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We show that in free surface flows, a uniform, streamwise current over small-amplitude
wavy bottom topography generates cross-stream drift velocity. This drift mechanism,
referred to as the current–bathymetry interaction-induced drift (CBIID), is specifically
understood in the context of a simplified nearshore environment consisting of a uniform
alongshore current, onshore-propagating surface waves and monochromatic wavy bottom
making an oblique angle with the shoreline. The CBIID is found to originate from
the steady, non-homogeneous solution of the governing system of equations. Similar to
Stokes drift induced by surface waves, CBIID also generates a compensating Eulerian
return flow to satisfy the no-flux lateral boundaries, e.g. the shoreline. The CBIID
increases with an increase in particle’s initial depth, bottom undulation amplitude and the
strength of the alongshore current. Additionally, CBIID near the free (bottom) surface
increases (decreases) with an increase in bottom undulation’s wavelength. Maximum
CBIID is obtained for long-wavelength bottom topography that makes an angle of
approximately π/4 with the shoreline. Unlike Stokes drift, particle excursions due to
current–bathymetry interactions might not be small, and hence analytical expressions
based on the small-excursion approximation could be inaccurate. We provide an alternative
z-bounded approximation, which leads to highly accurate expressions for drift velocity
and time period of particles especially located near the free surface. Realistic parametric
analysis reveals that in some nearshore environments, CBIID’s contribution to the net
Lagrangian drift can be as important as Stokes drift, implying that CBIID can have major
implications in cross-shelf tracer transport.
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1. Introduction

Rivers, estuaries and coastal oceans are some examples of free surface flow environments
that often exhibit shallow depths (a few metres), moderately strong currents (up to a few
metres per second) and fairly complex bottom topography. The free surface flow on which
we particularly focus is the nearshore environment – the transition region between the
shoreline and the open ocean (see figure 1a). The nearshore region horizontally stretches
for approximately 1 km, and consists of the surf zone (region of wave breaking) and
the inner shelf (depths varying from a few metres to tens of metres) (Lentz & Fewings
2012; Kumar & Feddersen 2017). Cross-shelf transport, i.e. the exchange of sediments,
pollutants, nutrients, larvae, and pathogens between the coastal waters and the open ocean,
is arguably the central problem in coastal physical oceanography (Lentz et al. 2008;
Brink 2016). Cross-shelf currents are much weaker than alongshore currents. In the surf
zone, cross-shelf and alongshore currents can respectively reach up to 0.2 and 1.5 m s−1

(Bakhtyar et al. 2016). In the inner shelf region, the cross-shelf current can typically
have a magnitude of 0.01–0.1 m s−1, whereas the corresponding alongshore current is
0.1–0.5 m s−1 (Rao 2004). However, cross-shelf gradients of most properties are usually
far greater than those in the alongshore direction, which causes cross-shelf exchange
to dominate the rates and pathways of tracer delivery and removal on the continental
shelf (Brink 2016). Onshore-propagating surface waves lead to cross-shelf transport in
the onshore direction via the Stokes drift mechanism – net mass transport in the direction
of surface wave propagation (Stokes 1847) – while Eulerian return flow and transient rip
currents are some of the important mechanisms causing offshore transport (Lentz et al.
2008; Brown et al. 2015; Kumar & Feddersen 2017; O’Dea, Kumar & Haller 2021).

The schematic in figure 1(b) provides an idealized representation of figure 1(a). This
idealized scenario consists of three key elements: (i) a steady, uniform, alongshore current,
(ii) onshore-propagating monochromatic surface waves and (iii) a small-amplitude,
monochromatic bottom topography with wavevector making an oblique angle with
the shoreline. Nearshore oblique sandbars have been observed in various locations,
e.g. Trabucador Beach, Duck Beach, several Oregon beaches, St James Island, Durras
Beach, etc. (Ribas, Falqués & Montoto 2003). According to our current understanding,
the motion of a tracer parcel in the simplified set-up given in figure 1(b) is expected
to result from two different mechanisms: Stokes drift and longshore drift (advection by
the alongshore current). Hence we expect a tracer parcel to move in a resultant direction
whose streamwise component is along +y (due to the longshore drift) and cross-stream
component is along +x (or onshore, due to the Stokes drift). The question we ask is – if
we replace the set-up in figure 1(b) with a flat bathymetry (see figure 1c), does it alter
the trajectory of a given tracer parcel? The primary objective of this paper is to show that
small-amplitude wavy bottom topography indeed affects tracer trajectories, and in fact,
can play a crucial role in cross-shelf (in a generic open-channel flow, this would imply
cross-stream) tracer transport.

The fact that small-amplitude bottom topography can impact cross-shelf tracer transport
is non-obvious. If we assume surface waves in figure 1(a) or 1(b) to be absent, basic fluid
mechanics tells us that the tracer parcel marked by green dot will be simply advected in
the +y direction by the alongshore current (i.e. undergo longshore drift). In the presence
of small-amplitude topography, we show that an additional mechanism is at play, which
can lead to cross-shelf (along +x or −x) tracer transport. The proposed mechanism owes
its existence to the stationary waves generated due to a uniform flow over a sinusoidal
bottom topography (Thomson 1886; Lamb 1932). These stationary waves (or steady
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Figure 1. (a) A typical nearshore environment (location: Mallaig, Highlands of Scotland) and (b) the
corresponding schematic diagram showing surface waves (wavenumber K(k, 0)), alongshore current (V0), wavy
bottom topography (wavenumber Kb(kb, lb)) and the free surface imprint resulting from current–bathymetry
interactions. Two subsets of the above situation are considered: (c) surface waves, flat bottom and alongshore
current and (d) wavy bottom topography and alongshore current, but no surface waves. In the last case, the
undulations at the free surface represent the surface imprint of the wavy seabed. The black dashed line is used
for the shoreline, and the green dot in (a,b) represents a particle at the ocean surface.

surface imprints of the sinusoidal wavy bottom) are shown in figure 1(d); they also exist
in figure 1(b), and can be unravelled by removing the propagating surface waves entirely.
The amplitude of these surface imprints may not be insignificant in fluvial and coastal
environments owing to their shallow depths and high velocity scales, and hence can lead
to non-trivial kinematics.

The outline of the paper is as follows. In § 2, we provide the general mathematical
formulation of the problem. In § 3, we concentrate on figure 1(c) and onshore tracer
transport of floating particles due to Stokes drift. Section 4 focuses on figure 1(d) and
reveals a new drift mechanism resulting from the alongshore current and wavy seabed
interactions. How this drift mechanism can contribute to the cross-shelf transport, and
hence affect the fate of tracer parcels, is discussed in detail. In § 5, we discuss the set-up in
figure 1(b), i.e. the combined effect of surface waves, wavy seabed and alongshore current.
Section 6 provides a comparison of the Lagrangian transport due to Stokes drift, the new
drift mechanism, and their combination for realistic parameters. The paper is summarized
and concluded in § 7.

