cambridge.org/par

Research Article

Cite this article: Krasnov BR, Khokhlova IS, López Berrizbeitia MF, Matthee S, Sanchez JP, Shenbrot GI, van der Mescht L (2024) Relationships between functional alpha and beta diversities of flea parasites and their small mammalian hosts. Parasitology 1-12. https://doi.org/10.1017/S0031182024000283

Received: 4 December 2023
Revised: 8 February 2024
Accepted: 28 February 2024

Keywords:

biogeographic realms; fleas; functional alpha diversity; functional alpha diversity components; functional beta diversity; mammals

Corresponding author:

Boris R. Krasnov;
Email: krasnov@bgu.ac.il
© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

Relationships between functional alpha and beta diversities of flea parasites and their small mammalian hosts

Boris R. Krasnov ${ }^{1}$ (D), Irina S. Khokhlova², M. Fernanda López Berrizbeitia ${ }^{3}$, Sonja Matthee ${ }^{4}$ (D), Juliana P. Sanchez ${ }^{5}$ (D), Georgy I. Shenbrot ${ }^{1}$ and Luther van der Mescht ${ }^{6,7}$

Abstract

${ }^{1}$ Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel; ${ }^{2}$ French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 Midreshet Ben-Gurion, Israel; ${ }^{3}$ Programa de Conservación de los Murciélagos de Argentina (PCMA) and Instituto de Investigaciones de Biodiversidad Argentina (PIDBA)-CCT CONICET Noa Sur (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Naturales e IML, UNT, and Fundación Miguel Lillo, Miguel Lillo 251, 4000 San Miguel de Tucumán, Argentina; ${ }^{4}$ Stellenbosch University, Private Bag X1, Matieland 7602, South Africa; ${ }^{5}$ Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires - CITNOBA (CONICETUNNOBA), Ruta Provincial 32 Km 3.5, 2700 Pergamino, Argentina; ${ }^{6}$ Clinvet International (Pty) Ltd, Universitas, Uitsig Road, Bloemfontein 9338, South Africa and ${ }^{7}$ Department of Zoology and Entomology, University of the Free State, 205 Nelson Mandela Dr, Park West, Bloemfontein 9301, South Africa.

Abstract

We studied the relationships between functional alpha and beta diversities of fleas and their small mammalian hosts in 4 biogeographic realms (the Afrotropics, the Nearctic, the Neotropics and the Palearctic), considering 3 components of alpha diversity (functional richness, divergence and regularity). We asked whether (a) flea alpha and beta diversities are driven by host alpha and beta diversities; (b) the variation in the off-host environment affects variation in flea alpha and beta diversities; and (c) the pattern of the relationship between flea and host alpha or beta diversities differs between geographic realms. We analysed alpha diversity using modified phylogenetic generalized least squares and beta diversity using modified phylogenetic generalized dissimilarity modelling. In all realms, flea functional richness and regularity increased with an increase in host functional richness and regularity, respectively, whereas flea functional divergence correlated positively with host functional divergence in the Nearctic only. Environmental effects on the components of flea alpha diversity were found only in the Holarctic realms. Host functional beta diversity was invariantly the best predictor of flea functional beta diversity in all realms, whereas the effects of environmental variables on flea functional beta diversity were much weaker and differed between realms. We conclude that flea functional diversity is mostly driven by host functional diversity, whereas the environmental effects on flea functional diversity vary (a) geographically and (b) between components of functional alpha diversity.

Introduction

Studying parasite diversity is crucial not only because many parasites are important to medicine and veterinary, but also because parasites, being independently evolved in multiple phylogenetic lineages, present the opportunity for testing various biogeographic and/or evolutionary hypotheses (Poulin and Morand, 2000). Given that parasites ultimately depend on their hosts, it is not surprising that parasite physiology, behaviour, population and community structure, including diversity, are often tightly related to those of their hosts (Krasnov et al., 2002; Tschirren et al., 2007; Maher and Timm, 2014; Slowinski et al., 2018). In other words, parasite traits, phylogeny and ecology are thought to be, to some extent, a product of host traits, phylogeny and ecology, albeit constrained by the evolutionary history of parasites themselves (Poulin, 2021), whereas the effect of environment on, for example, diversity of parasite traits is not always clear. Consequently, geographic variation of the patterns of parasite diversity and relative roles of host diversity and environmental factors on these patterns are far from being completely understood.

Biological diversity is represented not only by species richness and composition (compositional diversity), but also by the richness and composition of phylogenetic lineages (phylogenetic diversity) and functional traits (functional diversity) (Tilman et al., 1997; Webb et al., 2002; Cavender-Bares et al., 2009; De Bello et al., 2010; Le Bagousse-Pinguet et al., 2019). There is much evidence of the positive relationships between host and parasite diversities, in terms of species richness, for a variety of host and parasite taxa, geographic regions and environments (Krasnov et al., 2004; Hechinger and Lafferty, 2005; Kamiya et al., 2014). In other words, compositional parasite alpha diversity (i.e. diversity within a site/region;
sensu Whittaker, 1960, 1972) was thought to depend strongly on compositional host alpha diversity. However, a positive relationship between compositional parasite-host alpha diversities appeared to be geographically variable and were found in some, but not other, biogeographic realms (Krasnov et al., 2007, but see Krasnov et al., 2012 for the results produced by a different type of analysis). In contrast, when compositional parasite diversity was measured as species turnover (i.e. diversity between sites/ regions = beta diversity; sensu Whittaker, 1960, 1972), the positive relationship between parasite and host compositional beta diversities seemed to be geographically invariant (e.g. Maestri et al., 2017; Eriksson et al., 2020; Krasnov et al., 2020a, 2020b).

Studies that have dealt with the relationship between phylogenetic diversities of parasites and their hosts also demonstrated that geographic patterns of this relationship differed depending on the measure of diversity considered. Indeed, flea phylogenetic alpha diversity depended on the phylogenetic alpha diversity of their small mammalian hosts in the Palearctic only but not in the Nearctic, Neotropics or Afrotropics (Krasnov et al., 2019a; see also Krasnov et al., 2012), whereas a positive relationship between parasite and host phylogenetic beta diversity (Clark et al., 2018) has been observed in 6 biogeographic realms (Krasnov et al., 2023a).

