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Summary

For a finite diploid population with no mutation, migration and selection, equations for the
deviation of observed genotype frequencies from Hardy-Weinberg proportions are derived in this
paper for monoecious species and for autosomal and sex-linked loci in dioecious species. It is
shown that the genotype frequency deviation in finite random-mating populations results from the
difference between the gene frequencies of male and female gametes, which is determined by two
independent causes: the gene frequency difference between male and female parents and the
sampling error due to the finite number of offspring. Previous studies have considered only one of
the causes and the equations derived by previous authors are applicable only in the special case of
random selection. The general equations derived here for both causes incorporate the variances
and covariances of family size and thus they reduce to previous equations for random selection.
Stochastic simulations are run to check the predictions from different formulae. Non-random
mating and variation in census size are considered and the applications of the derived formulae are
exemplified.

1. Introduction

In finite populations gene frequencies fluctuate
randomly from generation to generation as a result of
the sampling of a finite number of genes. Such
populations will not attain Hardy-Weinberg equi-
librium until one allele is fixed (q = 1) and all other
alleles are completely lost (and thus genetic drift is
absent). Before the equilibrium is reached, the
observed genotype frequency deviates consistently
from its expectation, calculated from the usual
Hardy-Weinberg formula using the observed gene
frequency. The relative deviation of the observed
heterozygote frequency (Ho) from its expected value
(He), a. = (He-H0)/He such that the observed het-
erozygote frequency is Ho = 2q{\ — q){\ — a), in
random-mating finite populations is the result of two
independent random processes acting in each gen-
eration. The first is due to the finite number of
progeny, which causes a difference in gene frequencies
between male and female gametes that unite to form
the progeny. The second is due to the finite number of
parents, which causes a difference in gene frequencies
between sexes in the parents. Thus, genetic drift in
both parent and offspring generations will cause
deviations of observed genotype frequencies from
Hardy-Weinberg proportions.

The first process is considered by Kimura & Crow
(1963) for a monoecious population with TV" individuals
in each generation. The appropriate value of a is

1
a = —27V-1'

which is extended to dioecious populations as

1
2 /V- l '

(1)

(2)

where Ns is the number of individuals of sex s and a8

is the deviation from Hardy-Weinberg proportions of
sex s (s = m or/). Many authors utilize (1) (Kimura &
Crow, 1963; Caballero & Hill, 1992 a, b; Crossa
& Vencovsky, 1994; Wang, 1995) or (2) (Crow &
Denniston, 1988; Caballero, 1994; Santiago
&Caballero, 1995; Wang, 1996a, b) in various formulae
to predict effective population size (Wright, 1938).

The second process is considered by Robertson
(1965) for a population with Nm males and Nf females,
and the prediction equation derived for a is

1 1
a = —8AL

(3)

Equation (3) is applied to the investigation of possible
heterozygote superiority in plant and animal popu-
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lations (Robertson, 1965) and also in predicting
effective size (Caballero et ah, 1991).

In this paper, more appropriate equations to predict
the relative genotype frequency deviation from
Hardy-Weinberg proportions in finite populations of
monoecious and dioecious species are obtained ana-
lytically and verified by stochastic simulations. For
dioecious species, the deviation for each sex is
considered for autosomal and sex-linked loci. It will
be shown that both independent processes are involved
in the genotype frequency deviation in dioecious
species and thus should be considered simultaneously.
And, for both processes, more general equations are
derived which incorporate variances and covariances
of family size and reduce to (l)-(3) for the special
cases. In deriving the equations in this paper, we
assume a random-mating population with constant
size and structure, discrete generations and without
mutation, migration and selection. Non-random
mating and variation in population size are considered
in the Discussion.

