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Abstract
This paper proposes a task-related electroencephalogram research framework (tEEG frame-
work) to guide scholars’ research onEEG-based cognitive and affective studies in the context
of design. The proposed tEEG framework aims to investigate design activities with loosely
controlled experiments and decompose a complex design process into multiple primitive
cognitive activities, corresponding to which different research hypotheses on basic design
activities can be effectively formulated and tested. Thereafter, existing EEG techniques and
methods can be applied to analyse EEG signals related to design. Three application examples
are presented at the end of this paper to demonstrate how the proposed framework can be
applied to analyse design activities. The tEEG framework is presented to guide EEG-based
cognitive and affective studies in the context of design. Existing methods and models are
summarized, for the effective application of the tEEG framework, from the current literature
spread in a wide spectrum of resources and fields.
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1. Introduction
Understanding the role of cognitive and affective states in design activities is
important to further investigate the nature and mechanism of the design process
and to improve designer performance. This effort generally falls into the realms of
psychology and design. According to Bloom’s taxonomy (Bloom, 1956), different
cognitive aspects involved in a learning process include remembering, understand-
ing, applying, analysing, evaluating and creating (Krathwohl, 2002; Conklin, 2005).
Under the context of design, the studied cognitive states include designer’s atten-
tion, memory, knowledge, reasoning and problem solving (Poldrack et al., 2011;
Sylcott, Cagan, & Tabibnia, 2011; Balters & Steinert, 2017). Affective states include
pleasure, pain, fear, anger and other common emotions by borrowing the defini-
tion of ‘affect’ in psychology (Arnold, 1960). Bloom’s taxonomy also talks about
affective domain, which includes how we handle things with our emotions such as
feelings, values, appreciation, enthusiasms, motivations and attitudes (Morshead,
1965). Cognitive and affective studies in cognitive psychology require well con-
trolled experiments where the causal relation between a stimulus and a response
can be effectively modelled and tested (Klimesch, 1999; Jensen & Tesche, 2002;
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Delplanque et al., 2006; Thut et al., 2006). The controllable andmeasurable parts of
design activities have been well studied in the current design research (Gero &
McNeill, 1998; Bashir & Thomson, 2001; Summers & Shah, 2010). However, well
controlled experiments are limited in investigating creative and uncontrollable
design activities (Nguyen & Zeng, 2012); as a result, rigorous findings on uncon-
trollable design activities are limited (Dietrich&Kanso, 2010; Abraham et al., 2012;
Abraham, 2013; Nguyen & Zeng, 2014a; Hu, Booth, & Reid, 2015; Oxman, 2017;
Rieuf et al., 2017; Liu et al., 2018; Dietrich, 2019).
In researching into uncontrollable design activities, we assume:

Assumption 1: Regularities and patterns are implied in human activities.
Assumption 2: Human cognitive activities are reflected in electroencepha-
logram (EEG) signals.

The first assumption is the main motivation of design research aiming at
finding hidden regularities in design activities. The second assumption is the
reason why designer’s cognitive and affective states can be inferred from EEG data
and why EEG data are processed during different steps within the proposed
framework.

Based on the two assumptions above, this paper proposes a task-related EEG
research framework, denoted as task-related EEG (tEEG) framework, to infer
designer’s cognitive and affective states from neuro-cognitive and physiological
data from uncontrolled or loosely controlled experiments. As the name suggests,
the proposed tEEG framework aims to investigate a complex design process by
conducting task-level analysis regarding different subtasks or subprocesses, which
is enabled by loosely controlled experiments and a series of decomposition. Loosely
controlled experiments are proposed to target the uncontrollable part of design
activities whereas additional processing/analysis is requisite to alleviate the dangers
of informal ‘reverse inference’ (Poldrack, 2006, 2011). As a result, clustering-based
segmentation is proposed as a bridge from loosely controlled experiments to task-
level analysis. The task-related framework consists of three main parts: data
collection from loosely controlled experiments, clustering-based segmentation of
unstructured design protocol and EEG-based segment analysis.