Summarizing the results of the studies cited above, it can be suggested that geographic variation in the relationship between host and parasite diversities differs between the alpha and beta diversities of either compositional or phylogenetic diversity. In a nutshell, positive relationships between parasite and host compositional and phylogenetic alpha diversities seem to vary geographically, whereas the relationships between parasite and host compositional and phylogenetic beta diversities seem to be geographically invariant.

In contrast to the relationships between parasite and host compositional and phylogenetic diversities, the relationships between their functional diversities are much less known. To the best of our knowledge, the only study that investigated the effect of host functional diversity on the functional diversity of parasites dealt with parasite diversity at the scale of infracommunities (parasite communities harboured by individual hosts) (Krasnov et al., 2019b), whereas we are not aware of any study that considered this question at the scale of compound parasite communities (parasite communities harboured by host communities). To fill this gap, here we studied the relationships between functional parasite and host alpha and beta diversities in 4 biogeographic realms (the Afrotropics, the Nearctic, the Neotropics and the Palearctic) in the model of fleas and their small mammalian hosts. We predicted predominantly positive relationships between flea and host functional diversities because (a) the association between the traits of consumer species and consumed species is well established for free-living organisms (e.g. Rezende et al., 2007); (b) the importance of trait complementarity between parasites and their hosts has been recognized (McQuaid and Britton, 2013); and (c) the association between flea and small mammalian host traits has been proven, at least for the Palearctic (i.e. fleas possessing certain traits exploit hosts possessing certain traits, while hosts with certain traits harbour parasites with certain traits; Krasnov et al., 2016). In addition, many hypotheses explaining latitudinal gradients in functional parasite traits state that parasite traits track host traits (Poulin, 2021). Finally, the functional diversity of parasites has been shown to depend on host traits (e.g. Euclydes et al., 2021). Consequently, we asked whether (a) functional flea alpha and beta diversities in different regions within a realm are indeed driven by functional host alpha and beta diversities, respectively, (b) the variation in the off-host environment affects variation in flea functional diversity; and (c) the pattern of the
relationship between flea and host functional alpha or beta diversities differs between geographic realms.

It is now commonly recognized that functional alpha diversity is a multifaceted concept that can be characterized by a number of components, namely functional richness, functional divergence and functional regularity (Mason et al., 2005; Villéger et al., 2008; Tucker et al., 2017; Mammola et al., 2021; Schmera et al., 2023). Schmera et al. (2023) proposed a concept of so-called functional diversity units (FDUs) which are discrete entities that represent community members (e.g. species) from a functional perspective. The components of functional alpha diversity are separated by the associated questions. In particular, functional richness answers the question about how many FDUs can be distinguished within a community (i.e. how large is a community in relation to functional traits of its members), whereas functional divergence and functional regularity answer the question about how different and how variable, respectively, these FDUs are. The components of functional alpha diversity can be calculated based on the unrooted functional tree constructed from the matrix of trait (dis)similarity between species in a community (Cardoso et al., 2022), where functional richness, functional divergence and functional regularity are represented by the sum, the mean and the variance of the branch lengths, respectively (Cardoso et al., 2022; Schmera et al., 2023). In the framework of this study, we considered these components of functional diversity separately. This is because different components of functional alpha diversity of parasites can respond differently to either host alpha diversity or environmental factors or both and their patterns may vary between biogeographic realms (Schumm et al., 2019).

Materials and methods

Data on regional distribution of fleas and hosts

Data on the regional distribution of fleas and small mammalian hosts (Didelphimorphia, Macroscelidea, Eulipotyphla, Rodentia and the ochotonid Lagomorpha) were taken from published regional surveys for 15 regions in the Afrotropics, 23 regions in the Nearctic, 17 regions in the Neotropics and 36 regions in the Palearctic (see lists of region, maps and sources of information in Krasnov et al., 2022), including in the analyses mammal species on which at least 1 flea species was recorded. Fleas Xenopsylla cheopis, Xenopsylla brasiliensis, Nosopsyllus fasciatus and Nosopsyllus londiniensis characteristic for synanthropic ubiquitous rodents as well as these rodent species (Rattus norvegicus, Rattus rattus and Mus musculus) were not included in the analyses.

Flea and host traits

Data on flea and host traits were taken from our recent study (Krasnov et al., 2023b). Flea traits included 2 morphological and 4 ecological traits. Morphological traits were (a) the number of sclerotized ctenidia (no ctenidia, only a pronotal ctenidium, both pronotal and genal ctenidia) and (b) body length (ranked as small, medium or large), whereas ecological traits were (a, b) the number and phylogenetic diversity of host species exploited across a flea's geographic range; (c) the latitudinal span of geographic range; and (d) microhabitat preference (preference to spend the most time in a host's hair, its burrow/nest or no clear preference).

Small mammals were characterized by traits presumably affecting the patterns of flea parasitism (e.g. Krasnov et al., 2016). These were 2 morphological (average body mass and relative brain mass), 1 geographic (geographic range size) and 8 ecological
traits, namely (a) nest location (on, above or below ground); (b) life style (ground-dwelling, fossorial, arboreal or a combination); (c) diel activity (diurnal, nocturnal or around the clock); (d) feeding habits (omnivorous, folivorous, granivorous, insectivorous or a combination); (e) occurrence of hibernation or torpor; (f) population density; (g) home range size; (h) dispersal range (the distance between the birth location and the breeding location); (i) social group size; and (j) habitat breadth (according to level 1 IUCN habitats). For example, pre-imaginal development of fleas takes place mainly in a nest of a host, so the location of a nest is associated with temperature and humidity regime which, in turn, affects the survival of pre-imaginal fleas (Krasnov et al., 2001). Investment to 'expensive' tissue such as brain may compromise immune ability of a host and, thus, facilitate infection by parasites (Bordes et al., 2011). The rationale behind the selection of the remaining traits, information sources on traits and details of the calculations of some traits can be found elsewhere (Krasnov et al., 2016, 2019b, 2023b). Prior to the analyses, data on geographic range size (for mammals) were \ln-transformed, and then, continuous trait variables for both fleas and mammals were scaled to unit variance and zero mean, whereas nominal trait variables were converted to dummy variables using the function 'dummy' in the package 'BAT' (Cardoso et al., 2023), implemented in the R Statistical Environment (R Core Team, 2023).