2. Mathematical formulation

We consider the three-dimensional problem of surface wave propagation over an
undulating seabed in the presence of uniform background current (see figure 1b). We
assume the fluid to be irrotational, incompressible, inviscid and homogeneous; the domain
has infinite horizontal extent but has a finite mean depth H. Surface tension and Coriolis
effects are neglected. The water surface is denoted by z = η(x, y, t); x and y respectively
denote the cross-shelf (onshore and offshore are used respectively for positive and negative
x directions) and the alongshore (i.e. streamwise) directions, while the z-axis is directed
upwards. The wavy seabed is denoted by z = −H + ηb(x, y), where |ηb/H| � 1. We also
consider a uniform cross-shelf current, U0, and a uniform alongshore current, V0. The fluid
motion is defined by a velocity potential, which is a combination of the velocity potential
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due to the uniform currents, and the perturbed velocity potential (φ). The perturbed
velocity potential satisfies the governing Laplace equation (GLE)

[GLE] : φ,xx + φ,yy + φ,zz = 0, −H + ηb < z < η, (2.1)

where the comma subscript denotes partial derivative (φ,x = ∂φ/∂x). Hereafter, unless
specifically mentioned, velocity potential will always imply a perturbed quantity. The
impenetrability condition (ImC) holds at the wavy seabed, z = −H + ηb(x, y),

[ImC] : φ,z − φ,xηb,x − φ,yηb,y = U0ηb,x + V0ηb,y. (2.2)

The ImC is a non-homogeneous equation in general, and would lead to a homogeneous
solution only when the level sets of ηb are parallel to the background current field. The
kinematic (KBC) and dynamic boundary conditions (DBC) at the free water surface, z =
η(x, y, t), are respectively given as

[KBC] : η,t + (φ,x + U0)η,x + (φ,y + V0)η,y − φ,z = 0, (2.3a)

[DBC] : φ,t + 1
2 [(φ,x)

2 + (φ,y)
2 + (φ,z)

2] + U0φ,x + V0φ,y + gη = 0, (2.3b)

where g denotes gravitational acceleration. In order to apply the boundary conditions, the
velocity potentials at z = −H + ηb and z = η need to be respectively Taylor-expanded
about z = −H and z = 0. Furthermore, throughout the paper we consider a wavy seabed
of the form

ηb = ab cos (kbx + lby), (2.4)

where kb and lb are respectively the wavenumbers in the x and y directions, ab is the

amplitude and Kb ≡
√

k2
b + l2b.

Hereafter we assume U0 � V0 (and further assume U0 � O(ε2)), since away from
inlets or river mouths, cross-shelf flows are typically much weaker than alongshore
flows (Gelfenbaum 2005). We also consider two (small) spatial scales: wave steepness,
ε = Ka � 1 (K is surface wave’s wavenumber and a is its amplitude), and wavy seabed
steepness, εb = Kbab � 1, and expand the velocity potential (φ) and surface elevation (η)
as perturbation series in terms of ε and εb. The velocity potential and surface elevation can
then be expressed in terms of ε and εb as

φ =
[
φ(1)

u + O(ε2)
]

+
[
φ(1)

s + O(ε2
b)
]
, (2.5a)

η =
[
η(1)

u + O(ε2)
]

+
[
η(1)

s + O(ε2
b)
]
. (2.5b)

Both φ and η are a combination of an unsteady solution, denoted by subscript ‘u’, and
a steady solution, denoted by subscript ‘s’ (Kirby 1988; Fan et al. 2021). The quantities
φ

(1)
u and η

(1)
u are O(ε), while φ

(1)
s and η

(1)
s are O(εb). The steady solution, arising from

the interactions between the uniform current and sinusoidal bottom topography, manifests
itself as stationary waves (Thomson 1886; Lamb 1932). Such spatially varying stationary
features can also be viewed as O(εb) corrections to the leading-order uniform flow due to
the wavy seabed topography. In (2.5a)–(2.5b), the relationship between ε and εb is not yet
established, and hence they are separated by square brackets. In the following sections, we
investigate different situations depending on the relationship between ε and εb.

The velocity field can be straightforwardly obtained from the velocity potential: u ≡
(u, v, w) = (φ,x, φ,y, φ,z). Out of the three components, the velocity u plays the most
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Figure 2. Contour plots of instantaneous cross-shelf velocity u in the x–z plane for intermediate (a–c)
and shallow (d– f ) water depths. (a,d) Case-I (O(εb) � O(ε)), (b,e) case-II (O(εb) � O(ε)) and (c, f )
case-III (O(εb) ∼ O(ε)). Parameters used: (a) KH(kH, lH) = 2(2, 0), a/H = 0.01, (b) KbH(kbH, lbH) =
2(1.6, 1.2), ab/H = 0.03, (c) combined parameters of (a,b), (d) KH(kH, lH) = 0.2(0.2, 0), a/H = 0.01, (e)
KbH(kbH, lbH) = 0.1(0.08, 0.06), ab/H = 0.1 and ( f ) combined parameters of (d,e). Fr ≡ |V0|/

√
gH = 0.5

in all cases.

crucial role in the cross-shelf transport of particles. Figure 2 shows contour plots of u at an
arbitrary time in the x–z plane for different situations depending on the relation between ε

and εb (these situations are schematically depicted in figure 1b–d).
The primary focus of this paper is to obtain the trajectory (x(t), y(t), z(t)) of a tracer

particle, which can be obtained by solving the pathline equations:

dx
dt

= U0 + u(x, y, z, t),
dy
dt

= V0 + v(x, y, z, t),
dz
dt

= w(x, y, z, t). (2.6a–c)

Tracer trajectories for the different cases, whose overviews are given in figures 1 and 2,
are discussed in the following sections. Unless otherwise mentioned, all tracer trajectories
are studied for particles at the free surface.

3. Case-I: wave steepness dominates over wavy seabed steepness (O(εb) � O(ε) � 1)

Here we consider the situation depicted in figure 1(c) where the wave steepness (ε) is much
greater than the wavy seabed steepness (εb), i.e. O(εb) � O(ε) � 1. In this situation, the
bottom surface is perceived to be (nearly) flat. To study the unsteady wave motion over a
finite (and constant) depth fluid H and constant alongshore current V0, we substitute the
perturbation series of φ and η from (2.5a)–(2.5b) into the GLE and BCs, given in (2.2),
(2.3a)–(2.3b). At O(ε) we find

[GLE] : φ(1)
u,xx + φ(1)

u,yy + φ(1)
u,zz = 0 − H < z < 0, (3.1a)

[ImC] : φ(1)
u,z = 0 at z = −H, (3.1b)

[KBC] : η
(1)
u,t + V0η

(1)
u,y − φ(1)

u,z = 0 at z = 0, (3.1c)

[DBC] : φ
(1)
u,t + V0φ

(1)
u,y + gη(1)

u = 0 at z = 0. (3.1d)

We assume a linear, progressive surface wave of the form

η(1)
u = a cos(kx + ly − ωt), (3.2)
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and solve (3.1a)–(3.1d), yielding

φ(1)
u = aω̄

K
cosh K(z + H)

sinh(KH)
sin(kx + ly − ωt). (3.3)

Here a is the amplitude and ω is the frequency of the surface gravity wave with
wavenumber K, ω = ω̄ + V0l and ω̄ (= √

gK tanh (KH)) is its intrinsic frequency and k
and l are respectively the components of K in the x and y directions. It is to be noted that for
simplicity, schematic figure 1(a–c) shows surface wavevector only along x. The solution
(3.2)–(3.3) is generally known as the homogeneous (unsteady) solution of progressive
surface gravity waves in the presence of a constant background current in a constant water
depth. Related (but not the same) set-ups have been thoroughly studied in Peregrine (1976),
Dommermuth & Yue (1987), Kirby (1988), Raj & Guha (2019) and Gupta & Guha (2021).

From (3.3), the velocity field at O(ε) can be straightforwardly obtained: u(1) = ∇φ
(1)
u .

Contours of the x component of u(1) (i.e. u(1)) at an arbitrary time are respectively plotted
in figures 2(a) and 2(d) for intermediate (KH ≈ 1) and shallow (KH � 1) depths.