2. Theory

Genotype frequency deviation in finite random-
mating populations results from the difference in the
gene frequencies between two independent gamete
samples: one of male gametes and the other of female
gametes that unite to form the offspring. The difference
will cause an apparent excess of heterozyotes in the
progeny. The difference comes from two distinct
sources, the first being the sampling error due to the
finite size of male and female gamete sets, and the
second being the difference in gene frequencies between
male and female parents. It is clear that, for
monoecious species, only the first source is responsible
for the heterozygote excess.

Throughout this paper, the subscripts r and s will
denote sex, m for male gametes or individuals and /
for female gametes or individuals.

(i) Monoecious species

Consider a two-allele locus in a randomly fertilizing
population of N individuals in each generation. If the
gene frequencies of male and female gametes that unite
to form offspring in generation t are qm and qf

respectively, then the observed heterozygote frequency
in generation t will be Ho = qm{\ -qf) + qf{\-qm), the
mean gene frequency will be q = \(qm + qf), and the
expected heterozygote frequency from the Hardy-
Weinberg formula will be He = 2q{\ — q) =
(lm + <lf~K^m^'1f)2- There will then be an apparent
excess of heterozygotes He — H0 = —^qm — qf)

2- Thus
any difference in gene frequencies between male and
female gametes will cause an excess of heterozygotes,
as first noted by Robertson (1965) for a dioecious
population.

The difference between qm and qf depends on the
sampling method and the heterozygosity of the parents

in generation t — 1. Let xt be the gene frequency of
parent / (thus, x( is 0, | or 1 if it carries zero, one or two
copies of the allele, respectively), then the gene
frequency in gametes of sex s is

where nsi is the number of gametes of sex J produced
by parent i, and Stj is the difference in gene frequency
between they'th sampled gene and its parental value xt,
i.e. S(j is zero if the parent is a homozygote or +§ with
equal probabilities if a heterozygote. The expected
difference, E(qm — qf), is zero. Thus the expected
absolute genotype frequency deviation is obtained as

e-H0) = -\E(qm-qff

= -\V{qm-qf)

\

Since gene frequencies (xt), numbers of gametes per
parent (nsi) and Mendelian sampling terms (dtj) are
uncorrelated, we have

E(He-H0) = -±{V(X()[V(nmt)-2Cov(nmi,nfi)

+ V(nfi)] + 2V(Stj)}

approximately, ignoring terms in 1 /N2 relative to 1 /N
that are introduced by correlations among the nsi and
x( since their sums are fixed.

The variance of the gene frequency in the parents is
V(x() = q\\ -q'){\ +a')/2, where q' = \/N^_1xi is
the gene frequency and a' is the deviation from
Hardy-Weinberg proportions in generation t — 1. The
variance due to segregation, V(Stj), is equal to the
product of the frequency of heterozygotes, 2q'(l —q')
(1 — a'), and the variance generated from them, \, that
is V(Sfj) = q'(l- q'){\- a')/2. The variance of the
total number of gametes per parent is a2 = V(nmi + nfi)
and the covariance between the numbers of male and
female gametes per parent is amf = Cov(nmi,nfl).
Substituting these relations into the expression for
E{He-H0), we arrive at

E{He~H0) = -

x( l+a ' ) + 2-2a'].

The deviation from Hardy-Weinberg proportions
resulting from genetic drift in the offspring generation
is

a =
E(He-H0)
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In randomly fertilizing populations, a is of order I/TV
and

qV-q')_
q(i-q)

Thus neglecting terms in 1 /TV2 we get the approximate
expression

2 + o-2-4cr,mf

87V
(4)