The objective of the first part, data collection from loosely controlled experi-
ments, is to collect data for investigating the uncontrollable part of design activities
which cannot be tested under well-controlled experimental conditions. Most of the
existing neuro-cognitive research relies strongly on event-related potential (ERP)
method (Friedman & Johnson, 2000; Kutas & Federmeier, 2011), which averages
neuro-responses across multiple trials under strictly controlled conditions where a
repeatable behavioural pattern could occur in a statistically significant manner.
However, design process is uncontrollable and should therefore not be too rigidly
controlled. The same designer may produce different design solutions for the same
design problem at different moments; and different designers may produce dif-
ferent solutions for the same problem in the same time. Besides, any artificial
control can almost definitely change the nature of a design problem. Therefore,
experimental participants should be given certain degrees of freedom to explore the
assigned problem and generate new solutions, which is exactly what loosely
controlled experiments can offer.

Clustering-based segmentation of unstructured design protocol, which is the
second important part of the proposed tEEG framework, aims to structure the
unstructured data collected from loosely controlled experiments into structured
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stimulus–response pairs (Bezdek, Ehrlich, & Full, 1984; Xu & Wunsch, 2005).
During this step, both EEG data and designer’s behaviours will be processed, which
is different from traditional segmentation in protocol analysis where only design
behaviours are considered. That is to say, within the proposed tEEG framework,
segmentation will be done not only based on the analysis of designer’s observable
behaviours, but also by the captured similarity and dissimilarity within the
collected EEG data. According to the second assumption, an improvement in
segmentation result can be expected by considering the information conveyed in
EEG data for segmentation. The necessity of such process can be explained from
the viewpoint of ‘reverse inference’ (Poldrack, 2006, 2011). As a result, a complex
design process is thereafter decomposed into several primitive cognitive activities,
each of which is dominated by one or a few patterns.

Different from the two aforementioned parts that are proposed based on a series
of analysis, the last part, namely segment analysis, includes most analysis steps
applied in current EEG studies (Murugappan, Ramachandran, & Sazali, 2010;
Yohanes, Ser, & Huang, 2012; Wang & Sourina, 2013; Blanco et al., 2017). Segment
analysis deals with individually extracted segments resulted from the step of
clustering-based segmentation. Each extracted segment can be analysed by tradi-
tional hypothesis test methods where some of the existing results and techniques on
EEG-based cognitive and affective states may be adopted and integrated. Therefore,
the repeatable and reproducible causal relations underlying the unstructured design
process can be captured through applying the proposed tEEG framework which
combines loosely controlled experiments and clustering-based segmentation.

This research contributes to design research in many different manners given
that the tEEG framework aims to infer designer’s cognitive and affective states which
may affect designer’s mental stress and performance (Nguyen & Zeng, 2012). First,
the consideration of designer’s performance in design adds another dimension to the
further development of design theories. Second, online application of the proposed
tEEG framework is promising to construct an adaptive computer-aided design
(CAD) system where designers can respond adaptively to their cognitive and
affective states during a conceptual design process (Becattini et al., 2012; Zeng &
Horváth, 2012). Finally, among others, the tEEG framework can be applied to
improve design training process by capturing designer’s cognitive and affective states
during design activities (Waks, 2001; Demirbas &Demirkan, 2007; Steif, Fu, & Kara,
2014; Nguyen & Zeng, 2014b; Nguyen & Zeng, 2017a, 2017b).

The remainder of the paper is organized as follows. Section 2 discusses and
analyses the difficulties in applying EEG to design activities. Section 3 presents the
proposed tEEG framework for cognitive studies of design activities while addres-
sing how EEG signals are used for recognizing cognitive and affective states.
Section 4 provides three examples of experimental application of the tEEG frame-
work. Finally, Section 5 concludes this paper.

2. Applying EEG to design studies

2.1. Cognitive/affective factors influencing designer’s
performance

Design, as a basic human activity, is to create a new product to its environment.
From this perspective, design activities are a set of interactions among and between
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designer (D), product (S) and environment (E) (Zeng, 2004). The environment
represents all of the objects in this world other than the product itself. A product
comes from the environment, serves the environment and changes the environ-
ment (Zeng, 2015). From the original design problem, a designer generates
tentative solutions; the tentative solutions will not only improve designer’s under-
standing, but also help reformulate the design problem; with the new understand-
ing, the designer adjusts the solutions to fit the newly redefined problem; the
adjustment, in turn, triggers new problems. The idea of the evolving environment
is also reflected in situatedness, ‘which emphasizes that the agent’s view of a world
changes depending on what the agent does’ (Gero & Kannengiesser, 2004). Such a
recursive process continues until the designer decides that a solution is satisfactory.

