ON CONVEX FUNDAMENTAL REGIONS FOR A LATTICE

A. M. MACBEATH

Let Λ be a lattice in Euclidean *n*-space, that is, Λ is a set of points $\xi_1a_1 + \ldots + \xi_na_n$ where a_1, \ldots, a_n are linearly independent vectors and the ξ run over all integers. Let μ denote the Lebesgue measure. A closed convex set *F* is called a *fundamental region* for Λ if the sets F + x ($x \in \Lambda$) cover the whole space without overlapping; that is, if F^0 is the interior of *F*, and $0 \neq x \in \Lambda$, then $F^0 \cap (F^0 + x) = \phi$.

Let f(x) be a positive definite quadratic form. The set F consisting of all x which satisfy the inequalities $f(x) \leq f(x + a)$, $0 \neq a \in \Lambda$, is clearly a fundamental region which (following Coxeter) we shall call the *Dirichlet region* of f and Λ . In his beautiful classical paper (4), Voronoi showed that if F is a *primitive* fundamental region (that is, if each of its vertices is a vertex of exactly n neighbours F + a, $a \in \Lambda$), then F is the Dirichlet region associated with some quadratic form. The classification of non-primitive F has still not been achieved and, in particular, there is an unsettled conjecture of Voronoi that every F is a limit of primitive ones.

It follows from Voronoi's theorem that every primitive F possesses a centre of symmetry. In this note I prove the same result for non-primitive F. For a quite different proof, given in full only for three-space, see Minkowski (3).

Let *F* be a fundamental region which is closed and convex. A set *A* is called a Λ -packing if $A \cap (A + x) = \phi$ for $0 \neq x \in \Lambda$, and it is known (see, for instance, **2**) that then $\mu(A) \leq \mu(F)$. The set *A* is a packing if and only if the equation $a_1 = a_2 + x$ has no solution with $a_1, a_2 \in A, 0 \neq x \in \Lambda$, that is, on rewriting the equation $x = a_1 - a_2$, if and only if A - A contains no lattice point except the origin.

Now F^0 is a Λ -packing, and, since F^0 is convex,

$$F^{0} - F^{0} = \frac{1}{2}(F^{0} + F^{0}) - \frac{1}{2}(F^{0} + F^{0})$$

= $\frac{1}{2}(F^{0} - F^{0}) - \frac{1}{2}(F^{0} - F^{0}),$

it follows that $\frac{1}{2}(F^0 - F^0)$ is a packing, and therefore

(1)
$$\mu(\frac{1}{2}(F^0 - F^0)) \leqslant \mu(F) = \mu(F^0).$$

Now by the Brunn-Minkowski theorem (1, pp. 88-91), we have

(2)
$$\mu(\frac{1}{2}F^0 + \frac{1}{2}(-F^0))^{1/n} \ge \mu(F^0)^{1/n}.$$

From (1), (2), equality must hold in the Brunn-Minkowski theorem, so F^0 is homothetic to $-F^0$, that is, F^0 has a centre of symmetry.

Received January 30, 1960.

A. M. MACBEATH

References

- 1. T. Bonnesen and W. Fenchel, Theorie der konvexen Körper (Berlin: Springer, 1934).
- 2. A. M. Macbeath, Abstract theory of packings and coverings, Proc. Glasgow Math. Assoc., 4 (1959), 92-95.
- 3. H. Minkowski, Allgemeine Lehrsätze ueber die konvexen Polyeder, Ges. Math. Abh., 2 (1911), 103-121.
- 4. G. Voronoi, Nouvelles applications des parametres continus à la théorie des formes quadratiques, II. J. reine angew. Math., 134 (1908), 198–287.

Queen's College Dundee