From (4) we can see that not only the size of the
offspring population, but also the variance and
covariance of family size are important in determining
the value of a. The larger the variance and the smaller
the covariance, the greater is the relative genotype
frequency deviation from Hardy-Weinberg propor-
tions. If gametes are sampled randomly and in-
dependently from the parents, the distribution of the
number of gametes per parent will be binomial. In
such a case, a2 = 2 — 2/N and <rm/ = 0. However,
throughout this paper we neglect all second- and
higher-order terms of 1 /TV and thus approximate the
binomial distribution by the Poisson. Therefore, we
have a2 = 2 and <xm/ = 0 approximately for the
selection scheme. Inserting these values into (4) yields
a. = —\/{2N), which is the same as Kimura & Crow's
(1963) equation (1) omitting I/TV2. For the special
case of random selection, a comparison between (1)
and (4) shows that (1) is a little more precise than (4),
especially for very small populations. For example, the
observed values of a from stochastic simulations are
- 0 1 4 5 + 0005, - 0 0 9 1 + 0 0 0 3 and - 0 0 6 6 + 0-003
for TV = 4, TV = 6 and TV = 8 respectively, while the
expectations are -0-125, - 0 0 8 3 and - 0 0 6 3 from
(4) and - 0 1 4 3 , - 0 0 9 1 and -0-067 from (1). The
difference between (1) and (4) for random selection is
expected because second- and higher-order terms of
1//V are omitted for simplicity in deriving (4).

If each parent contributes exactly one male gamete
and one female gamete to the next generation (cr2 =
(rmf = 0), then the deviation is a = — 1 /(47V) from (4) -
half the value for Poisson distribution of family size.

Wright (1938, 1939) derived the effective size of a
randomly fertilizing population, which is

TV. =
4N-2

Inserting the relation into (4) yields

a = - — + ^
2N. 2TV

(5)

(6)

approximately. Equation (6) shows that the relative
excess of heterozygotes is equal to the rate of
inbreeding (AF = 1 /2Ne) if the covariance between
the numbers of male and female gametes per parent is
zero. The deviation is related more closely to effective
size than to census size. When <rmf 4= 0, there is a

difference between the (absolute) values of a and AF;
and the larger the departure of the covariance from
zero, the greater is the difference. This is because \a\
measures the variance in the difference between the
gene frequency of male gametes and that of female
gametes, while AF measures the variance of change in
the average gene frequency of male and female gametes
between generations. If, for example, the numbers of
male and female gametes contributed per parent are
positively correlated (<rmf > 0), gametes of separate
sexes are more likely to come from the same parent
and thus the gene frequency difference between male
and female gametes will be decreased, while more
gametes irrespective of sex are more likely to come
from fewer parents and thus the average gene
frequency change between generations will be
increased. Therefore, |a| is decreased and .d/" increased
for crmf > 0 compared with crmf = 0.

(ii) Dioecious species

We consider only autosomal loci in this section. Sex-
linked loci are dealt with in the next one. We assume
that the population consists of Nm males and Nf

females in each generation, and that each male mates
at random with an equal number, R — Nf/Nm (R
being an integer), of females.

If the gene frequencies in male and female gametes
that come from generation t — \ and unite to form
female individuals in generation t are qmLt-x and
qff t_j respectively, then the observed and expected
heterozygote frequencies of females in generation t are

Heft = 2qft(\-qft), (7 b)

where qf t = \(qmf t_r + qff ,_,) is the mean gene fre-
quency of female offspring. Let Dt_t — <7m/,_, — % . t _ i ,
then we have qmLt_x = qf,t + \Dt-i a n d 1/f.t-i =
qf (—lA-i- Substituting these relations into (7 a) yields

Hof ( = 2qf t(\ —qf ()+|Z)2_j. (7 c)

The expectation of Dt_x is E(Dt_^) = qm t_x — qf t_x,
where qs t_Y is the gene frequency of individuals of sex
.s in generation t — 1, and the expectation of D2

t_x is

(-i-<7/.(-i)
2- Vd)

The variance of Dt_± is

V(Dt_1)=V{qnLt_l-qff,t_l)

i-l

where nsft and xsl are the number of daughters and the
gene frequency of individual / of sex s in generation
t — 1. Using a procedure similar to the monoecious
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case and noting that all covariance terms are zero or
of order 1/N2, we get

where as is the deviation from Hardy—Weinberg
proportions in parents of sex s.