The process described above implies the nature of design thinking, which is
co-evolutionary and follows the recursive logic of design (Zeng & Cheng, 1991;
Roozenburg, 1993; Dorst & Cross, 2001; Maher & Tang, 2003; Gero & Kannen-
giesser, 2004; Dong, 2005, 2007; Hatchuel & Weil, 2008; Nguyen & Zeng, 2012).
Design, which can be seen as a designer’s mental effort to create product descrip-
tions (design solution) from an initial design problem, involves looping and
jumping among design problem, design knowledge and design solutions. During
such a recursive design process, the environment evolves (Zeng &Gu, 1999a; Zeng,
2002, 2004) as shown in Figure 1. Each state of the evolution is a result of a primary
design process cycle including defining problem, searching for knowledge, finding
possible solutions, evaluating the solutions and making decisions (Gero, 1990;
Eekels, 2001; Nguyen & Zeng, 2012). A product will become a part of the
environment (E) once it is taken as a design solution.

Design tasks can be understood as open-ended tasks, which do not have a
predefined right outcome and may have uncountable acceptable solutions. A
design task bears the following characteristics (Simon, 1969, 1973; Zeng & Cheng,
1991; Roozenburg, 1993; Zeng&Gu, 1999a; Dorst &Cross, 2001;Hatchuel &Weil,
2003; Tan, Otto, & Wood, 2017):

(i) Ill-defined in that a solution to accomplish a design task may consequently
change and/or redefine the original task from which new tasks may emerge.

(ii) Different emergent design tasks will trigger different design knowledge and
different design solutions, which will in turn further change and/or redefine
the tasks.

Figure 1. Design evolution process.

4/47

https://doi.org/10.1017/dsj.2020.28 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.28


(iii) The process required to accomplish the design task depends on the emerging
design tasks and the perceived priorities to accomplish the tasks.

(iv) The criteria to judge a design solution are defined by the design solution itself.
(v) There are neither predetermined design solutions nor the optimal solution,

and many feasible solutions may exist to accomplish an open-ended
design task.

The characteristics above were generalized into the Postulate of Recursive Rea-
soning by Nguyen and Zeng (2012), which states that design problem, design
knowledge and design solutions will evolve simultaneously. Naturally, there is a
great degree of uncertainty and unpredictability in the design evolution process
(Nguyen & Zeng, 2012; Zeng, 2016). The uncertainty and unpredictability will
trigger mental stresses. This leads to the Postulate of Mental Stress-Creativity
Relation which states that designer’s creativity is related with his/her mental stress
following an inverted U shaped curve (Figure 2), by adapting findings from
psychology (Yerkes & Dodson, 1908).

Borrowed the concept of stress from the strength of materials (Timoshenko,
1940), Nguyen and Zeng defined mental stress in a mathematical expression
(Nguyen & Zeng, 2012; Nguyen & Zeng, 2017a, 2017b):

Mental Stress¼PerceivedWorkload
Mental Capacity

(1)

The perceived workload, which is the workload perceived by an individual, can
be greater or smaller than the actual workload depending on the individual’s
mental capacity. In this regard, the perceived workload reflects the result of a
series of cognitive processes (Guenther, 1997). The mental capacity can be under-
stood as the individual’s capability to process his/her perceived workload.

Furthermore, the influencing factors of mental capacity have been identified as
knowledge, skill and affect. Eq. (1) can be further expressed, in a conceptual
manner, as:

Mental Stress¼ PerceivedWorkload
KnowledgeþSkillsð Þ�Affect

Affect ∈ 0,1ð Þ (2)

It must be noted that Eq. (2) can only be interpreted as a conceptual relation-
ship. The perceived workload is people’s actual and experienced workload during
their interactions with the environment. Knowledge and skills represent the

Figure 2. Inverse U-shaped relationship between mental stress and creativity
(Nguyen & Zeng, 2012; Nguyen & Zeng, 2017a, 2017b).
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individual’s rational process in dealing with the perceived workload whereas affect
refers to the individual emotional response to the perceived workload. The affect
would determine howmuch of the individual’s rational capability can be effectively
used in accomplishing the workload.