3.1. Pathline equations
Substitution of u(1) into (2.6a–c) leads to the pathline equations for case-I:

dx
dt

= aω̄k
K

cosh K(z + H)

sinh(KH)
cos θ, (3.4a)

dy
dt

= V0 + aω̄l
K

cosh K(z + H)

sinh(KH)
cos θ, (3.4b)

dz
dt

= aω̄
sinh K(z + H)

sinh(KH)
sin θ, (3.4c)

where θ = kx + ly − ωt. Even for a linear water wave, a tracer particle moves in an
open trajectory, which can be shown by applying phase plane analysis to the nonlinear
dynamical system (3.4a)–(3.4c) (Henry 2007; Constantin & Villari 2008; Constantin,
Ehrnström & Villari 2008). Explicit solution of this dynamical system is not possible,
and hence the system needs to be numerically solved in order to evaluate the drift. Note
that the alongshore current V0 Doppler shifts the frequency, but otherwise does not impact
the cross-shelf transport. The forward drift in figure 3(a), which is the well-known Stokes
drift, would lead to onshore particle transport. Hence, linear waves do experience Stokes
drift, which is clearly evidenced when the right-hand side of (3.4a)–(3.4c) is expanded via
the small-excursion approximation to include second-order nonlinear terms, given in § 3.2.

3.2. Stokes drift: small-excursion approximation in the presence of a uniform current
The classical technique for calculating Stokes drift employs Taylor expansion by assuming
a priori that the particle excursion over one wave period is small (Stokes 1847; Kundu,
Cohen & Dowling 2016; Van den Bremer & Breivik 2017). Equations (3.4a)–(3.4c) include
a constant current V0; hence for conducting small-excursion analysis about an initial
particle location (x0, y0, z0), we first need to apply the following Galilean transformation:
(X, Y, Z) = (x, y − V0t, z). This is because, in a rest frame, there is always a displacement
V0t along y due to constant advection, which can lead to a violation of the small-excursion
approximation. A closed elliptical trajectory is obtained at O(ε), but inclusion of O(ε2)
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Figure 3. Particle trajectory for case-I in the non-dimensional (a) x–t plane and (b) x–z plane. These are
plotted in a reference frame moving with alongshore current, V0. The solid, wavy black line denotes the
particle trajectory, while filled black circles are plotted after each T̄ . The black line connecting the circles is the
Lagrangian mean trajectory of the particle. Parameters used: KH(kH, lH) = 1(1, 0), a/H = 0.01, ab/H = 0
and Fr = 0.1 (V0 > 0).

terms reveals an open trajectory, shown in figure 3(b), and yields the Stokes drift velocity:

〈uSD〉 = a2ω̄k

2 sinh2 (KH)
cosh[2K(z0 + H)], (3.5a)

〈vSD〉 = a2ω̄l

2 sinh2 (KH)
cosh[2K(z0 + H)], (3.5b)

〈wSD〉 = 0, (3.5c)

where 〈. . .〉 denotes averaging over one wave period (in the moving frame), T̄ = 2π/ω̄.
Equations analogous to (3.5a)–(3.5c) can be found in Ursell (1953) and Gupta & Guha
(2021). The small-excursion approximation, which serves the basis for (3.5a)–(3.5c),
yields a highly accurate solution – for deep and shallow water waves, the errors are
respectively O(ε6) (Longuet-Higgins 1987; Van den Bremer & Breivik 2017) and O(ε4)
(Clamond 2007). The resulting Stokes drift displacement is

�xSD = 〈uSD〉 T̄, (3.6)

and is the linear distance between two filled black circles shown in figure 3, where T̄ = T
since l = 0.

Among other things, we scrutinize in § 4 whether a priori assumption of small excursion
applied to the pathline equations yields highly accurate results when there is a wavy seabed
and a background alongshore current.

3.3. Lagrangian drift and Eulerian return flow
In a typical nearshore environment, predominantly onshore-propagating surface waves
lead to an onshoreward Stokes drift velocity. However, due to the presence of shoreline,
there is a compensating wave-driven offshore flow, generally referred to as the Eulerian
return flow or undertow, UE(SD)(z) (Lentz et al. 2008; Brown et al. 2015). While the
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depth-integrated Stokes drift velocity balances the depth-integrated Eulerian return flow,
they do not necessarily cancel at any particular depth (Longuet-Higgins 1953; Kumar &
Feddersen 2017). The resulting cross-shelf Lagrangian drift velocity UL(SD) at any depth
can be written as

UL(SD)(z) = UE(SD)(z) + 〈uSD(z)〉. (3.7)

The UE(SD) profile varies from the surf zone to the inner shelf, and is usually reconstructed
from observational studies (Lentz et al. 2008). In the conceptual model outlined in § 2, the
Eulerian return flow can be represented (albeit in a simplified way) by the weak, uniform
cross-shelf current U0 by assuming that the net horizontal mass transport is zero, i.e.

UE(SD) = U0 = − 1
H

∫ 0

−H
〈uSD(z)〉 dz = −a2ω̄k

2KH
coth KH. (3.8)

The quantity
∫ 0
−H〈uSD(z)〉 dz is known as the Stokes transport, which is a measure of the

depth-integrated mass transport by surface waves. Parameter U0 can be written in terms
of Stokes drift velocity at the free surface:

U0

〈uSD(z = 0)〉 = − tanh(2KH)

2KH
. (3.9)

Hence in the shallow-water limit, U0 = −〈uSD〉, resulting in UL(SD) = 0, while in the
deep-water limit, U0 � −〈uSD(z = 0)〉.

Although particle trajectories in figure 3 do not account for the Eulerian return flow,
it could be included by simply adding U0 in the pathline equation along the x direction.
In the subsequent sections, we investigate whether alongshore current and wavy seabed
interactions could act as an additional cross-shelf transport mechanism.

4. Case-II: wavy seabed steepness dominates over wave steepness (O(ε) � O(εb) � 1)

Here we consider the situation shown in figure 1(d) – there is a uniform alongshore
current (V0) over a wavy bottom topography (ηb), but surface waves are either absent or
have negligible effects (mathematically, O(ε) � O(εb) � 1). To study this, we substitute
the perturbation series of φ and η from (2.5a)–(2.5b) into the GLE and BCs, given in
(2.2), (2.3a)–(2.3b). At O(εb), we obtain the following steady, non-homogeneous system
of equations:

[GLE] : φ(1)
s,xx + φ(1)

s,yy + φ(1)
s,zz = 0 − H < z < 0, (4.1a)

[ImC] : φ(1)
s,z = V0ηb,y at z = −H, (4.1b)

[KBC] : V0η
(1)
s,y − φ(1)

s,z = 0 at z = 0, (4.1c)

[DBC] : V0φ
(1)
s,y + gη(1)

s = 0 at z = 0. (4.1d)

The steady surface elevation and velocity potential, which results from the interaction
between the wavy bottom boundary and the uniform alongshore current, and obtained by
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solving (4.1a)–(4.1d) along with (2.4), are respectively given by

η(1)
s (x, y) = as cos (kbx + lby) (4.2a)

and

φ(1)
s (x, y, z) =

[
As

cosh Kb(z + H)

cosh(KbH)
+ Bs

sinh(Kbz)
cosh(KbH)

]
sin (kbx + lby). (4.2b)

Here,

as = V2
0 l2bab

[V2
0 l2b − gKb tanh(KbH)] cosh(KbH)

,

As = − V0lbgab

[V2
0 l2b − gKb tanh(KbH)] cosh(KbH)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.3)

and

Bs = −V0lbab

Kb
. (4.4)

The expressions (4.2a)–(4.2b) denote the particular (steady) solution, and have been
previously investigated by many authors in various contexts (Lamb 1932; Kennedy 1963;
Kirby 1988; Sammarco, Mei & Trulsen 1994; Fan et al. 2021). Equations (4.2a)–(4.2b)
result from the presence of the non-homogeneous term V0ηb,y in the right-hand side of
(4.1b). If either ηb,y = 0 (i.e. no topographic variation in the alongshore direction) or
V0 = 0, there would be no steady surface impressions, and no steady velocity potential. We
emphasize here that ηb,y = 0 in (2.4) would imply ablb = 0. Therefore, sinusoidal bottom
boundary (ab /= 0 and kb /= 0) with lb = 0 would still lead to a null or trivial particular
solution. This is also evident from the dependence of as, As and Bs on lb.