The expectation of the difference in gene frequency
between male and female parents, E(qmit_1 — qfit_1),
should be equal to zero. Thus we have

(8)

where nJsii is the number of individuals of sex s
contributed by theyth female grandparent mated with
the /th male grandparent, x'mi and x'fi} are the gene
frequencies of male / and its mate j (j = 1 to R) in
generation t — 2, Smijl (Sfijl) is the difference in gene
frequency between the &th (k = (j— l)R + l and
k = I for male and female grandparents respec-
tively) sampled gene and its parental value x'ml{x'fi]).

From (8) we can obtain, by a procedure similar to
that given by Wang (1996&) and the derivation of
(7e), the approximate expression

where a"s is the deviation from Hardy-Weinberg
proportions in grandparents of sex j in generation
t — 2, <jsm sf is the covariance between the numbers of
male and female individuals per grandparent of sex s,
qs t_2 is gene frequency in grandparents of sex s.

From (7 b)-{l e) and (9), we obtain the heterozygote
frequency deviation in female offspring shown in (10)

af ~ (Hef, t — Hof, l)/Hef, t

U _2
32Nm\[ mm \Nt

Since in equilibrium populations \—Asn, a's and a",
are of order 1 /Ns, an approximate expression can be
derived from (10), neglecting second- and higher-
order terms of I/TV,, as

acf = ap + af0, (11)

where ap is the deviation caused by the difference in
gene frequency between male and female parents,

and af0 is the deviation caused by sampling the
offspring,

(13)

Similarly, we can derive the deviation in male
offspring. The general equation for offspring of sex s
is

where ap is given by (12) and aso is

(14)

(15)

where /irt = NJNr is the average number of offspring
of sex s per parent of sex r.

If we do not distinguish the sexes of the offspring,
an equation for the deviation caused by sampling the

offspring of both sexes, a0, can also be derived
following the same procedure shown above. The
equation is

a0 =
1 Nmo*m + N,o*

(16)

where M= Nm + Nf and <j\ = <r2
sm + 2asm sf+a\s. The

(10)

where

A t-\).
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expression for a.p is given by (12), no matter whether
the offspring are males, females or both.

Hill (1972, 1979) has obtained an equation for
effective size of a randomly mating dioecious popu-
lation, which is

=

1 1

167V, ff N.

Substituting (17) into (12) we get

(18)

The average deviation caused by sampling male and
female offspring is a0 = (amo + oc/0)/2. Inserting (15)
and (17) into the expression we obtain

\ I <7fm,ff . °~mm,mS
Ne

+ SNm
 + 8AT, •

(19)

From (18) and (19) we get the deviation from
Hardy-Weinberg proportions averaged over male
and female offspring,

(20)

We can see from (18)-(20) that the relationships
among deviations (ap, a0 and a), effective size and
covariances (afmJS and amm m/) are in essence the
same as in the monoecious case. Comparing (16) and
(19), we see that the values of oi0 and a0 are generally
different. Only when Nm = Nf and a Poisson distri-
bution of family size is a0 equal to a0.

Equation (12) or (18) is the genotype frequency
deviation caused by the difference in gene frequencies
between male and female parents, which is different
from (3) derived by Robertson (1965). He assumed
random selection of both male and female individuals
where the number of offspring of each sex follows a
Poisson distribution, and he did not consider the
variance and covariance of family size. More prac-
tically, however, male and female offspring are not
necessarily selected at random from the population,
especially in domestic animal populations. The general
equation derived here incorporates the variances and
covariances of both male and female offspring per
family. For the special case of random selection, we
have a-*t = NJNr and <rjms/ = 0, and (12) or (18)
reduces to (3) approximately, as expected. The smaller
the variances and the larger the covariances of family
size, the smaller the value of av predicted from (12) or
(18) compared with that predicted from (3). For the
selection scheme proposed by Gowe et al. (1959) to
achieve minimal inbreeding and genetic drift in control
populations, a)m = {NJNf){\-NJNf) and a2

mm =

into (12) or (18) yields

1
32N,'

= 0. Substituting these

(21)

which (in absolute value) is always smaller than that
given by (3).