Environmental variables

Data on the latitudes and longitudes of the regions' centres and on the region-specific values of environmental variables were taken from Krasnov et al. (2023a). In brief, regional environment was described using (a) the seasonal amount of green vegetation calculated as Normalized Difference Vegetation Indices (NVDI), (b) the mean, maximum and minimum air temperatures and (c) the seasonal precipitation. These data were averaged across 30 arc-second grids separately for each region. Sources of data on the latitudes and longitudes of the regions' centres, as well on environmental variables, can be found elsewhere (Krasnov et al., 2023a). Then, each category of environmental variables for each realm was subjected to principal component analyses, and the original values were subsequently substituted with the scores of the first principal components. The resulting 3 composite environmental variables were a vegetation variable (reflecting the amount of green vegetation), an air temperature variable and a precipitation variable. These composite variables reflected an increase in the respective original variables (amount of green vegetation, air temperature and precipitation) and explained from 72 to 97% of the variation in the environmental factors (see details in Krasnov et al., 2023a).

Data analyses: functional alpha diversities

The functional richness, functional divergence and functional regularity of both fleas and hosts were calculated using the R package 'BAT'. First, for each realm and separately for fleas and hosts, we constructed 2 matrices, namely a matrix of species distribution (D-matrix; regions \times species) and a matrix of species traits (T-matrix; species \times traits). Then, we constructed a neighbour-joining tree for each regional flea or host T-matrix as recommended by Cardoso et al. (2022) using the function 'tree.build' of the R package 'BAT' and Gower's distance. The latter allows constructing a dissimilarity matrix from data composed of continuous, categorical, dichotomous and nominal variables (Gower, 1971). The resulting functional trees and D-matrices were then used to calculate functional richness, functional divergence and functional regularity for fleas and hosts in each realm
using the functions 'alpha', 'dispersion' and 'evenness', respectively, of the 'BAT' package.

Treating the values of functional diversity components, in different regions within a realm, as independent observations could have introduced a bias in the analysis because multiple flea and host species occurred in more than 1 region. To control for the effects of the same flea and host species in several regions, we analysed the relationships between each component of flea functional diversity and the respective component of host functional diversity, as well as environmental variables, using a modified version of phylogenetic generalized least squares (PGLS; Martins and Hansen, 1997; Pagel, 1997, 1999; Rohlf, 2001). Classical PGLS is applied in comparative analyses to account for interspecific autocorrelation due to phylogeny and, thus, controls for nonindependence of data points (i.e. species related to each other via phylogeny). Here, we controlled for non-independence of regional data within a realm by substituting a phylogenetic tree with a realm-specific dendrogram of regions based on similarity in species composition of both fleas and hosts. For this, we (a) combined flea and host D-matrices for each realm; (b) constructed, from this matrix, a matrix of dissimilarity on flea and host species composition using the function 'vegdist' of the R package 'vegan' (Oksanen et al., 2022) with the option method = 'bray'; (c) built a cluster dendrogram using the function 'hclust' of the R package 'stats' (R Core Team, 2023) with the option method = 'complete'; and (d) transformed the resulting dendrogram into a pseudo-phylogenetic tree using the function 'as.phylo' of the R package 'ape' (Paradis and Schliep, 2019).

Then, we applied these modified PGLSs to test the relationships between each component of flea functional diversity (response variables) and the respective component of host functional diversity and the 3 composite environmental variables (explanatory variables) separately for each realm. We ran each model and applied forward stepwise model selection using the function 'phylostep', implemented in the R package 'phylolm'

Table 1. Summary of stepwise phylogenetic generalized least squares (PGLS) of the relationships between components of flea functional alpha diversity (richness, divergence and regularity) and the respective components of host functional alpha diversity and environmental variables (Veg, T, P) in 4 biogeographic realms

Realm	Component of functional diversity	Equation	R^{2}
Afrotropics	FFRi	$1.75^{\star}+0.36 \mathrm{HFRi}^{\star}$	0.31
	FFD	-	
	FFRe	$0.99 \mathrm{HFRe}^{\star}$	0.29
Nearctic	FFRi	$0.80 \mathrm{HFRi}^{\star \star \star}$	0.79
	FFD	$0.58 \mathrm{HFD}^{\star}+0.01 \mathrm{~T}^{\star}$	0.56
	FFRe	$0.78 \mathrm{HFRe}^{\star \star \star}-$	0.70
Neotropics	FFRi	$0.004 \mathrm{Veg}^{\star \star}$	$0.97^{\star}+0.47 \mathrm{HFRi}{ }^{\star \star}$
	FFD	-	0.50
	FFRe	$1.66 \mathrm{HFRe}^{\star \star}$	0.49
Palearctic	FFRi	$1.21^{\star \star \star}+$	
		$0.64 \mathrm{HFRi}^{\star \star \star}$	0.65
	FFD	$0.02 \mathrm{P}^{\star}$	0.15
	FFRe	$0.92 \mathrm{HFRe}^{\star \star \star}$	0.34

FFRi and HFRi: functional richness of fleas and hosts, respectively; FFD and HFD: functional divergence of fleas and hosts, respectively; FFRe and HFRe: functional regularity of fleas and hosts, respectively; Veg, T and P: composite environmental variables reflecting the amount of green vegetation, air temperature and precipitation, respectively. Only significant predictors are shown. ${ }^{*} P<0.05,{ }^{* *} P<0.01,{ }^{* * *} P<0.001$.
(Ho and Ane, 2014). For each model, we tested for residual spatial autocorrelation (Kühn and Dormann, 2012) using Moran's I metric with the R package 'ape'. No residual spatial autocorrelation was detected in any model (Moran's $I, P>0.07$ for all).

Data analyses: functional beta diversities

Functional beta diversity essentially represented functional dissimilarity between regions and, thus, was analogous to traditional dissimilarity metrics in which species are replaced by functional units. To investigate the relationships between the functional beta diversities of fleas and hosts, as well as to test for the effects of environment and geographic distance between regions, we applied a modified version of phylogenetic generalized dissimilarity modelling (phyloGDM) which, in turn, is an extension of generalized dissimilarity modelling (GDM) (Ferrier et al., 2007; Mokany et al., 2022). In general, GDM tests the relationships

Figure 1. Relationships between flea functional richness and host functional richness across regions in 4 biogeographic realms. Coefficients of the regression lines are from phylogenetic generalized least squares.
the GDM can incorporate various biotic and abiotic predictors into a single model. In phyloGDM, species are replaced with phylogenetic lineages and, thus, spatial patterns of phylogenetic turnover (Ferrier et al., 2007; Nipperess et al., 2010; Rosauer et al., 2013; Pavoine, 2016). We modified the phyloGDM by using a functional rather than a phylogenetic tree, thus replacing the species of the original GDM with functional units.