Figures 2(b) and 2(e) respectively show u(1) (= φ
(1)
s,x , where φ

(1)
s is in (4.2b)) contours

for intermediate and shallow depths. Figure 2(b) reveals an obvious, yet important fact
that |u(1)| is maximum at the bottom and decays with elevation, contrary to the behaviour
observed in figure 2(a) (the intermediate-depth situation for case-I, i.e. the ‘homogeneous’
problem). Additionally, figures 2(b) and 2(e) reveal a standard result of open-channel
hydraulics – for subcritical flow, i.e. when the Froude number Fr ≡ |V0|/

√
gH < 1, the

surface impressions are shifted by π from the bottom undulations.

4.1. Pathline equations
Under the umbrella of the wide range of problems associated with the ‘water-wave
theory’, probably the only known pathline equation is (3.4a)–(3.4c), or its minor variations
(e.g. when background current is absent), yielding the celebrated Stokes drift, i.e. mass
transport by surface waves. However, even when surface waves are absent, it is still
possible to obtain pathline equations. In this case, the velocity field is obtained not from
the homogeneous/unsteady solution but from the particular/steady solution u(1) = ∇φ

(1)
s .
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These pathline equations up to O(εb) are given by

dx
dt

= kb

[
As

cosh Kb(z + H)

cosh(KbH)
+ Bs

sinh(Kbz)
cosh(KbH)

]
cos θb, (4.5a)

dy
dt

= V0 + lb

[
As

cosh Kb(z + H)

cosh(KbH)
+ Bs

sinh(Kbz)
cosh(KbH)

]
cos θb, (4.5b)

dz
dt

= Kb

[
As

sinh Kb(z + H)

cosh(KbH)
+ Bs

cosh(Kbz)
cosh(KbH)

]
sin θb, (4.5c)

where θb = kbx + lby. As already mentioned, lb /= 0 is necessary for the existence of a
non-trivial particular solution. Furthermore, (4.5a) reveals that the pathline equation in
the x direction is dependent on kb. Hence, both kb /= 0 and lb /= 0 are necessary for the
existence of any motion in the x (i.e. cross-shelf) direction.

4.1.1. Small-excursion approximation in the presence of a uniform current
We follow a procedure similar to that outlined in § 3.2 – apply Galilean transform
(X, Y, Z) = (x, y − V0t, z) to (4.5a)–(4.5c) and Taylor-expand about an initial position,
assuming that the excursion in one time period is small. A closed particle trajectory is
obtained at O(εb), analogous to that obtained for surface waves at O(ε) (see figure 4a).
The locus is the equation of an ellipse:

{kb(X − X0) + lb(Y − Y0)}2

(K2
bP/V0lb)2

+ {Kb(Z − Z0)}2

(K2
bQ/V0lb)2

= 1, (4.6)

where

P =
[

As
cosh Kb(z0 + H)

cosh(KbH)
+ Bs

sinh(Kbz0)

cosh(KbH)

]
,

Q =
[

As
sinh Kb(z0 + H)

cosh(KbH)
+ Bs

cosh(Kbz0)

cosh(KbH)

]
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.7)

Hence, in the moving frame, particle trajectories are confined to a plane formed by the
bottom-topography wavevector Kb and the z axis. An open trajectory shown in figure 4(b)
is obtained at O(ε2

b), analogous to that observed for surface waves at O(ε2). We refer to
this new kind of drift as the current–bathymetry interaction-induced drift (CBIID). The
approximate CBIID (aCBIID) velocity, obtained using the small-excursion approximation
(which is the analogue of Stokes drift velocity (3.5a)–(3.5c) for surface waves), is given
by

〈uaCBIID〉 = 〈(X − X0) · ∇u(1)|X=X0〉, (4.8)

where u(1) is evaluated in the moving frame. In component form, this finally yields

〈uaCBIID〉 = − kbK2
b

2V0lb
(P2 + Q2), (4.9a)

〈vaCBIID〉 = − lbK2
b

2V0lb
(P2 + Q2), (4.9b)

〈waCBIID〉 = 0, (4.9c)

where 〈. . .〉 denotes averaging over one time period in the moving frame, TaCBIID =
2π/V0lb. Analogous to Stokes transport (see § 3.3), we can introduce ‘CBIID transport’,
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(×10–5) (×10–5)(b)(a)

Figure 4. Particle trajectory in a reference frame moving with the alongshore current, V0. Small-excursion
approximation shows (a) closed trajectory at O(εb) and (b) open trajectory up to O(ε2

b ). The latter reveals
CBIID, analogous to Stokes drift by surface waves. Filled black circle denotes initial position while filled red
circle denotes position after one time period. Parameters used: ab/H = 0.1, KbH(kbH, lbH) = 0.1(0.08, 0.06),
a/H = 0, Fr = 0.1(V0 > 0).

which is defined as the depth-integrated mass transport by steady surface imprints. The
CBIID transport in the x and y directions is given respectively as follows:∫ 0

−H
〈uaCBIID〉 dz = − kbK2

b
2V0lb

Γ, (4.10a)

∫ 0

−H
〈vaCBIID〉 dz = − lbK2

b
2V0lb

Γ, (4.10b)

where Γ = (A2
s + B2

s ) sinh(2KbH)/2Kb cosh2(KbH).
The cross-shelf Lagrangian velocity is given by

UL(CBIID)(z) = UE(CBIID)(z) + 〈uaCBIID(z)〉. (4.11)

Following § 3.3, the Eulerian return flow due to CBIID, UE(CBIID), can be assumed
constant as a first approximation, leading to UE(CBIID) = U0 = kbK2

bΓ/(2V0lbH).
Moreover, analogous to Stokes drift in the shallow-water limit, U0 = −〈uaCBIID〉 in the
long-bottom-undulation limit (i.e. KbH � 1), resulting in UL(CBIID) = 0.

Exact particle trajectories, obtained by solving (4.5a)–(4.5c), are plotted in figure 5 for
different parameter regimes. This figure indeed shows that the steady velocity field arising
from the particular solution leads to a cross-shelf tracer transport. All configurations in
figure 5 have V0 > 0, leading to a CBIID displacement that is directed towards x < 0,
as evident from (4.9a). Figures 5(a) and 5(b) show trajectories in the x–t plane for the
intermediate-depth or moderate-bottom-undulation limit (KbH ≈ 1), while figures 5(c)
and 5(d) show the same for the shallow-water or long-bottom-undulation limit (KbH � 1).
For intermediate depth and small bottom topography height (i.e. ab/H � 1), the trajectory
obtained from the small-excursion approximation is nearly indistinguishable from that
obtained from the exact solution (see figure 5a). However, differences arise as the bottom
topography height is increased to ab/H = 0.1 (see figure 5b). For the shallow-water
case, differences between the small-excursion approximation and the exact solution are
visible even when bottom topography height is small (figure 5c), and the differences
get larger with increasing bottom topography height (figure 5d). We note in passing
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Figure 5. Particle trajectory for case-II, the non-homogeneous (steady) solution. Particle trajectory in the
non-dimensional x–t plane for (a,b) intermediate-depth/moderate-bottom-undulation with KbH(kbH, lbH) =
1(0.8, 0.6) and (c,d) shallow-water/long-bottom-undulation with KbH(kbH, lbH) = 0.1(0.08, 0.06). Solid red,
dashed blue and dash-dotted green curves respectively denote the exact solution, the z-bounded approximation
and the small-excursion approximation. Filled red circles are plotted after each time period, TCBIID, and are
connected by the Lagrangian mean trajectory (solid black line). (e) Free surface impression, ηs, is shown
by the surface plot for KbH(kbH, lbH) = 0.1(0.08, 0.06). Particle trajectory (which is always on the free
surface) is shown by the solid black curve, and is plotted for the stationary reference frame. Filled black circles
denote positions after each TCBIID. Bottom undulation heights are as follows: (a) ab/H = 0.01, (b) ab/H = 0.1,
(c) ab/H = 0.05 and (d,e) ab/H = 0.1. For all cases, a/H = 0 (no surface wave) and Fr = 0.1 (V0 > 0).

that figure 5(a–d) shows t/TCBIID ∈ [45, 50]; during the initial times (not shown in the
figure), the small-excursion approximation is nearly indistinguishable from the exact
solution. Moreover, for the deep-water or short-bottom-undulation case (KbH � 1), the
small-excursion approximation matches nearly exactly with the exact solution even when
ab/H = 0.1 (not shown in the figure).

