that x1, x3, ... converges to zero. Consider the example where P (X1 = 1) =
1/2 = 1 − P (X1 = 0) and Xn = 1 − Xn−1 for n > 1. In this case, either
X2n = 0 and X2n−1 = 1 for all n ≥ 1 or X2n = 1 and X2n−1 = 0 for
all n ≥ 1, so {limn X2n = 0} and A = {limn X2n−1 = 0} cannot occur
together.

It can be shown (see Exercise 22 at the end of this chapter) that the
set of invariant events makes up a sigma field, called the invariant sigma
field, and is a subset of the tail sigma field. A sequence of random variables
X1, X2, ... is called ergodic if it has a trivial invariant sigma field and is
called stationary if the random variables (X1, X2, ..., Xn) have the same
joint distribution as the random variables (Xk, Xk+1, . . . , Xn+k−1) for every
n, k.

We are now ready to state the ergodic theorem, and an immediate
corollary will be the strong law of large numbers.

Theorem 1.67 The ergodic theorem. If the sequence X1, X2, ... is station-
ary and ergodic with E|X1| < ∞, then 1

n

∑n
i=1 Xi → E[X1] almost surely.
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Because a sequence of iid random variables is clearly stationary and, by
Kolmogorov’s zero-one law, ergodic, we get the strong law of large numbers
as an immediate corollary.

Corollary 1.68 The strong law of large numbers. If X1, X2, ... are iid with
E|X1| < ∞, then 1

n

∑n
i=1 Xi → E[X1] almost surely.

Proof Proof of the ergodic theorem. Given ε > 0, let Yi = Xi−E[X1]−ε and
Mn = max(0, Y1, Y1+Y2, ..., Y1+Y2+ · · ·+Yn). Because

1
n

∑n
i=1 Yi ≤ 1

nMn,
we will first show that Mn/n → 0 almost surely, and then the theorem
will follow after repeating the whole argument applied instead to Yi =
−Xi + E[X1]− ε.

Letting M ′
n = max(0, Y2, Y2 + Y3, ..., Y2 + Y3 + · · · + Yn+1) and using

stationarity in the last equality, we have

E[Mn+1] = E[max(0, Y1 +M ′
n)]

= E[M ′
n +max(−M ′

n, Y1)]

= E[Mn] + E[max(−M ′
n, Y1)],

and because Mn ≤ Mn+1 implies E[Mn] ≤ E[Mn+1], we can conclude
E[max(−M ′

n, Y1)] ≥ 0 for all n.
Because {Mn/n → 0} is an invariant event, by ergodicity it must have

probability either zero or one. If we were to assume the probability is
zero, then Mn+1 ≥ Mn would imply Mn → ∞ and also M ′

n → ∞, and
thus max(−M ′

n, Y1) → Y1. The dominated convergence theorem using
the bound |max(−M ′

n, Y1)| ≤ |Y1| would then give E[max(−M ′
n, Y1)] →

E[Y1] = −ε, which would then contradict the previous conclusion that
E[max(−M ′

n, Y1)] ≥ 0 for all n. This contradiction means we must have
Mn/n → 0 almost surely, and the theorem is proved.

1.11 Exercises

1. For n = 1, 2, . . ., let xn = (−n)−n. What can you say about supn xn,
infn xn, maxn xn, minxn, and limn xn?

2. Given a sigma field F , if Ai ∈ F for all 1 ≤ i ≤ n, is ∩n
i=1Ai ∈ F?

3. Suppose Fi, i = 1, 2, 3, . . . are sigma fields. (a) Is ∩∞
i=1Fi necessarily

always a sigma field? Explain. (b) Does your reasoning in (a) also
apply to the intersection of an uncountable number of sigma fields?
(c) Is ∪∞

i=1Fi necessarily always a σ field? Explain.

4. (a) Suppose Ω = {1, 2, ..., n}. How many different sets will there be
in the sigma field generated by starting with the individual elements
in Ω? (b) Is it possible for a sigma field to have a countably infinite
number of different sets in it? Explain.
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5. Show that if X and Y are real-valued random variables measurable
with respect to some given sigma field, then so is XY with respect to
the same sigma field.

6. If X is a random variable, is it possible for the cumulative distribution
function (CDF) F (x) = P (X ≤ x) to be discontinuous at a countably
infinite number of values of x? Is it possible for it to be discontinuous
at an uncountably infinite number of values of x? Explain.

7. Show that E[X] =
∑

i xiP (X = xi) if X can only take a countably
infinite number of different possible values.