We used flea and host D-matrices and functional flea and host trees for each realm. From these matrices and trees, we constructed flea and host functional dissimilarity matrices using the function 'evodiss_family' of the R package 'adiv' (Pavoine, 2020), using coefficient S12 of Gower and Legendre (1986) based on Ochiai (1957) (because this coefficient is calculated for incidence rather than abundance data). Functional GDMs were carried out for each realm using the R package ' gdm ' (Fitzpatrick et al., 2022) to test for the relationships between (a) flea functional dissimilarity ($=$ beta diversity $=$ turnover of

Figure 2. Relationships between flea functional regularity and host functional regularity across regions in 4 biogeographic realms. Coefficients of the regression lines are from phylogenetic generalized least squares.

Nearctic only (Fig. 3). Regarding the effects of environment, flea functional richness was not affected by any environmental factor, whereas their functional divergence correlated positively with air temperature in the Nearctic and precipitation in the Palearctic (Fig. S1, Appendix 1, Supplementary Material). No effect of environment on this component of flea functional diversity was found in the remaining realms. An environmental effect on flea functional regularity was detected in the Nearctic only (increase with a decrease in the amount of green vegetation) (Fig. S1, Appendix 1, Supplementary Material).

Functional beta diversity

The GDM models for the effects of host functional turnover, environmental gradients and geographic distance on flea functional turnover explained about $75-80 \%$ of deviance in all realms (Table 2). Host functional turnover was invariantly the best

Figure 3. Relationships between flea functional divergence and host functional divergence across regions in 4 biogeographic realms. Coefficients of the regression lines for the Nearctic are from phylogenetic generalized least squares.
rather weak, whereas in the Neotropics, it was much less important than the effects of the air temperature and vegetation gradients (Tables 2-3).

Discussion

Our results demonstrated that host functional alpha diversity, in terms of functional richness and regularity, and functional beta diversity are the main drivers of the respective aspects of flea functional diversity. These patterns appeared to be invariant across biogeographic realms, i.e. they did not depend on the identities of either host or fleas. This, however, was not the case for functional divergence. In contrast to the effects of host functional diversity (except divergence), the effects of environmental factors on flea functional alpha and beta diversity differed substantially between realms, suggesting that this between-realm difference can be associated with between-realm variation in flea species composition, with different species responding differently to environmental variation, in terms of their traits.

Flea and host functional diversities

It is obvious that parasites ultimately depend on their hosts, so they must be able to extract resources from the hosts and to overcome their defence efforts. Consequently, parasites should evolve traits allowing them to successfully obtain resources from hosts, with these traits being determined by the respective host traits. For example, the positive relationships between (a) the headgroove width of chewing lice and the hair-shaft diameter of their gopher host, on the one hand, and (b) body size and headgroove width in lice, on the other hand, have lead Morand et al.

Table 3. Relative importance of host functional beta diversity (HFBD), environmental variables (Veg, T, P) and geographic distance (GD) for flea functional beta diversity calculated by generalized dissimilarity modelling

Realm	HFBD	Veg	T	P	GD
Afrotropics	14.17	1.46	1.17	0.00	5.75
Nearctic	38.65	0.00	0.00	0.50	2.10
Neotropics	14.05	2.65	7.64	0.38	0.34
Palearctic	56.67	0.10	0.84	0.11	3.89

Importance of a predictor is estimated using matrix permutation and is measured as the per cent decrease in deviance explained between the full model and the deviance explained by a model with the predictor permuted.
Veg, T and P : composite environmental variables reflecting the amount of green vegetation, air temperature and precipitation, respectively.
(2000) to conclude that evolutionary changes in the body size of chewing lice are driven by a relationship between the parasite's head-groove dimension and the diameter of its host's hairs. Fleas with both a genal comb and a pronotal comb have been shown to exploit mainly small-bodied hosts characterized by high metabolic rates (Krasnov et al., 2016). The likely reason for this is that combs allow fleas to anchor themselves to the host hair and thus resist dislodgement by host grooming (e.g. Traub, 1985). Consequently, fleas could develop both combs to be able to parasitize (a) smaller hosts that groom harder to decrease the number of parasites per unit body surface (Mooring et al., 2000) and (b) hosts investing in a higher metabolic rate as a compensation for costly behavioural defences (Giorgi et al., 2001). Fleas with greater jumping abilities (estimated via morphological features such as pleural height) and

Table 2. Flea functional beta diversity as explained by host functional beta diversity (HFBD), environmental variables (Veg, T, P) and geographic distance (GD) between regions in 4 biogeographic realms

Realm	\%Deviance explained	Predictor	I-spline 1	I-spline 2	I-spline 3	$\Sigma_{1-\text { splines }}$
Afrotropics	81.10	HFBD	0.00	0.00	1.09	1.09
		Veg	0.00	0.04	0.20	0.24
		T	0.03	0.00	0.00	0.03
		P	0.00	0.00	0.00	0.00
		GD	0.46	0.11	0.00	0.57
Nearctic	85.76	HFBD	0.00	0.00	1.49	1.49
		Veg	0.00	0.00	0.00	0.00
		T	0.00	0.00	0.00	0.00
		P	0.10	0.00	0.00	0.10
		GD	0.00	0.32	0.00	0.32
Neotropics	75.18	HFBD	0.00	0.00	1.23	1.23
		Veg	0.03	0.42	0.00	0.45
		T	0.61	0.00	0.00	0.61
		P	0.00	0.00	0.10	0.10
		GD	0.13	0.00	0.03	0.16
Palearctic	76.38	HFBD	0.00	0.00	1.99	1.99
		Veg	0.00	0.00	0.00	0.00
		T	0.00	0.00	0.27	0.27
		P	0.00	0.00	0.06	0.06
		GD	0.28	0.14	0.31	0.73