4.1.2. Near-exact solution: the z-bounded approximation
Since the small-excursion approximation, in spite of providing simple and useful
expressions (4.9a)–(4.9c), does not provide highly accurate predictions for a portion of
the parameter space, we devise an alternative approximation technique. Realizing that a
particle located at the free surface must remain there forever, it must satisfy −as � z � as.
Hence we assume z = z0 (where z0 is the particle’s initial z position at the free surface) in
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the eigenfunctions of (4.5a)–(4.5c):
dx
dt

= kb

[
As

cosh Kb(z0 + H)

cosh(KbH)
+ Bs

sinh(Kbz0)

cosh(KbH)

]
︸ ︷︷ ︸

P

cos θb, (4.12a)

dy
dt

= V0 + lb

[
As

cosh Kb(z0 + H)

cosh(KbH)
+ Bs

sinh(Kbz0)

cosh(KbH)

]
︸ ︷︷ ︸

P

cos θb, (4.12b)

dz
dt

= Kb

[
As

sinh Kb(z0 + H)

cosh(KbH)
+ Bs

cosh(Kbz0)

cosh(KbH)

]
︸ ︷︷ ︸

Q

sin θb. (4.12c)

We refer to these pathline equations as the ‘z-bounded approximation’. Note that the
z-bounded approximation circumvents the need of the small-excursion assumption, and
hence Galilean transformation. Figure 5(a–d) reveals that the z-bounded approximation is
highly accurate, and indistinguishable from the exact solution. This is also the case for the
deep-water regime as well. Figure 5(e) shows the particle trajectory in three-dimensional
space. The particle is always located on the free surface, and although is primarily advected
along y, it does undergo a small drift along −x. The undulations on the free surface are the
surface impressions of the wavy bottom.

4.1.3. Time period and drift calculations
Like the small-excursion approximation, the z-bounded approximation has the advantage
of providing a simple expression for the drift velocity, which is otherwise difficult to obtain
from the exact equations (4.5a)–(4.5c). Equations (4.12a) and (4.12b) can be combined into
a single equation

dθb

dt
= V0lb + K2

bP cos θb, (4.13)

which is the key to finding the time period, TCBIID:

TCBIID = 2π√
(V0lb)2 − (K2

bP)2
≈ TaCBIID

⎡
⎣1 + 1

2

(
K2

bP

V0lb

)2
⎤
⎦ . (4.14)

Here, TCBIID is the time taken by a particle to complete 2π phase of its trajectory.
In (4.14), K2

bP � V0lb (evident from (4.12b) and (4.13)), which reveals that TCBIID is
slightly longer than the time period TaCBIID = 2π/V0lb predicted from the small-excursion
approximation. To calculate the CBIID velocity, we first divide (4.13) by (4.12a), (4.12b)
and (4.12c), and evaluate the CBIID displacement over one time period, TCBIID, by
integrating θb from 0 to 2π. The CBIID velocity is obtained after dividing the CBIID
displacement by TCBIID:

〈uCBIID〉 = −V0kblb
K2

b

[
1 −

√
1 − (K2

bP/V0lb)2
]

≈ 〈uaCBIID〉 P2

P2 + Q2 , (4.15a)

〈vCBIID〉 = −V0l2b
K2

b

[
1 −

√
1 − (K2

bP/V0lb)2
]

≈ 〈vaCBIID〉 P2

P2 + Q2 , (4.15b)

〈wCBIID〉 = 0. (4.15c)
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Figure 6. Particle trajectory for case-II in the stationary reference frame. Particle trajectory (a) in
three-dimensional space, (b) in the x–y plane and (c) in the x–z plane. Red (blue) solid line indicates
trajectory when V0 > 0 (V0 < 0). The particle’s initial position is shown by filled black circle, while red (blue)
circle indicates the particle’s position after each time period (TCBIID) for V0 > 0 (V0 < 0). Parameters used:
KbH(kbH, lbH) = 0.1(0.08, 0.06), ab/H = 0.1, a/H = 0, Fr = 0.1.

The above equations show that 〈uCBIID〉 is not exactly the same as 〈uaCBIID〉, and hence
provide other evidence for the disparity between the exact solution and the small-excursion
approximation in figure 5(a–d). Since shallow-water/long-bottom-undulation limit,
kbH � 1 and lbH � 1, and relatively high (but still a small quantity) ab/H produces the
maximum disparity (as shown in figure 5d), the order of magnitude of this discrepancy
needs to be evaluated. After detailed but straightforward algebra, we obtain

Tshallow
CBIID ≈ TaCBIID[1 + O((ab/H)2)] and 〈ushallow

CBIID 〉 = 〈uaCBIID〉[1 + O(ε2
b)].
(4.16a,b)

Hence the relative difference between the two time periods scale with (ab/H)2,
confirming the discrepancies and the trend observed in figures 5(c) and 5(d). Since
εb = (kbH)(ab/H) � ab/H (in the shallow-water limit), the error in evaluating 〈uaCBIID〉
is far less in comparison with that of TaCBIID.

4.2. Parametric analysis

4.2.1. Effect of the alongshore current, V0
Equation (4.15a) reveals that the magnitude of 〈uCBIID〉 is directly proportional to V0;
hence stronger alongshore current will produce stronger CBIID velocity in the cross-shelf
direction. The sign of V0 determines whether particles will drift along +x or −x. When
V0 > 0 (V0 < 0), 〈uCBIID〉 is negative (positive), i.e. particles will move in the −x (+x)
direction (see figure 6).
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Figure 7. Contour plots of 〈uCBIID〉/V0 in the (a) β–KbH plane for ab = 0.1H at z0 = 0, (b) β–ab/H plane
for KbH = 0.2 at z0 = 0, (c) KbH–ab/H plane for β = 45◦ at z0 = 0 and (d) KbH–z/H plane for β = 45◦ and
ab = 0.05H. For all plots, Fr = 0.1 (V0 > 0).

4.2.2. Effect of the bottom-topography wavevector, Kb
Equation (4.15a),

〈uCBIID〉 = −V0

2
sin(2β)

[
1 −

√
1 − (K2

bP/V0lb)2
]

, (4.17)

rewritten here for convenience, shows the dependence of the cross-shelf drift velocity on
β ≡ tan−1(lb/kb). Particle trajectories are plotted in figure 6(a) for β ∈ [0, π/2] and V0
both positive and negative, thereby allowing the angle between Kb and V0 to span between
0 and π.

The magnitude of the wavevector, i.e. Kb, can influence 〈uCBIID〉 via the term in square
brackets in (4.17). This term, for shallow- and deep-water limits, is respectively as follows:

[. . .]shallow ≈ 1
2

(
ab/H

Fr2 sin2 β − 1

)2

,

[. . .]deep ≈ 1
2

(
abKbe−KbH

)2
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.18)

Hence the magnitude of Kb does not affect the cross-shelf drift velocity in the
shallow-water limit, but does affect it in the deep-water limit. This behaviour is confirmed
in figure 7(a), where 〈uCBIID〉 contours are plotted for a particle at the free surface.
Figure 7(a) clearly reveals that for a given KbH value, the maximum drift always occur
at β ≈ ±π/4. This is not surprising because the coefficient sin(2β) in (4.17) attains its
maximum value when β = ±π/4 (the term in square brackets in (4.17) has a very weak
dependence on β, thereby causing a slight deviation from ±π/4). Additionally, figure 7(a)
also reveals that for a given β, the longer the bottom undulations, the higher is the drift. In
summary, long bottom undulations with β ≈ ±π/4 cause maximum 〈uCBIID〉.