Kimura & Crow (1963) have considered the
genotype frequency deviation generated from sam-
pling a finite number of offspring and obtained (1).
Equation (2) is a direct extension of (1) for dioecious
populations. From our (15) it can be seen that (2) is
correct only for the special case of Poisson distribution
of offspring. In such a case, (15) reduces to aso

= — 1 /(2NS), similar to Kimura & Crow's results.
More generally, however, aso is also dependent on the
variance of family size and the heterozygosity of
parents as well as on the number of offspring. If there
are differences in fertility or viability, for example,
even if these are not inherited, the variance of family
size will be larger than the Poisson expectation and
thus the deviation will be greater than that predicted
from (2). On the contrary, in control populations the
variance of family size and thus ocso can be minimized.
If the numbers of males and females are equal (N/2)
in each generation and an equal number of offspring
are selected from each family (minimal inbreeding),
then all variances and covariances of family size are
zero and (15) reduces to ocmo = af0 = l/(2/V), which is
about half the value predicted from (2).

The homozygosity of parents also influences the
value of aso. We may take two extreme situations as
examples. In the first, we assume that all parents are
heterozygotes, and thus the deviation in parents is
— 1. Inserting this value into (10) yields ctj0

= — 1 /(2Nf), independent of the variances of family
size. This is intuitively correct. The importance of
family size variance increases with the variation in
parent genotypes. As an example at the other extreme,
we assume that all parents are homozygotes, and thus
their genotype frequency deviation is 1. From (10) we
immediately obtain <xf0 = -[(NJNf)^+0^/(4^),
which, only for Poisson distribution of family size,
reduces to a/0 = — 1 /(2Nf) approximately. The two
parent populations in the examples are far from
equilibrium. Their genotype deviations due to gene
frequency difference in parents (ap), sampling of
offspring (a5O) and both (a,) will quickly approach
asymptotically the equilibrium values given by (12),
(15) and (14).

(iii) Sex-linked loci

Deviations from Hardy-Weinberg proportions for
sex-linked loci or haplo-diploid species refers only to
the homogametic sex. We assume that the population
consists of Nm males and Nf females in each generation
(Nm ^ A^), and that each male mates at random with
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an equal number (R = Nf/Nm being an integer) of
females.

We first assume that females are the homogametic
sex. Using a procedure presented in the Appendix, we
can obtain the genotypic deviation generated from
gene frequency difference between male and female
parents and from sampling a finite number of offspring
as

247V,

i *

/V.

8Nf

^ Y ^ m 1,(22)

(23)

respectively. Combining ap and af0 by (14) gives the
total genotypic deviation from Hardy-Weinberg pro-
portions.

Pollak (1980, 1990) has derived an expression for
effective size for sex-linked loci in a random-mating
population, which, in the discrete generation case, is

Using (14) and (22)-(24), we can rewrite the equation
for <xf as

~ 2N.+
'fm.ff (25)

For random selection of offspring, (22) and
(23) reduce to ocp = - 1 /(3/VJ - 1 /(6Nf) and a, =
— \/{2Nf), respectively. In this case a comparison
between sex-linked and autosomal loci reveals that the
deviation caused by gene frequency difference between
male and female parents (ap) for sex-linked loci is
always much larger than that for autosomal loci. Even
with equal numbers of male and female individuals,
male parents are evidently more important than
female parents in determining ap for sex-linked loci.
The deviation caused by sampling a finite number of
offspring (af0) for sex-linked loci is the same as that
for autosomal loci.