According to Bloom’s taxonomy, the basic learning activities can be classified
into different cognitive aspects (Krathwohl, 2002; Conklin, 2005). For example,
high-level cognitive activities can be identified through writing and drawing as
summarizing and creating may occur during those activities (Plack et al., 2007). In
addition, cognitive aspects like attention, comparing and inferringmay be expected
cognitive findings when participants browse the websites. Furthermore, the men-
tioned human cognitive states are closely related to the influencing factors of stress
identified in Eq. (2). Skills refer to an individual’s thinking styles, thinking strategy
or reasoning methods, which include the individual’s capability to analyse and
decompose the workload, to retrieve, search and digest the relevant and right
knowledge to tackle the workload, to accomplish the related tasks by using the
identified knowledge. The individual’s knowledge could help in the solution
generation; however, the utilization of inappropriate knowledge may cause design
fixations (Jansson & Smith, 1991; Viswanathan et al., 2014; Crilly, 2015), which is
considered as a disadvantage of cognitive control in (Chrysikou &Weisberg, 2005;
Thompson-Schill, Ramscar, & Chrysikou, 2009; Chrysikou, 2018). Both knowl-
edge and skills are closely related to cognitive states like reasoning, memory,
analysis, synthesis and so forth (Thorndyke, 1977; Gick & Holyoak, 1983; Fagin
et al., 2003; Brun, Masson, & Weil, 2016). Therefore, a mapping could be estab-
lished from the aforementioned cognitive states to design activities through a stress
model-based analysis. In this way, the results from current EEG-based cognitive
studies become more meaningful for design research. Table 1 presents a mapping
between Bloom’s cognitive states, factors influencing mental stress involved, and
corresponding design activities, where the design activities are identified in
Nguyen & Zeng (2012) and Suwa et al. (1998).

Meanwhile, affective domain includes howwe handle things with our emotions
such as feelings, values, appreciation, enthusiasms, motivations and attitudes
according to Bloom’s taxonomy. Researchers have proposed different models to
describe and distinguish human emotions (Russell, 1980; Watson & Tellegen,
1985; Oatley & Johnson-laird, 1987; Ekman, 1992; Plutchik, 1994). In general,
those models can be classified into two types: one is multidimensional models such
as the circumplex model containing valence and arousal dimensions (Russell,
1980) and the model of positive affect (PA) and negative affect (NA) (Watson &
Tellegen, 1985); the others identify several basic discrete emotions like the five
basic emotions model proposed by (Oatley & Johnson-laird, 1987), Ekman’s six
basic emotions model (Ekman, 1992) and Plutchik’s eight basic emotions model
(Plutchik, 1994). Ekman’s model is chosen as an example of discrete emotion
model due to a series of theoretical discussion on basic emotions presented in
(Ekman, 1992; Ledoux, 1998). Increasing effort has been made to investigate the
influence of emotion (affect) on mental stress and performance (Kahneman, 1973;
Bagozzi, Gopinath, & Nyer, 1999; Bechara, Damasio, & Damasio, 2000; Lazarus,
2006; Zhao et al., 2018). Scholars suggest that PA has a positive effect on one’s
mental capacity in promoting broader attention, increased organization and
reinforced integration ability (Isen, 1993; Fredrickson, 2001). Research has also
emphasized the role of PA in fostering more creative ideas (Isen, Daubman, &
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Table 1. Mapping between Bloom’s cognitive states (Krathwohl, 2002), influencing factors of stress (Nguyen & Zeng, 2012), and design activities
(Suwa, Purcell, & Gero, 1998; Nguyen & Zeng, 2012)

Levels (low to
high) Meaning

Influencing factors of
stress Design activities

Remembering
Recalling relevant knowledge from long-term
memory

Skills, knowledge,
workload

Look at previous depictions.

Retrieve knowledge.

Search and identify synthesis knowledge.

Set up goals.

Understanding
Comprehending meaning. Be able to describe
problem in one’s own word.

Knowledge, skills

Attend to visual features of elements.

Attend to spatial relations among relations among
elements.

Applying Ability to use learned material in new conditions or
environments

Skills, knowledge,
workload

Explore the issues of interactions between
artefacts and people/nature.

Consider psychological reactions of people.

Make depictions.

Analysing Ability to separate material into its component parts
Skills, knowledge,
Workload

Attend to spatial relations among relations among
elements.