Veg, T and P: composite environmental variables reflecting the amount of green vegetation, air temperature and precipitation, respectively; I-splines 1 , 2 and 3 : coefficients of the first, second or third I-spline, respectively; $\Sigma_{l-s p l i n e s}$: sum of 3 I-splines (demonstrates the amplitude of an I-spline). An I-spline is a partial regression fit that reflects the importance of each predictor's effect on functional turnover, whereas the slope of an I-spline demonstrates the rate of functional turnover as well as the variation of this rate along a gradient. The maximum height of each I-spline corresponds to the total amount of turnover associated with a given gradient while holding all other predictors constant.
larger geographic ranges were found to exploit bird hosts with smaller social groups, thus increasing the probability of betweenhost transmission (Tripet et al., 2002). Trait-matching can thus explain the generally positive relationships between the functional diversities of parasites and hosts found in this study. However, parasite-host trait-matching does not always occur due to the existence of so-called exploitation barriers (e.g. Santamariá and Rodríuez-Gironé, 2007), through, for example, the development of stronger anti-parasitic defences (Fellowes et al., 1999;

Nuismer and Thompson, 2006). In antagonistic interactions, barriers are naturally evolved mechanisms for blocking exploitation such as development of traits that prevent exploitation (Goodman and Ewald, 2021). For instance, coevolutionary alternation describes cyclic evolutionary fluctuations in predator/parasite preferences driven by evolutionary shifts in prey/host defences and vice versa (Nuismer and Thompson, 2006). Trait-matching (= trait complementarity) can be translated into structural patterns of interaction networks (McQuaid and Britton, 2013).

Figure 4. Generalized dissimilarity model-fitted I-splines and 95\% confidence intervals (partial regression fits) of host functional turnover, environmental variables and geographic distance as predictors of flea functional turnover in the Afrotropics and the Nearctic. The steeper slope of an I-spline shows a greater rate of turnover at a given gradient part.

Theoretically, trait-matching can arise not only due to parasite adaptations to host traits, but also from the effects of parasite on host trait composition (Frainer et al., 2018), altering, for example, host mobility, habitat preferences or body size (e.g. Miura et al., 2006). However, this is highly unlikely for fleas because they are not known to be able to manipulate the physiology, morphology or behaviour of their host at the scale of the host species (although they cause these changes in individual hosts; e.g. Khokhlova et al., 2002).

Another, not necessarily alternative, reason for the positive relationships between flea and host functional diversities may result from the tight relationship between flea and host phylogenetic diversities (Krasnov et al., 2023a; but see Yaxley et al., 2023) since many traits of both fleas and hosts are phylogenetically conserved. In fleas, phylogenetically conserved traits include, for example, body size (Surkova et al., 2018), latitudinal position and size of geographic range (Krasnov et al., 2018a, 2018b) and characteristic abundance (Krasnov et al., 2011), whereas in hosts, such

Neotropics

Palearctic

Figure 5. Generalized dissimilarity model-fitted I-splines (partial regression fits) and 95% confidence intervals of host functional turnover, environmental variables and geographic distance as predictors of flea functional turnover in the Neotropics and the Palearctic. The steeper slope of an I-spline shows a greater rate of turnover at a given gradient part.
traits include, among others, body size (Capellini et al., 2010), relative brain mass (Antoł and Kozłowski, 2020) and dispersal distance (Whitmee and Orme, 2012). However, the relationships between functional and phylogenetic diversities can be scale-dependent. For example, in birds, they show substantial variation across latitudes (Yaxley et al., 2023).

As mentioned above, geographically invariant positive relationships between flea and host functional diversities were found for functional richness, functional regularity and functional beta diversity but not for functional divergence. In other words, the community-wise amount of flea functions (functional richness) and the degree of variability of these functions (functional regularity) correlated with those of hosts independently of species composition and evolutionary history of flea and host communities as well as their geographic patterns of dispersal. Geographic invariance of the relationships between flea and host functional beta diversities suggested that functional turnover ($=$ dissimilarity) of fleas followed functional turnover (= dissimilarity) of hosts whatever species compositions of fleas and hosts are. For the functional divergence, positive relationships were detected in the Nearctic only. Functional divergence represents the answer to the question: how different are species in their functional traits? One of the reasons for this may be the history of the Nearctic flea fauna as compared with those in other realms. The Nearctic fleas are heavily represented by the members of the youngest family Ceratophyllidae (Medvedev, 2005). Furthermore, flea historical dispersal between the Palearctic and Nearctic at the pre-glaciation time via the Bering Land Bridge is thought to have occurred primarily eastward, resulting in the recent flea clades being represented mainly in North America (Medvedev, 2005; Krasnov et al., 2015a). These lines of evidence suggest a shorter history of flea-host associations in the Nearctic. The longer histories of flea-host associations in the remaining realms could lead to some kind of homogenization of flea traits in relation to host traits, whereas this probably was not the case for the Nearctic due to the shorter time of adaptation to hosts.

Flea functional diversity and environment

Environmental factors had much weaker, albeit not negligible, effects on flea functional dissimilarity than host functional turnover, indicating variation in some flea traits along environmental gradients. This may be the result of environmental filtering of flea assemblages when the environment constrains a community composition only to species possessing certain adaptive traits that are necessary for persistence in that environment (Cavender-Bares et al., 2004; Ingram and Shurin, 2009). In particular, environmental filtering has been shown to be a mechanism of compound regional flea community assembly in the Palearctic (Krasnov et al., 2015b). In fact, fleas in the regions with lower air temperatures were characterized by larger body size and lower host specificity, whereas fleas from the regions with higher air temperature appeared to be smaller and their host specificity was relatively high (Krasnov et al., 2008, 2015b, 2023c). Nevertheless, the environmental effects on flea functional alpha-diversity were found in both Holarctic realms but not in the realms of the Southern Hemisphere, whereas environmental predictors of flea functional beta-diversity differed between realms. This could be because the variation in environmental factors differs between realms. For example, climatic conditions in the Holarctic range from hot deserts to cold tundra via the temperate zone, whereas climatic gradients in the Southern Hemisphere realms seem to be shorter, especially given that no flea samplings were carried out in the southernmost parts of South America. Another reason might be differences in trait distribution along environmental gradients in different flea species inhabiting different realms, likely due to
between-realm differences in flea evolutionary history, as well as historical events such as glaciation. We recognize that these explanations are highly speculative and warrant further investigation. Interestingly, environmental factors affecting flea beta diversity within a realm differed between functional (this study) and phylogenetic (Krasnov et al., 2023a) beta diversities. This supports the recent ideas that (a) phylogenetic diversity might be an unreliable surrogate of functional diversity and (b) the relationship between phylogenetic diversity and functional diversity is context dependent (Yaxley et al., 2023).