8. Prove that if X ≥ 0 and E[X] < ∞, then limn→∞ E[XIX>n] = 0.

9. AssumeX ≥ 0 is a random variable, but don’t necessarily assume that
E[1/X]<∞. Show that limn→∞ E[ nX IX>n] = 0 and limn→∞
E[ 1

nX IX>n] = 0.

10. Use the definition of expected value in terms of simple variables to
prove that if X ≥ 0 and E[X] = 0 then X = 0 almost surely.

11. Show that if Xn −→d c then Xn −→p c.

12. Show that if E[g(Xn)] → E[g(X)] for all bounded, continuous func-
tions g then Xn −→d X.

13. If X1, X2, . . . are nonnegative random variables with the same dis-
tribution (but the variables are not necessarily independent) and
E[X1] < ∞, prove that limn→∞ E[maxi<n Xi/n] = 0.

14. For random variables X1, X2,..., let T be the tail sigma field, and let
Sn =

∑n
i=1 Xi. (a) Is {limn→∞ Sn/n > 0} ∈ T ? (b) Is {limn→∞ Sn >

0} ∈ T ?

15. IfX1, X2,... are nonnegative iid random variables with P (Xi > 0) > 0,
show that P (

∑∞
i=1 Xi = ∞) = 1.

16. Suppose X1, X2,... are continuous iid random variables and

Yn = I{Xn>maxi<n Xi}.

(a) Argue that Yi is independent of Yj for i �= j. (b) What is
P (
∑∞

i=1 Yi < ∞)? (c) What is P (
∑∞

i=1 YiYi+1 < ∞)?

17. Suppose there is a single server and the ith customer to arrive requires
the server spend Ui time serving them, the time between their arrival
and the next customer’s arrival is Vi, and Xi = Ui − Vi are iid with
mean μ. (a) If Qn+1 is the amount of time the (n + 1) customer
must wait before being served, explain why Qn+1 = max(Qn+Xn, 0)
= max(0, Xn, Xn+Xn−1, ..., Xn+· · ·+X1). (b) Show P (Qn → ∞) = 1
if μ > 0.
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18. Given a nonnegative random variable X, define the sequence of ran-
dom variables Yn = min(�2nX�/2n, n), where �x� denotes the integer
portion of x. Show that Yn ↑ X and E[X] = limn E[Yn].

19. Show that for any monotone functions f and g ifX,Y are independent
random variables then so are f(X), g(Y ).

20. Let X1, X2, . . . be random variables with Xi <∞ and suppose∑
n P (Xn > 1) < ∞. Compute P (supn Xn < ∞).

21. Suppose Xn →p X and that there is a random variable Y with
E[Y ] < ∞ such that |Xn| < Y for all n. Show E[limn→∞ Xn] =
limn→∞ E[Xn].

22. For random variables X1, X2, . . . , let T and I be the set of tail events
and the set of invariant events, respectively. Show that I and T are
both sigma fields.

23. A ring is hanging from the ceiling by a string. Someone will cut the
ring in two positions chosen uniformly at random on the circumfer-
ence, and this will break the ring into two pieces. Player I gets the
piece that falls to the floor, and player II gets the piece that stays
attached to the string. Whoever gets the bigger piece wins. Does
either player have an advantage here? Explain.

24. A box contains four marbles. One marble is red, and each of the other
three marbles is either yellow or green, but you have no idea exactly
how many of each color there are or if the other three marbles are all
the same color or not. (a) Someone chooses one marble at random
from the box, and if you can correctly guess the color, you will win
$1,000. What color would you guess? Explain. (b) If this game is to
be played four times using the same box of marbles (and the marble
drawn each time is placed back in the box), what guesses would you
make if you had to make all four guesses ahead of time? Explain.

25. For a sequence of iid continuous random variables X1, X2, . . . , let
N = inf{n ≥ 2 : Xn+1 > Xn} be the first time the next variable is
larger than its immediate predecessor. Compute E[N ].

26. Is it possible to pick a random positive integer uniformly at random?
Is it possible to pick a positive real number uniformly at random?
Explain why or why not.

27. In a group of n people, what is the expected number of distinct birth-
days?

28. If a fair coin is flipped n times, what is the expected number of runs
of k heads in a row if overlapping runs are each counted separately?
What is the expected number of times a run of at least k heads appears
in n flips, without counting overlapping runs?

https://doi.org/10.1017/9781009179928.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009179928.002