For equal family size selection, (22) and (23) reduce
to ap = -\/(3NJ + l/(8Nf) and af0 = -\/(SNf)
respectively. In this case the absolute value of a!o for
sex-linked loci is smaller than that for autosomal loci.
The total deviation for sex-linked loci is af

= — l/(3/Vm), irrespective of the number of females
and is larger (in absolute value) than that for
autosomal loci when Nf > ff-/Vm.

Now we consider species where males are the
homogametic sex, as in poultry. The same population
structure and mating system also gives (22)-(25),
substituting m for / a n d / for m, respectively. For the

special case of a Poisson distribution of family size,
the equations reduce to acp = — 1 /(3Nf) — 1 /(6/Vm),
amo = -1 /(2/VJ and am = - 2/QNJ - 1 /(3Nf).
For equal family size they reduce to
ocp = - 1 /(8JVJ -1/(12Nf) and amo = - 3/(8#J
+1 /(4Nf), and the total deviation from Hardy-
Weinberg proportions is am = — l/(2Nm)+l/(6Nf).
Thus, for a given number of males, the larger the
female number, the greater the absolute value of am.

3. Simulations

Stochastic simulations have been carried out to check
the equations of the present study that are in
disagreement with those of the previous studies. The
simulated population consists of Nm males and Nf

females in each generation, each male mating at
random with an equal number of R = Nf/Nm (R being
an integer) females to produce the next generation.
We consider two selection schemes. The first is random
selection (RS), where the numbers of male and female
offspring per family follow a Poisson distribution. The
second is minimal inbreeding or equal family size
selection (ES), where one son is selected at random
from each male parent and one daughter from each
female parent (Gowe et al., 1959).

Every simulation is run for 20 generations and
10000 replicates. The population in generation one is
obtained by sampling Nm male and Nf female
individuals at random from an infinite base population
with gene frequency 0-5 in Hardy-Weinberg equi-
librium. Values of as are obtained by calculating for
each generation the relative deviation of observed
heterozygote frequency from its expectation with the
Hardy-Weinberg assumption in individuals of sex 5.
If the gene is lost or fixed in the population in any
generation, the replicate is terminated and only values
of as in previous generations of the replicates are
used. The simulated values of as are averaged for all
generations after generation three, when an asymptote
has been reached, and over all replicates.

Table 1 shows the observed values of as and pre-
dicted values from (2), (3) and (14). Clearly, predicted
results from (14) derived in this paper are in very close
agreement with observed values for both autosomal
and sex-linked cases. Both Kimura & Crow's (1963)
and Robertson's (1965) equations underestimate the
deviation from Hardy-Weinberg proportions. A com-
bination of the two equations gives an approximate
estimation of as when family size is Poisson-
distributed, but not in general.

4. Discussion

In deriving the equations we have assumed that the
population census size and structure are constant over
generations. These equations can easily be extended to
populations with variable sizes. In such a case, the
parameters in expressions for aso and ap refer to
parent and grandparent populations, respectively.
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Table 1. Observed and predicted deviation from Hardy—Weinberg proportions for populations with Nm males
and Nf females, random selection (RS) or equal family size selection (ES) and autosomal or sex-linked loci

Predicted from equation Predicted from equation

Loci Population Observed a_ (2) (3) (14) Observed a. (2) (3) (14)

Autosomal Nm = 4, Nf = 16
RS -0171+0006 -0143 -0039 -0164 -0068 + 0004
ES -0127 + 0003 -0-143 -0-039 -0111 -0-043 + 0002

Nm = S,N, = 40
RS -0083 + 0004 -0067 -0019 -0081 -0031 ±0002
ES -0060 + 0003 -0067 -0019 -0056 -0019±0001

Sex-linked Nm = 4,Nf=\6
RS -0192 + 0007 -0-143 -0-039 -0188 -0121 ±0003
ES -0132 + 0006 -0143 -0039 -0115 -0086±0003