Finally, geographic distance appeared to be the second-best predictor of flea functional beta diversity, especially in the realms of the Southern Hemisphere. This can be considered as a manifestation of the widely recognized ecological pattern of distance decay of similarity (Nekola and White, 1999). Distance decay of compositional and phylogenetic similarity has earlier been shown for fleas in some but not other biogeographic realms (Krasnov et al., 2012, 2023a), suggesting that it may not be universal, not only in terms of compositional or phylogenetic similarity (Vinarski et al., 2007; Pérez-del-Olmo et al., 2009; Maestri et al., 2017), but also in terms of functional similarity.

In conclusion, flea functional alpha and beta diversities are mostly driven by host functional alpha and beta diversities, with these patterns being geographically invariant. In contrast, environmental effects on flea functional alpha and beta diversities vary geographically. In addition, environmental effects on flea functional alpha diversity differ between its components.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/S0031182024000283.

Data availability statement. Data on flea and host species composition in the Afrotropics, the Neotropics, the Nearctic and the Palearctic are deposited in the Mendeley Data Repository: 10.17632/dzyvrp7kfh. 2 (Krasnov, 2023).

Acknowledgements. M. F. L. B. thanks the members of the PIDBA for their support during the field collection trips. We thank Samara Bell and 2 anonymous referees for helpful comments of the earlier version of the manuscript.

Author contributions. B. R. K. conceived and designed the study. All authors collected the data. B. R. K. performed data analyses and wrote the first draft of the article. All authors finalized the article.

Financial support. This study was partly supported by the Israel Science Foundation (grant 548/23 to B. R. K. and I. S. K.).

Competing interests. The authors declare there are no conflicts of interest.
Ethical standards. The study used data from literature sources.

References

Antoł A and Kozłowski J (2020) Scaling of organ masses in mammals and birds: phylogenetic signal and implications for metabolic rate scaling. ZooKeys 982, 149-159.
Bordes F, Morand S and Krasnov BR (2011) Does investment into 'expensive' tissue compromise anti-parasitic defence? Testes size, brain size and parasite diversity in rodent hosts. Oecologia 165, 7-16.
Capellini I, Venditti C and Barton RA (2010) Phylogeny and metabolic scaling in mammals. Ecology 91, 2783-2793.
Cardoso P, Guillerme T, Mammola S, Matthews TJ, Rigal F, Graco-Roza C, Stahls G and Carvalho JC (2022) Calculating functional diversity metrics using neighbor-joining trees. bioRxiv 2022.11.27.518065. doi: 10.1101/ 2022.11.27.518065

Cardoso P, Mammola S, Rigal F and Carvalho JC (2023) BAT: Biodiversity Assessment Tools, R package version 2.9.4. Available at https://CRAN.Rproject.org/package=BAT
Cavender-Bares J, Ackerly DD, Baum DA and Bazzaz FA (2004) Phylogenetic overdispersion in Floridian oak communities. American Naturalist 163, 823-843.

Cavender-Bares J, Kozak KH, Fine PVA and Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecology Letters 12, 693-715.
Clark NJ, Clegg SM, Sam K, Goulding W, Koane B and Wells K (2018) Climate, host phylogeny and the connectivity of host communities govern regional parasite assembly. Diversity and Distributions 24, 13-23.
De Bello F, Lavergne S, Meynard CN, Lepš J and Thuiller W (2010) The partitioning of diversity: showing Theseus a way out of the labyrinth. Journal of Vegetation Science 21, 992-1000.
Eriksson A, Doherty JF, Fischer E, Graciolli G and Poulin R (2020) Hosts and environment overshadow spatial distance as drivers of bat fly species composition in the Neotropics. Journal of Biogeography 47, 736-747.
Euclydes L, Dudczak AC and Campião KM (2021) Anuran's habitat use drives the functional diversity of nematode parasite communities. Parasitology Research 120, 993-1001.
Fellowes MDE, Kraaijeveld AR and Godfray HCJ (1999) Cross-resistance following artificial selection for increased defense against parasitoids in Drosophila melanogaster. Evolution 53, 966-972.
Ferrier S, Manion G, Elith J and Richardson K (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions 13, 252-264.
Fitzpatrick M, Mokany K, Manion G, Nieto-Lugilde D and Ferrier S (2022) gdm: Generalized Dissimilarity Modelling. R package version 1.5.0-9.1. Available at https://CRAN.R-project.org/package=gdm
Frainer A, McKie BG, Amundsen P-A, Knudsen R and Lafferty KD (2018) Parasitism and the biodiversity-functioning relationship. Trends in Ecology and Evolution 33, 260-268.
Giorgi MS, Arlettaz R, Christe P and Vogel P (2001) The energetic grooming costs imposed by a parasitic mite (Spinturnix myoti) upon its bat host (Myotis myotis). Proceedings of the Royal Society of London B 268, 20712075.