While investigating interactions between different kinds of bottom topography with a
shear current, Akselsen & Ellingsen (2019) investigated a case with sinusoidal bottom
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having β = π/4 (this was the only β value the authors considered). The authors observed
helical curving and spanwise migration of streamlines due to three-dimensional bed
current vorticity interactions. The authors also point out that this effect disappears only
if the current is shear-free, i.e. uniform. Since our analysis is based only on uniform
background current (and all perturbations are irrotational), CBIID is quite different from
the mechanism observed in Akselsen & Ellingsen (2019).

4.2.3. Effect of bottom-topography amplitude, ab
Equation (4.9a) reveals that CBIID velocity in the cross-shelf direction is proportional to
a2

b (since P2 and Q2 are both proportional to a2
b), highlighting the crucial role played by

bottom-topography amplitude in cross-shelf transport. The variation of 〈uCBIID〉 with the
amplitude of bottom undulations is shown in figure 7(b,c). The contour plots do reveal
that higher ab/H values lead to higher CBIID and that maximum drift corresponds to
long-bottom-undulation limit with β ≈ ±π/4.

4.2.4. Effect of particle’s initial z location, z0
The fact that |u(1)| is maximum at the bottom and decays with elevation, shown in
figure 2(b), indicates that CBIID will have a similar variation. The contour plot of
〈uCBIID〉, shown in figure 7(d), reveals that this is indeed the case. For intermediate
(KbH ≈ 1) or deep (KbH � 1) water situations, particles initially located at greater
depths, e.g. submerged particles like sediments, will experience higher drift velocities
than floating particles. For the shallow-water situation (KbH � 1), variation with depth
is non-existent. Figure 7(d) also reveals that near the bottom, 〈uCBIID〉 increases with an
increase in KbH, while near the free surface, 〈uCBIID〉 decreases when KbH increases. This
behaviour of CBIID is just the reverse of that of Stokes drift.

5. Case-III: wave steepness and wavy seabed steepness of the same order of
magnitude (O(εb) ∼ O(ε) � 1)

Here we consider a situation shown in figure 1(b) where the wave steepness (ε) is of
the same order as the wavy seabed steepness (εb), i.e. O(εb) ∼ O(ε) � 1. To study the
linear interaction of the uniform alongshore current with the wavy bottom topography and
surface waves, we substitute the perturbation series of φ and η from (2.5a)–(2.5b) into
GLE and BCs, given in (2.2), (2.3a)–(2.3b). At O(ε) or O(εb), we obtain

φ(1)
,xx + φ(1)

,yy + φ(1)
,zz = 0 − H < z < 0, (5.1a)

φ(1)
,z = V0ηb,y at z = −H, (5.1b)

η
(1)
,t + V0η

(1)
,y − φ(1)

,z = 0 at z = 0, (5.1c)

φ
(1)
,t + V0φ

(1)
,y + gη(1) = 0 at z = 0. (5.1d)

Next, we assume the wavy bottom topography to be the same as that in case-II (given in
(2.4)), and the surface wave profile to be the same as that considered in case-I (given in
(3.2)). Hence the combined (i.e. unsteady + steady) solutions of the surface elevation and

952 A15-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

88
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.886


New Lagrangian drift due to current–bathymetry interactions

velocity potential are respectively as follows:

η(1) = η(1)
u + η(1)

s = a cos θ + as cos θb, (5.2a)

φ(1) = φ(1)
u + φ(1)

s = aω̄

K
cosh K(z + H)

sinh(KH)
sin θ

+
[

As
cosh Kb(z + H)

cosh(KbH)
+ Bs

sinh(Kbz)
cosh(KbH)

]
sin θb. (5.2b)

Figures 2(c) and 2( f ) respectively show contour plots of cross-shelf velocity, u(1) (=
φ

(1)
,x , where φ(1) is from (5.2b)), for intermediate and shallow depths. While figure 2(a)

reveals that |u(1)| decreases with depth, and figure 2(b) shows exactly the reverse, their
combination, figure 2(c), shows a non-monotonic variation in |u(1)| – surface waves
dominating in the upper layer while current–bathymetry interactions dominating the
bottom layer.

5.1. Pathline equations
The pathline equations can be obtained by substituting u(1) (= ∇φ(1)) into (2.6a–c), which
are as follows:

dx
dt

= aω̄k
K

cosh K(z + H)

sinh(KH)
cos θ + kb

[
As

cosh Kb(z + H)

cosh(KbH)
+ Bs

sinh(Kbz)
cosh(KbH)

]
cos θb,

(5.3a)

dy
dt

= V0 + aω̄l
K

cosh K(z + H)

sinh(KH)
cos θ + lb

[
As

cosh Kb(z + H)

cosh(KbH)
+ Bs

sinh(Kbz)
cosh(KbH)

]
cos θb,

(5.3b)

dz
dt

= aω̄
sinh K(z + H)

sinh(KH)
sin θ + Kb

[
As

sinh Kb(z + H)

cosh(KbH)
+ Bs

cosh(Kbz)
cosh(KbH)

]
sin θb. (5.3c)

Figure 8(a) shows the trajectory plot obtained by solving the pathline equations (5.3a)–
(5.3c). The figure reveals two spatial scales – one due to surface waves (fast oscillations)
and the other due to CBIID (slow oscillations). To understand the reason behind the
occurrence of two spatial scales, we obtain a scatter plot of the two temporal scales, T
and TCBIID, as shown in figure 8(b). We scanned a range of parameters (see caption of
figure 8b) for which a/H � O(ε) is satisfied, and we found T and TCBIID to be order
separated. While T is of the order of a few seconds (which is well known), TCBIID
is typically of the order of a few minutes for realistic nearshore parameters. The drift
velocities, uSD and uCBIID, are found to have similar magnitudes; hence the spatial scale
separation in figure 8(a) is exclusively due to the two time scales of the problem.

5.1.1. Combined drift: small-excursion approximation
Section 4.1.1 has already revealed that the small-excursion approximation might not
provide highly accurate estimates; however, in case-III, it is probably the only choice.
While applying the small-excursion approximation about an initial particle location X0 =
(x0, y0, z0), we first need to implement a Galilean transformation (X, Y, Z) = (x, y −
V0t, z) to the pathline equation (5.3a)–(5.3c), and Taylor-expand the pathline equations
about the initial position. The particle motion depends on the combined effect of surface
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Figure 8. Case-III with ab = 0.1H and Fr = 0.1 (V0 > 0). (a) Particle trajectory in non-dimensional
three-dimensional space, denoted by the solid green curve, is plotted for two time period(s). Filled green circles
denote positions after each TCBIID, and are connected by the Lagrangian mean trajectory. Here a = 0.01H, and
KH(kH, lH) = 1(1, 0), KbH(kbH, lbH) = 0.1(0.08, 0.06). (b) Plot of TCBIID versus T for a � 0.01H, and the
following range of wavenumbers: KH(kH, 0) = 0.2 − 2, lbH = 0.02 − 0.2. The green asterisk shows the case
corresponding to (a), and T∗ = H/V0 is the advection time scale.

waves and current–bathymetry interaction; therefore, we refer to this drift as a combined
drift (CD). The approximate CD (aCD) velocity can be defined as

〈uaCD〉 = 〈(X − X 0) · ∇u(1)|X=X0〉, (5.4)

where
X = X u + X s,

∇u(1) =

⎡
⎢⎢⎢⎢⎢⎣

u(1)
u,X + u(1)

s,X v
(1)
u,X + v

(1)
s,X w(1)

u,X + w(1)
s,X

u(1)
u,Y + u(1)

s,Y v
(1)
u,Y + v

(1)
s,Y w(1)

u,Y + w(1)
s,Y

u(1)
u,Z + u(1)

s,Z v
(1)
u,Z + v

(1)
s,Z w(1)

u,Z + w(1)
s,Z

⎤
⎥⎥⎥⎥⎥⎦ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.5)

and 〈. . .〉 denotes averaging over one time period, TaCD. Each term of (5.4) is discussed in
detail in Appendix A.