Nm = 8, JV, = 40
RS -0091 ±0004 -0067 -0019 -0092 -0059 + 0003
ES -0062 + 0004 -0-067 -0019 -0058 -0041 ±0-002

-0032 -0039 -0070
-0032 -0039 -0041

-0013 -0019 -0031
-0013 -0019 -0019

-0032 -0-039 -0125
-0032 -0039 -0083

-0013 -0019 -0058
-0013 -0019 -0042

For monoecious species, the deviation in generation
t can be obtained, following the derivation of (4) but
considering census size in each generation, as

1 M-l (26)

where A ^ and /it_x — 2NJNt_1 are the number of
individuals and the mean number of gametes con-
tributed per individual in generation t — \, and o-\_x

and crmt_(_! are the variance and covariance of the
number of gametes per individual in generation t — \.
For autosomal loci in dioecious species, (12) and (15)
can also be extended, for variable census size, to

Zl\e OJ"/, (_2/*/m,t-2/i//, (-2

_l ® mm, mf, t-2

°" m, t-2 ftmm, t-2 ftmf, (-2

where

1 1

(27)

mm, t-2

1

T mm,t-2 *•" mm,mf,t-2

/*mm,(-2/*m/, t-2

/4f,t-2 M>fm.t-

mf, t-2

•nf,t-2J

2 ~\
1fm, 11, t-2 | afm,t-2

n II^ I
,t-2rim,t-2 rlm,t-2J

(Wang, 19966) and

' fs.t-1

fim

(28)

(29)

respectively, where Ns „ is the number of individuals
of sex s in generation n, / i r M = Nsn+l/Nrn and of,>n

are the mean and variance of the number of offspring
of sex s per parent of sex r in generation n, arm rf „ is
the covariance between the numbers of male and

female offspring per parent of sex r in generation n.
Similarly we can also get the equations for sex-linked
loci incorporating variation in census size.

Another assumption made in the derivation is
random mating. For non-random mating populations,
an additional deviation from Hardy-Weinberg pro-
portions results from inbreeding. For a monoecious
population with partial self-fertilization proportion (3,
the deviation due to inbreeding or non-random
mating, at, is a, = ft/(2-0)-(l+(rm/)/(2N-1 -amf).
When self-fertilization occurs in a random proportion,
/? = (1 +<rmf)/N and a,. = 0. In dioecious populations
of equal numbers of male and female individuals
(N/2) with a full-sib mating proportion /?, the
corresponding value of a.t is

ut = 0/(4 - 30) - (1 + <rmf)/(2N-3 - 3<rmf),

where amf is the covariance between the numbers of
male and female offspring per parent. Again for
random mating we have /? = 2(1 + o-mf)/N and at = 0.
For other systems of partial inbreeding, a.( can also
be obtained analogously from the equations for
equilibrium inbreeding coefficient derived by Hedrick
& Cockerham (1986) for autosomal loci and by Wang
(1996a) for sex-linked loci. The total deviation from
Hardy-Weinberg proportions for non-random mating
populations is ccs = af + ap + a.so, approximately.

The equations derived here are useful in calculating
gene frequencies from recessive homozygote fre-
quencies in small populations. If, for example, in a
dairy cattle population with four sires and 1000 dams
each generation, a particular kind of recessive ab-
normality occurs at a proportion of 0-25%, then the
recessive gene frequency is about 5% and the
frequency of the recessive gene 'carriers' in normal
individuals is 9-5% from Hardy-Weinberg law.
However, because of the small number of sires, the
population will have an apparent excess of hetero-
zygotes. Assuming random mating and random
selection of offspring, the deviation from Hardy-
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Weinberg proportions will be —0-032 approximately
from (14). From the relation for recessive homozygote
frequency G = q2 + q(\ —q)oc, we get

where qs (_t is the gene frequency in parents of sex s,

9 =
2 + 4( l -q)G]

2(1 -a )
= 6-7 %

and the frequency of'carriers' is about 12-9%, both
being evidently larger than those expected from
Hardy-Weinberg law. If the abnormality is deter-
mined by a recessive sex-liked gene, then its frequency
and the 'carrier' frequency, obtained by using a
deviation value of —0084 calculated from (22) and
(23), are 101 and 18-3% respectively, which are twice
as large as the values from Hardy-Weinberg expec-
tations.