Search for critical conflicts.

Organize and compare elements.

Evaluating Ability to judge the value of material Skills, knowledge

Look at previous depictions.

Search and identify evaluation knowledge.

Make preferential and aesthetic evaluations.

Creating Create new pattern or meaning by organizing
previous learned material

Skills, knowledge,
workload

Generate and update primitive design solution.

Evaluate, analyse and recompose partial design
solution.

Search, identify and redefine critical
requirements.
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Nowicki, 1987; Baas, De Dreu, & Nijstad, 2008; Conner & Silvia, 2015). Whereas
NA could influence one’s mental capacity in an opposite way. Therefore, Table 2
represents how the six basic emotions identified by (Ekman, 1992) would influence
designer’s mental capacity (a combination of knowledge and skills according to
Nguyen&Zeng, 2012) by first mapping those emotions to themodel of PA andNA
(Watson & Tellegen, 1985).

The identification of designers’ cognitive and affective states is critical for
further investigation of the nature and mechanism of the design process and for
designer performance improvement.

2.2. Difficulties with EEG-based design studies

Efforts have been made to investigate design scenarios with EEG for two decades
(Göker, 1997; Nguyen & Zeng, 2010, 2014b; Hu et al., 2015; Liu et al., 2018; Vieira
et al., 2019). The results presented in Göker (1997) indicate that the activated brain
areas are different for novices and experts during design problem solving. A
preliminary study was conducted by Nguyen and Zeng (2010) which uses EEG
to identify the regularities underlying a design process. The EEG results in
Hinterberger, Zlabinger, & Blaser (2014) show the neurophysiological discrimi-
nability of three mental locations (intrapersonal, extrapersonal and perspective
taking) and two attentional foci (self and object). A physiological study (Nguyen &
Zeng, 2014b) is conducted to investigate the relationship between designer’s
mental effort (cognitive aspect) and mental stress. Hu et al. (2015) provided
psychophysiological evidence for the role of warm-ups activities reducing inhibi-
tion during concept generation based on their analysis of EEG and galvanic skin
response. In (Liang et al., 2017), EEG signals were analysed to investigate the
difference between expert designers’ visual attention and association processes. By
comparing the time-related neural responses, the EEG results show differences of
the mechanical engineers’ neurocognition in designing and problem-solving

Table 2. Mapping between Ekman’s basic emotions (Ekman, 1992), positive affect and negative affect
model (Watson & Tellegen, 1985), and designer’s mental capacity (Nguyen & Zeng, 2012)

Ekman’s
model

Positive affect (PA) and negative
affect (NA) model Influence on designer’s mental capacity

Happiness High PA, low NA May increase mental capacity through increasing affect

Sadness Low PA, high NA
May decrease mental capacity through decreasing
affect

Anger Low PA, high NA
May decrease mental capacity through decreasing
affect

Fear Low PA, high NA
May decrease mental capacity through decreasing
affect

Disgust Low PA, high NA
May decrease mental capacity through decreasing
affect

Surprise High PA, low NA May increase mental capacity through increasing affect
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(Vieira et al., 2019). The use of EEG and other biometric measures in experimental
design research were reviewed and discussed in Borgianni & Maccioni (2020).

Currently, protocol analysis is widely used by scholars to segment a complex
design process into simpler processes (Dorst & Dijkhuis, 1995; Neill, Gero, &
Warren, 1998; Gero & Tang, 2001). Protocol analysis can be understood as a series
of means to extract ‘reliable information about what people are thinking while they
work on a task (Austin&Delaney, 1998)’. Verbal protocol analysis has been used as
a tool for different objectives (Van Someren, Barnard, & Sandberg, 1994). In design
domain, it has been used to study the designer’s perception. Verbal protocol
analysis has been used to compare the architects’ perception and students’ per-
ception based on their own freehand sketches (Suwa&Tversky, 1997). The authors
found that the architects think more deeply than students about the topic.
Meanwhile, Suwa et al. (1998) used design protocol to code designer’s cognitive
actions in order to learn human design process. In educational domain, researchers
have used verbal protocol analysis to study human writing and reading process
(Hayes & Flower, 1981; Afflerbach & Johnston, 1984).