While TaCD = LCM(T̄, TaCBIID) is the formal method for evaluation, its implementation
is challenging in practice since T̄ and TaCBIID are, in general, not integers (in fact, they are
typically irrational numbers). The practical approach would be to approximate T̄/TaCBIID
by its nearest rational number, n/m (i.e. m, n ∈ Z+). This leads to TaCD ≈ nTaCBIID ≈ mT̄ ,
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which is crucial for performing the averaging. Finally this yields (see Appendix A)

〈uaCD〉 = 〈uSD〉 + 〈uaCBIID〉. (5.6)

In a realistic nearshore environment, we need to account for the Eulerian return flow for
calculating the net Lagrangian drift velocity in the cross-shelf direction:

UL = UE + 〈uSD〉 + 〈uaCBIID〉︸ ︷︷ ︸
〈uaCD〉

, (5.7)

where UE = UE(SD) + UE(CBIID) is the net Eulerian return flow.

6. Comparison of the three cases for realistic nearshore parameters

We consider realistic nearshore parameters to calculate drift and Lagrangian velocities for
the three cases. In this regard, observation data from a barred beach near Duck, North
Carolina provide the following typical values: H = 2.5 m and V0 = 0.5 ms−1 (Church &
Thornton 1993; Feddersen et al. 2000), leading to Fr = 0.1. Values of 〈uSD〉 and UL(SD) for
case-I are respectively represented by figures 9(a) and 9(b). For these plots, we have chosen
a small-amplitude (a/H = 0.01) surface wave whose wavelength ranges between long and
intermediate. Figure 9(b) reveals that UL(SD) is higher for near-surface particles carried
by intermediate-wavelength surface waves. For long-wavelength surface waves, Stokes
drift is balanced by the return flow, leading to UL(SD) ≈ 0. Case-II shows a very similar
variation of CBIID with bottom undulation wavenumber (see figure 9c,d). Nearshore
sandbars typically have long (KbH ≈ 0.07) to intermediate (KbH ≈ 1) undulations, and an
amplitude of ab/H ≈ 0.04 − 0.20 (Dolan & Dean 1985), thereby justifying our choice of
ab/H = 0.05 and the bottom wavenumber range of 0.02–2. The crucial difference between
figures 9(b) and 9(d) is that for the latter, high Lagrangian drift (i.e. UL(CBIID)) occurs in the
neighbourhood of the bottom topography. This is simply because of the fact that 〈uCBIID〉
also peaks near the bottom topography (see figure 7d or figure 9c). Figure 9(e) shows the
combined drift 〈uCD〉 = 〈uSD〉 + 〈uCBIID〉, and is not limited to O(ε) ∼ O(εb) (as in § 5).
Finally, figure 9( f ) shows the net Lagrangian drift (UL) for KH = 1 (i.e. surface wave
parameters are held fixed). If the effect of CBIID was not accounted for, Lagrangian drift
would only mean UL(SD), which might lead to erroneous estimates. Figure 9( f ) does reveal
that the net Lagrangian drift would vary with KbH (and also z), and the numerical range of
UL for a given KbH could be quite different from that of UL(SD). The difference between
UL(SD) and UL will be more prominent for intermediate-wavelength bottom undulations.
The issue is put into perspective in table 1, where dimensional drift and Lagrangian
velocities (in m s−1) for particles at the surface, mid-depth and bottom are provided. Here,
both surface waves and bottom undulations are of intermediate depth, and O(ε) ∼ O(εb).
For all depths, UL(CBIID) leads to non-trivial differences between UL(SD) and UL. An
interesting feature is observed at the mid-depth, where UL(SD) is negative while UL is
positive. This implies that if CBIID is not taken into consideration, an onshore-directed
tracer transport could be mistakenly predicted as offshore-directed.

We note in passing that for situations where both surface waves and bottom undulations
are short (i.e. KH � 1 and KbH � 1), Stokes drift will primarily cause the transport of
floating particles, while CBIID will be instrumental in the transport of heavier particles
located near the bottom topography.
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Figure 9. Contour plots in the wavenumber–depth plane of (a) 〈uSD〉, (b) UL(SD), (c) 〈uCBIID〉, (d) UL(CBIID),
(e) 〈uCD〉 and ( f ) UL. All velocities have been non-dimensionalized by V0. Parameters: (a,b,e, f ) a = 0.01H;
(e, f ) KH = 1; (c,d– f ) β = 45◦, ab = 0.05H. For all the plots, Fr = 0.1 (V0 > 0).

Case-I Case-II Case-III
z 〈uSD〉 UL(SD) 〈uCBIID〉 UL(CBIID) 〈uCD〉 UL

0 5.94 × 10−4 3.08 × 10−4 −2.29 × 10−4 1.83 × 10−4 3.65 × 10−4 4.91 × 10−4

−H/2 2.44 × 10−4 −0.43 × 10−4 −2.90 × 10−4 1.22 × 10−4 −0.47 × 10−4 0.80 × 10−4

−H 1.58 × 10−4 −1.28 × 10−4 −5.42 × 10−4 −1.30 × 10−4 −3.84 × 10−4 −2.58 × 10−4

Table 1. Dimensional drift and Lagrangian velocities (in m s−1) for the three cases evaluated at z = 0,

−H/2, −H. Case-I: KH = 1 and a = 0.01H (with flat bottom topography). Case-II: KbH = 1, ab = 0.05H and
β = 45◦ (with no surface waves). Case-III: KH = 1, a = 0.01H, KbH = 1, ab = 0.05H and β = 45◦ (previous
two cases combined). For all cases, V0 = 0.5 m s−1 and H = 2.5 m, leading to Fr = 0.1.

7. Summary and conclusions

In this paper we have shown that in free surface flows, cross-stream drift velocity can be
generated via the interactions between a uniform, streamwise current and small-amplitude
wavy bottom topography. This phenomenon is especially expected to have non-trivial
implications in shallow free surface flows with strong currents (i.e. Fr = O(1)). Focusing
on a simple model of the nearshore environment, we show that the proposed drift
mechanism (referred to as CBIID) might play an important role in the cross-shelf
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transport of nearshore tracers like planktons, pollutants, pathogens and sediments. In
coastal environments, cross-shelf tracer transport is often mediated through the Stokes
drift mechanism – mass transport by surface waves. Mathematically, Stokes drift results
from the transient, homogeneous part of the governing system of equations. In contrast,
the steady, non-homogeneous part of the governing equations gives rise to CBIID. It is
specifically shown to be an important contributor to the net Lagrangian drift in nearshore
environments having oblique sandbars of intermediate wavelengths.

Depending on the angle between the alongshore current and the bottom-topography
wavevector, CBIID can lead to onshoreward or offshoreward tracer transport. The CBIID
velocity in the cross-shelf direction, 〈uCBIID〉, is maximum when the bottom-topography
wavevector makes an angle of approximately π/4 with the shoreline. Velocity 〈uCBIID〉
also increases with particle’s initial depth (hence submerged particles will experience
it more strongly than floating particles), the magnitudes of the alongshore current and
bottom-topography amplitude. Moreover, 〈uCBIID〉 near the free surface increases with an
increase in the bottom undulation’s wavelength, while near the bottom, 〈uCBIID〉 decreases
with an increase in bottom-undulation wavelength. Hence in situations where both surface
waves and bottom topography have short wavelengths, Stokes drift is expected to cause
transport of floating particles, while CBIID will transport heavier particles located near
the bottom topography.