Goodman JR and Ewald PW (2021) The evolution of barriers to exploitation: sometimes the Red Queen can take a break. Evolutionary Applications 14, 2179-2188.
Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27, 623-637.
Gower JC and Legendre P (1986) Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification 3, 5-48.
Hechinger RF and Lafferty KD (2005) Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proceeding of the Royal Society B 272, 1059-1066.
Ho LST and Ane C (2014) A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Systematic Biology 63, 397-408.
Ingram T and Shurin JB (2009) Trait-based assembly and phylogenetic structure in northeast Pacific rockfish assemblages. Ecology 90, 2444-2453.
Kamiya T, O'Dwyer K, Nakagawa S and Poulin R (2014) Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography 37, 689-697.
Khokhlova IS, Krasnov BR, Kam M, Burdelova NI and Degen AA (2002) Energy cost of ectoparasitism: the flea Xenopsylla ramesis on the desert gerbil Gerbillus dasyurus. Journal of Zoology 258, 349-354.
Krasnov BR (2023) Flea and host species in different regions of four biogeographic realms, Mendeley Data, V2. doi: 10.17632/dzyvrp7kfh. 2
Krasnov BR, Khokhlova IS, Fielden LJ and Burdelova NV (2001) Effect of air temperature and humidity on the survival of pre-imaginal stages of two flea species (Siphonaptera: Pulicidae). Journal of Medical Entomology 38, 629-637.
Krasnov BR, Shenbrot GI and Khokhlova IS (2002) The effect of host density on ectoparasite distribution: an example of a rodent parasitized by fleas. Ecology 83, 164-175.
Krasnov BR, Shenbrot GI, Khokhlova IS and Degen AA (2004) Relationship between host diversity and parasite diversity: flea assemblages on small mammals. Journal of Biogeography 31, 1857-1866.
Krasnov BR, Shenbrot GI, Khokhlova IS and Poulin R (2007) Geographic variation in the 'bottom-up' control of diversity: fleas and their small mammalian hosts. Global Ecology and Biogeography 16, 179-186.
Krasnov BR, Shenbrot GI, Khokhlova IS, Mouillot D and Poulin R (2008) Latitudinal gradients in niche breadth: empirical evidence from haematophagous ectoparasites. Journal of Biogeography 35, 592-601.
Krasnov BR, Poulin R and Mouillot D (2011) Scale-dependence of phylogenetic signal in ecological traits of ectoparasites. Ecography 34, 114-122.
Krasnov BR, Mouillot D, Khokhlova IS, Shenbrot GI and Poulin R (2012) Compositional and phylogenetic dissimilarity of host communities drives
dissimilarity of ectoparasite assemblages: geographical variation and scaledependence. Parasitology 139, 338-347.
Krasnov BR, Shenbrot GI and Khokhlova IS (2015a) Historical biogeography of fleas: the former Bering Land Bridge and phylogenetic dissimilarity between the Nearctic and Palearctic assemblages. Parasitology Research 114, 1677-1686.
Krasnov BR, Shenbrot GI, Khokhlova IS, Stanko M, Morand S and Mouillot D (2015b) Assembly rules of ectoparasite communities across scales: combining patterns of abiotic factors, host composition, geographic space, phylogeny and traits. Ecography 38, 184-197.
Krasnov BR, Shenbrot GI, Khokhlova IS and Degen AA (2016) Trait-based and phylogenetic associations between parasites and their hosts: a case study with small mammals and fleas in the Palearctic. Oikos 125, 29-38.
Krasnov BR, Shenbrot GI, van der Mescht L, Warburton EM and Khokhlova IS (2018a) Phylogenetic heritability of geographic range size in haematophagous ectoparasites: time of divergence and variation among continents. Parasitology 145, 1623-1632.
Krasnov BR, Shenbrot GI, van der Mescht L, Warburton EM and Khokhlova IS (2018b) The latitudinal, but not the longitudinal, geographic range positions of haematophagous ectoparasites demonstrate historical signatures. International Journal for Parasitology 48, 743-749.
Krasnov BR, Shenbrot GI, van der Mescht L, Warburton EM and Khokhlova IS (2019a) Phylogenetic and compositional diversity are governed by different rules: a study of fleas parasitic on small mammals in four biogeographic realms. Ecography 42, 1000-1011.
Krasnov BR, Shenbrot GI, Korallo-Vinarskay NP, Vinarski MV, Warburton EM and Khokhlova IS (2019b) The effects of environment, hosts and space on compositional, phylogenetic and functional beta-diversity in two taxa of arthropod ectoparasites. Parasitology Research 118, 2107-2120.
Krasnov BR, Shenbrot GI, van der Mescht L and Khokhlova IS (2020a) Drivers of compositional turnover are related to species' commonness in flea assemblages from four biogeographic realms: zeta diversity and multisite generalised dissimilarity modelling. International Journal for Parasitology 50, 331-344.
Krasnov BR, Shenbrot GI, Vinarski MM, Korallo-Vinarskaya NP and Khokhlova IS (2020b) Multi-site generalized dissimilarity modelling reveals drivers of species turnover in ectoparasite assemblages of small mammals across the northern and central Palaearctic. Global Ecology and Biogeography 29, 1579-1594.
Krasnov BR, Shenbrot GI and Khokhlova IS (2022) Regional flea and host assemblages form biogeographic, but not ecological, clusters: evidence for a dispersal-based mechanism as a driver of species composition. Parasitology 149, 1450-1459.
Krasnov BR, Shenbrot GI and Khokhlova IS (2023a) Phylogenetic patterns in regional flea assemblages from 6 biogeographic realms: strong links between flea and host phylogenetic turnovers and weak effects of phylogenetic originality on host specificity. Parasitology 150, 455-467.
Krasnov BR, Grabovsky VI, Khokhlova IS, López Berrizbeitia MF, Matthee S, Roll U, Sanchez JP, Shenbrot GI and van der Mescht L (2023b) Latitudinal distributions of the species richness, functional diversity, and phylogenetic diversity of fleas and their small mammalian hosts in four geographic quadrants. Ecography 2024, e07129. doi: 10.1111/ecog. 07129
Krasnov BR, Surkova EN, Shenbrot GI and Khokhlova IS (2023c) Latitudinal gradients in body size and sexual size dimorphism in fleas: males drive Bergmann's pattern. Integrative Zoology 18, 414-426.
Kühn I and Dormann CF (2012) Less than eight (and a half) misconceptions of spatial analysis. Journal of Biogeography 39, 995-1003.
Le Bagousse-Pinguet Y, Soliveres S, Gross N, Torices R, Berdugo M and Maestre FT (2019) Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the USA 116, 8419-8424.
Maestri R, Shenbrot GI and Krasnov BR (2017) Parasite beta diversity, host beta diversity and environment: application of two approaches to reveal patterns of flea species turnover in Mongolia. Journal of Biogeography 44, 1880-1890.
Maher SP and Timm RM (2014) Patterns of host and flea communities along an elevational gradient in Colorado. Canadian Journal of Zoology 92, 433-442.
Mammola S, Carmona CP, Guilerme T and Cardoso P (2021) Concepts and applications in functional diversity. Functional Ecology 35, 1869-1885.
Martins EP and Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist 149, 646-667.