However, scholars have challenged the effectiveness of verbal protocol analysis
(Russo, Johnson, & Stephens, 1989; Smagorinsky, 1989). One frequently asked
question is ‘do subjects really have the ability to describe the processes they
perform?’ (Ericsson & Simon, 1980). Concerns have been raised in terms of two
different ways of collecting verbal protocol, namely concurrent verbal protocol and
retrospective protocol. Chiu & Shu (2010) pointed out the limitation of verbal
protocols with design experiments in which they mainly concerned about the data
validity from several aspects. For example, the application of concurrent verbal
protocol may alter the design process because of changes in design environment
and emergent subtasks. Meanwhile, Gero and Tang compared the concurrent
verbal protocol and retrospective verbal protocol in Gero & Tang (2001). More-
over, protocol segmentation and coding are usually done manually by domain
experts and the results can be influenced by the experts’ subjective opinions. The
results of protocol analysis can be wrong as ‘even experts may make errors or are
unable to correctly recall all of their behaviours and reasoning steps (Pfeifer et al.,
1992)’. Hence, concerns about verbal protocol analysis can be summarized as
follows: (i) it is sensitive to subjective factors; (ii) there is no common standard to
follow and (iii) such knowledge-based analysis is incomplete in most cases due to
the limited knowledge of human beings.

EEG-based analysis is therefore introduced to design studies to address the
mentioned problems. EEG is the record of the fluctuation of brain waves generated
by the neurons circuit. EEG signals are measured in voltage and can be seen as a
result of ‘the process of current flow through the tissues between the electrical
generator and the recording electrode, which is called volume conduction’
(Olejniczak, 2006). EEG signals are naturally not as vulnerable to subjective factors
as protocol analysis. Meanwhile, we propose a clustering-based segmentation
method in Section 3.2 to standardize the segmentation of design process and
EEG data can be applied for clustering analysis. In addition, EEG-based analysis
has less dependency on knowledge and experience compared to protocol analysis
as it deals with unlabeled data.

In order to take full advantage of EEG techniques, the characteristics of design
activities need to be carefully considered when conducting EEG-based design
studies. Design research differs from current EEG studies in that (i) design is a
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complex activity that consists of numerous basic cognitive activities; (ii) complex
relationships between designer, product and environment contribute to the
increase of difficulty in experiment design and control and (iii) design process is
continuous and unrepeatable. As a result, EEG-based design research is embedded
with difficulties summarized in the following:

(i) Task driven and delayed responses: The initial design task will drive the
reformulation of the design problem, which is the stimulus for a design,
throughout the entire design process; thus, the stimuli for design activities
keep changing and are not always observable. behavioural responses to a
stimulus may be delayed in that a designer may not show what comes in
his/hermind right away. For example, a solution that a designer brought forth
at certain moment may have been generated any time before that moment.
Therefore, finding a causal stimulus–response relationship under such cir-
cumstance is not a straightforward effort.

(ii) Complex relationships: Design activities are so complex that there may not
be direct causal relation between a stimulus and its responses, particularly if
one intends to look into primitive cognitive activities. For example, if one
needs to investigate the influence of designer’s knowledge on design perfor-
mance, then it is expected that his/her perceived workload, skills and affect
should remain stable, according to the mentioned mental stress-performance
model. This ideal condition is unrealistic according to the discussions above as
artificial controls will change how a real design would proceed even if the
control could be possible.

(iii) Continuousness and nonrepetitiveness of design activity: Design activities
cannot be repeated because of its intrinsic recursive logic according to the
earlier discussion in the paper regarding the evolution of a design process. The
impossibility of repetition makes ERP analysis unsuitable for full scale design
studies. Design activities, in whole and in part, are not time-locked and thus
cannot be reduced to ERP analysis.

2.3. Summary: identifying hidden patterns behind the
unstructured design activities

The difficulties identified in Section 2.2 can be described as to find the hidden
stimulus–response relationships during the design process. If we describe the
design process as the entire process from a design problem to the generation of
a final design solution, it inputs the initial design problem and outputs the design
solution. Such a process consists of a series of subprocesses resulting from the
dynamic evolving characteristic of design process (Zeng&Gu, 1999b) as illustrated
in Figure 3. Each synthesis process describes the process in which a designer tries to
conceive a solution to the current design problem. Once a design solution is
produced, the designer is able to redefine the design problem and to retrieve the
related design evaluation knowledge. This process is denoted as evaluation
(Figure 3) and the new design problem becomes the input for another synthesis
process with more detailed product descriptions (solution) and designer’s updated
design knowledge. Therefore, a design process is constantly fed with evolving
input, which is a design problem formulation, resulting in evolving design solu-
tions as the output (Figure 3). The input and output variables of a design process