The equations derived herein can also be used to
estimate effective population size (Ne) from gene and
genotype frequency data. Falconer (1981, pp. 68-69)
listed the data from a mouse experiment. The mouse
population consisted of 18 lines, all originating from
the same random-bred base and all maintained by
minimal inbreeding with eight pairs of parents mated
in each of the 27 generations. The data consist of gene
and genotype frequencies at five polymorphic enzyme
loci in each of the lines. The inbreeding coefficient (F)
at generation 27 is calculated from heterozygote fre-
quency and the effective size is estimated from F. The
exact effective size, calculated from the exact in-
breeding coefficient using the pedigree records, is 28-6.
The estimated effective size from the heterozygote
frequency data is 32-7 if the deviation from Hardy-
Weinberg proportions in each line is not accounted
for, and the corresponding value is 20-3 if a deviation
value calculated from a = — 1 /(2N), as used by
Falconer (1981), is utilized. More correctly, however,
the value of a should be -3/(47V) from (12) and (16)
derived in this paper. Using a = — 3/(47V), we can
obtain the estimate of effective size from the same
heterozygote frequency data, which turns out to be
29-3 and is in close agreement with the exact value.

Appendix. Deviation from Hardy-Weinberg
proportions for a sex-linked locus

We assume females are the homogametic sex. For a
sex-linked locus with two alleles, we can obtain the
absolute deviation from Hardy-Weinberg proportions
in generation t,

Hef-Hof = -\DU, (Al)

where Dt_x = qmtA-\ — qslA-\ is the difference in gene
frequency between male and female gametes that
come from parents in generation t — \ and unite to
form female offspring in generation t. The expectation
of D,, is

-l) = E(.9mf.t-l~9ff.t-l) =

-_L'
<7m,<-l — "»T~

n

nfmi}X'fii+

ml)

c <
l - l

*/(-u-l
( A 2 )

where nfs(j and x'm are explained in (8) and x'ml, the
gene frequency of male grandparent / in the generation
t — 2, takes only two possible values, one or zero.

Unlike the autosomal case, the expectation of
dt_x = qmit-i—q}it-i is not zero. Since nfst) and x'f(j or
x'mi are uncorrelated, we can obtain from (A 2)
that E(dt_j) = -K?m. t-z ~ qf, (-2) = -M-2= where
qs (_2 is the gene frequency of individuals of sex 5 in
generation t — 2. Thus the expectation of V(dt_1) is

In equilibrium dt_2 = dt_x so that E(d\_j = f
Substituting (A 2) into the expression and noting
that V(x'mi) = tfm,(_2(l -qm,t-2), we can obtain, using
a procedure similar to the derivation of (9), that

Nf ' Tmf

3Nf

The expectation of Df_x is

(A3)

= v(qmf, t-i - qff, 1-1)+(9m, t-i -9/, t-if, ( A 4 )

where the gene frequencies in male and female gametes
that unite to form female offspring in generation t,

9mt.t-x
 a n d %.«-i. a r e

1 m

mf, l-l = TT 2 J (nmfiXmi)'

lyfi-l

Since V(xm() =

(A 5)

and V(S(1) = qt<t-S\ -?/, t-i)(l -<*'f)/2, we can obtain,
from (A 5), that

^ 9m,t-iO--qm,t-d\(Nn
-qffi) = ^ \\j^

2Nf

x[o-2
ff(l+af) + l-af]. (A 6)

Using (A 1), (A 3), (A 4) and (A 6) and neglecting
second-order terms of 1 /Ns, we thus get (22) and (23).
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