For the situations we investigated, particle motions due to surface waves or wavy
bathymetry occurred in the presence of a background flow (for wavy bathymetry,
background flow is mandatory), as expected in a realistic environment. A minor but
essential outcome of this work is that the small-excursion approximation, used for solving
pathline equations, is only valid when the analysis is performed in a reference frame
moving with the background current. Hence, in order to apply the well-known expression
for Stokes drift (obtained in a rest frame) in a realistic oceanic scenario, appropriate
variable transformations are necessary. We also investigated whether a priori assumption
of the small-excursion approximation, which is essential for providing a highly accurate
expression for Stokes drift, also provides highly accurate estimates of CBIID. We show
that for moderate- and long-wavelength bottom topography, particle excursions may not be
small, and hence the small-excursion approximation does not provide accurate estimates.
To circumvent this issue, we introduced the ‘z-bounded approximation’, which (like the
small-excursion approximation) provides simple expressions for the drift velocity and
time period. Since the z-bounded approximation does not demand small excursions in the
horizontal plane, the analysis can be applied in a rest frame. The z-bounded approximation
is found to be highly accurate and indistinguishable from the exact solution in general.
However, since z excursions increase with water depth, the z-bounded approximation can
show differences from the exact solution in the vicinity of a bottom topography whose
amplitude is not too small (e.g. ab/H � 0.1).

We have limited our study to a model nearshore environment consisting of uniform
alongshore current, onshore-propagating surface waves and monochromatic wavy bottom
making an oblique angle with the shoreline. Extension to polychromatic bathymetry, so as
to include realistic complex seabed undulations, would be a straightforward extension of
our analysis (addition of various Fourier components). While we have included Eulerian
return flow in a simplified sense, many important nearshore processes, for example,
boundary layers, wind forcing, wave breaking and transient rip currents, have been
ignored. Moreover in practical scenarios, both V0 and H would vary in the cross-shelf
direction. Our simplified model would produce reasonably accurate results for scenarios
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where the variations in V0 and H are ‘mild’, i.e. the horizontal stretch can accommodate
multiple bottom undulations without much changes in V0 and H.

The key advantage of our simplified analysis lies in underpinning the drift mechanism
arising through current–bathymetry interactions, which might not be evident if various
complex processes are taken into consideration. Moreover, the model environment
considered in our study represents a fairly generic free surface flow scenario, and hence
can be extended to other natural water bodies like rivers and estuaries. Realistic parametric
analysis of the nearshore environment has revealed that in situations where the Stokes drift
and CBIID velocities have comparable magnitudes, they are order separated in both length
and time scales. In this scenario, the Lagrangian drift can be represented as the sum of the
net Eulerian return flow, Stokes drift and CBIID. Furthermore, we show that if topographic
effects are not taken into consideration (i.e. CBIID is absent), the prediction of the net
Lagrangian drift might be erroneous. Hence, obtaining high-resolution coastal bathymetry
maps is essential for accurate prediction of nearshore tracer transport. While bathymetry
reconstruction is an ongoing challenge, recent efforts have provided bathymetry maps at
15 arc-seconds resolution (Tozer et al. 2019). In addition, the upcoming Surface Water
and Ocean Topography (SWOT) satellite mission is expected to reconstruct bathymetry at
unprecedented resolution.
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Appendix A. Evaluation of combined drift in case-III using the small-excursion
approximation

The approximate CD velocities in the x, y and z directions are respectively derived from
(5.4), which are as follows:

〈uaCD〉 = 〈X̃uu(1)
u,X + Ỹuu(1)

u,Y + Z̃uu(1)
u,Z〉︸ ︷︷ ︸

Term-1

+〈X̃su
(1)
s,X + Ỹsu

(1)
s,Y + Z̃su

(1)
s,Z〉︸ ︷︷ ︸

Term-2

+ 〈X̃uu(1)
s,X + Ỹuu(1)

s,Y + Z̃uu(1)
s,Z〉︸ ︷︷ ︸

Term-3

+〈X̃su
(1)
u,X + Ỹsu

(1)
u,Y + Z̃su

(1)
u,Z〉︸ ︷︷ ︸

Term-4

, (A1a)

〈vaCD〉 = 〈X̃uv
(1)
u,X + Ỹuv

(1)
u,Y + Z̃uv

(1)
u,Z〉︸ ︷︷ ︸

Term-5

+〈X̃sv
(1)
s,X + Ỹsv

(1)
s,Y + Z̃sv

(1)
s,Z〉︸ ︷︷ ︸

Term-6

+ 〈X̃uv
(1)
s,X + Ỹuv

(1)
s,Y + Z̃uv

(1)
s,Z〉︸ ︷︷ ︸

Term-7

+〈X̃sv
(1)
u,X + Ỹsv

(1)
u,Y + Z̃sv

(1)
u,Z〉︸ ︷︷ ︸

Term-8

, (A1b)
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〈waCD〉 = 〈X̃uw(1)
u,X + Ỹuw(1)

u,Y + Z̃uw(1)
u,Z〉︸ ︷︷ ︸

Term-9

+〈X̃sw
(1)
s,X + Ỹsw

(1)
s,Y + Z̃sw

(1)
s,Z〉︸ ︷︷ ︸

Term-10

+ 〈X̃uw(1)
s,X + Ỹuw(1)

s,Y + Z̃uw(1)
s,Z〉︸ ︷︷ ︸

Term-11

+〈X̃sw
(1)
u,X + Ỹsw

(1)
u,Y + Z̃sw

(1)
u,Z〉︸ ︷︷ ︸

Term-12

, (A1c)

where 〈. . .〉 denotes averaging over one time period in the moving frame, TaCD. We
have defined TaCD such that TaCD ≈ nTaCBIID ≈ mT̄ , where m, n ∈ Z+. The various terms
appearing in (A1a)–(A1c) are as follows:

Term-1 = 〈uSD〉, Term-5 = 〈vSD〉, Term-9 = 〈wSD〉, (A2a–c)

where uSD, vSD and wSD are respectively given in (3.5a), (3.5b) and (3.5c). Likewise,

Term-2 = 〈uaCBIID〉, Term-6 = 〈vaCBIID〉, Term-10 = 〈waCBIID〉, (A3a–c)

where uaCBIID, vaCBIID and waCBIID are respectively given in (4.9a), (4.9b) and (4.9c).
Additionally,

Term-3 + Term-4 = a(kbV0lb − kω̄)

KV0lb sinh(KH)
{(kkb + llb)P cosh K(z0 + H)

+ KKbQ sinh K(z0 + H)}I, (A4)

Term-7 + Term-8 = a(lbV0lb − lω̄)

KV0lb sinh(KH)
{(kkb + llb)P cosh K(z0 + H)

+ KKbQ sinh K(z0 + H)}I, (A5)

Term-11 + Term-12 = a
V0lb sinh(KH)

[{ω̄(kkb + llb)

+ V0lbKKb}P(P − R) sinh K(z0 + H)

+ KKb(ω̄ + V0lb)Q(P + R) cosh K(z0 + H)
]
, (A6)

where

I = cos{(k − kb)x0 + (l − lb)y0 − π(m + n)} sin{π(m + n)}
2π(m + n)

+cos{(k + kb)x0 + (l + lb)y0 − π(m − n)} sin{π(m − n)}
2π(m − n)

,

P = sin{(k + kb)x0 + (l + lb)y0 − π(m − n)} sin{π(m − n)}
2π(m − n)

,

R = sin{(k − kb)x0 + (l − lb)y0 − π(m + n)} sin{π(m + n)}
2π(m + n)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A7)

Since m, n ∈ Z+, we have I = P = R = 0, leading to zero values for Term-3, -4, -7, -8,
-11 and -12. This finally yields

〈uaCD〉 = 〈uSD〉 + 〈uaCBIID〉. (A8)
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