Mason NWH, Mouillot D, Lee WG and Wilson BJ (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112-118.
McNew SM, Barrow LN, Williamson JL, Galen SC, Skeen HR, DuBay SG, Gaffney AM, Johnson AB, Bautista E, Ordoñez P, Schmitt CJ, Smiley A, Valqui T, Bates JM, Hackett SJ and Witt CC (2021) Contrasting drivers of diversity in hosts and parasites across the tropical Andes. Proceedings of the National Academy of Sciences of the USA 118, e2010714118.
McQuaid CF and Britton NF (2013) Host-parasite nestedness: a result of co-evolving trait-values. Ecological Complexity 13, 53-59.
Medvedev SG (2005) An attempt of a system analysis of the evolution of fleas (Siphonaptera). Meetings in memory of N.A. Kholodkovsky, issue 57 (2). Saint-Petersburg, Russia: Russian Entomological Society, Zoological Institute of Russian Academy of Sciences (in Russian).
Miura O, Kuris AM, Torchin ME, Hechinger RF and Chiba S (2006) Parasites alter host phenotype and may create a new ecological niche for snail hosts. Proceedings of the Royal Society of London B 273, 1323-1328.
Mokany K, Ware C, Woolley SNC, Ferrier S and Fitzpatrick MC (2022) A working guide to harnessing generalized dissimilarity modelling for biodiversity analysis and conservation assessment. Global Ecology and Biogeography 31, 802-821.
Mooring MS, Benjamin JE, Harte CR and Herzog NB (2000) Testing the interspecific body size principle in ungulates: the smaller they come, the harder they groom. Animal Behaviour 60, 35-45.
Morand S, Hafner MS, Page RDM and Reed DL (2000) Comparative body size relationships in pocket gophers and their chewing lice. Biological Journal of the Linnean Society 70, 239-246.
Nekola JC and White PS (1999) The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26, 867-878.
Nipperess DA, Faith DP and Barton K (2010) Resemblance in phylogenetic diversity among ecological assemblages. Journal of Vegetation Science 21, 809-820.
Nuismer SL and Thompson JN (2006) Coevolutionary alternation in antagonistic interactions. Evolution 60, 2207-2217.
Ochiai A (1957) Zoogeographic studies on the soleoid fishes found in Japan and its neighbouring regions. Bulletin of the Japanese Society for the Science of Fish 22, 526-530.
Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O'Hara R, Solymos P, Stevens M, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista H, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill M, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak C and Weedon J (2022) vegan: Community Ecology Package. R package version 2.6-4. Available at https://CRAN.R-project.org/package=vegan
Pagel M (1997) Inferring evolutionary processes from phylogenies. Zoologica Scripta 26, 331-348.
Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401, 877-884.
Paradis E and Schliep K (2019) ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528.
Pavoine S (2016) A guide through a family of phylogenetic dissimilarity measures among sites. Oikos 125, 1719-1732.
Pavoine S (2020) adiv: An R package to analyse biodiversity in ecology. Methods in Ecology and Evolution 11, 1106-1112.
Pérez-del-Olmo A, Fernández M, Raga JA, Kostadinova A and Morand S (2009) Not everything is everywhere: the distance decay of similarity in a marine host-parasite system. Journal of Biogeography 36, 200-209.
Poulin R (2021) Functional biogeography of parasite traits: hypotheses and evidence. Philosophical Transactions of the Royal Society B 376, 20200365.
Poulin R and Morand S (2000) The diversity of parasites. The Quarterly Review of Biology 75, 277-293.
R Core Team (2023) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, Available at https://www.R-project.org

Rezende EL, Jordano P and Bascompte J (2007) Effects of phenotypic complementarity and phylogeny on the nested structure of mutualistic networks. Oikos 116, 1919-1929.
Rohlf FJ (2001) Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55, 2143-2160.
Rosauer DF, Ferrier S, Williams KJ, Manion G, Keogh JS and Laffan SW (2013) Phylogenetic generalised dissimilarity modelling: a new approach to analysing and predicting spatial turnover in the phylogenetic composition of communities. Ecography 37, 21-32.
Santamarıá L and Rodríuez-Gironé MA (2007) Linkage rules for plant-pollinator networks: trait complementarity or exploitation barriers? PLoS Biology 5, 354-362.
Schmera D, Ricotta C and Podani J (2023) Components of functional diversity revisited: a new classification and its theoretical and practical implications. Ecology and Evolution 13, e10614.
Schumm M, Edie SM, Collins KS, Gómez-Bahamón V, Supriya K, White AE, Price TD and Jablonski D (2019) Common latitudinal gradients in functional richness and functional evenness across marine and terrestrial systems. Proceeding of the Royal Society of London B 286, 20190745.
Slowinski SP, Fudickar AM, Hughes AM, Mettler RD, Gorbatenko OV, Spellman GM, Ketterson ED and Atwell JW (2018) Sedentary songbirds maintain higher prevalence of haemosporidian parasite infections than migratory conspecifics during seasonal sympatry. PLoS ONE 22, e0201563.
Surkova EN, Warburton EM, van der Mescht L, Khokhlova IS and Krasnov BR (2018) Body size and ecological traits in fleas parasitic on small mammals in the Palearctic: larger species attain higher abundance. Oecologia 188, 559-569.
Tilman D, Knops J, Wedin D, Reich P, Ritchie M and Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277, 1300-1302.
Traub R (1985) Coevolution of fleas and mammals. In Kim KC (ed.), Coevolution of Parasitic Arthropods and Mammals. New York: Wiley-Interscience, pp. 295-437.
Tripet F, Christe P and Møller AP (2002) The importance of host spatial distribution for parasite specialization and speciation: a comparative study of bird fleas (Siphonaptera: Ceratophyllidae). Journal of Animal Ecology 71, 735-748.
Tschirren B, Bischoff LL, Saladin V and Richner H (2007) Host condition and host immunity affect parasite fitness in a bird-ectoparasite system. Functional Ecology 21, 372-378.
Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA, Grenyer R, Helmus MR, Jin LS, Mooes AO, Pavoine S, Purschke O, Redding DW, Rosauer DF, Winter M and Mazel F (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews 92, 698-715.
Villéger S, Mason NWH and Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290-2301.
Vinarski MV, Korallo NP, Krasnov BR, Shenbrot GI and Poulin R (2007) Decay of similarity of gamasid mite assemblages parasitic on Palaearctic small mammals: geographic distance, host species composition or environment? Journal of Biogeography 34, 1691-1700.
Webb CO, Ackerly DD, McPeek MA and Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics 33, 475-505.
Whitmee S and Orme DL (2012) Predicting dispersal distance in mammals: a trait-based approach. Journal of Animal Ecology 82, 211-221.
Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30, 279-338.
Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21, 213-251.
Yaxley KJ, Skeels A and Foley RA (2023) Global variation in the relationship between avian phylogenetic diversity and functional distance is driven by environmental context and constraints. Global Ecology and Biogeography 32, 2122-2134.