10/47

https://doi.org/10.1017/dsj.2020.28 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.28


belong respectively to sets ‘X’ and ‘Y’ where each xi represents a certain design
problem whose corresponding design solution (selected frommultiple candidates)
is denoted as yi. Besides, control variables belong to the set ‘C’ while designer’s
behavioural and biometric performances are denoted as ‘Z’.

The equations below show how such a complex process is mathematically
formulated:

y!¼ f 1 x!� �
, z!¼ f 2 f 1, c

!� �
, (3)

yj ¼ g1 yq

� �
,where j 6¼ q,1≤j≤m,1≤ q≤ m, (4)

where x!¼ x1,x2,…xnf g represents input variables, y!¼ y1,y2,…ym
� �

represents
output variables, c!¼ c1,c2,…ckf g represents control variables, z!¼ z1,z2,…zp

� �
represents behavioural and biometric data, f1 describes the mapping from input
(x!) to output variables (y!), which is a design process. Meanwhile, the design
process f1 together with other factors ( c!) may cause changes in designer’s
behaviours and biometric data ( z!), which is represented by f2. Certain relation-
ships between different output variables may be related to each other by relations
represented by g1. The numbers of variables of input, output, control variables and
other changes are denoted as n, m, p, and k respectively, which are independent
from each other.

Eqs. (3) and (4) present a general experimental design research framework that
structures unstructured data from design activities, which aims to identify the
hidden stimulus–response relationships. This calls for a new experimental para-
digm for EEG studies of design cognition.

Figure 3. Design process representation.
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3. A tEEG framework for EEG-based design studies
A task-related framework, denoted as tEEG, is proposed to investigate the cognitive
and affective activities during design processes with the mentioned challenges in
Section 2. The proposed tEEG framework composes of three main parts, namely
data collection from loosely controlled experiments, clustering-based segmenta-
tion of unstructured design protocol and EEG-based segment analysis. Figure 4
presents themethodology of the proposed framework for EEG-based cognitive and
affective studies under the context of design.

As depicted in Figure 4, the overall design process inputs the initial design
problemandoutputs the final design solutions if viewed fromahigh-level perspective.
The data collected during loosely controlled experiments include designer’s behav-
iours, biometric data anddesign solutions based on the target designproblem. Loosely
controlled experiments are designed and conducted regarding the studied research
topic where participants’ design activities happen. Second, clustering-based segmen-
tation can be conducted to find the structured hidden stimulus–response data pairs
from the unstructured data. Several subprocesses can be extracted from a complex
design after this step. Last but not least, each individually extracted segment can be
analysed following traditional hypothesis test method. It is during this step that some
of the existing results and techniques on EEG-based cognitive and affective statesmay
be adopted and integrated.

Figure 4. Methodology description of tEEG framework.
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3.1. Data collection from loosely controlled experiments

3.1.1. EEG and data collection
EEG is the record of the fluctuation of brainwaves generated by the neurons circuit.
EEG signals directly measure ‘the dynamic, synchronous polarization of spatially
aligned neurons in extended grey matter networks, with postsynaptic excitatory or
inhibitory potentials being themain sources of the signal’ (Michel &Koenig, 2018).
The signals measured in voltage can be seen as a result of ‘the process of current
flow through the tissues between the electrical generator and the recording
electrode, which is called volume conduction’ (Olejniczak, 2006). The two most
important effects of volume conduction imply that: (i) an electrode at a given scalp
location detects neuronal activity in simultaneously activated areas that far or near
the electrode and (ii) a single source activity affects all scalp electrodes simulta-
neously leading to high correlation among multichannel EEG signals. This impli-
cation gives rise to an inverse problem in the EEG source localization that localizes
the electrical activity in the brain according to EEG topographies. The inverse
problem is that an EEG topography can be explained by different distributions of
neuronal generators. However, the differences in EEG topographies might result
from different distributions of activated neuronal generators.

As for the collection of EEG signals, EEG data can be collected through electrodes
distributed on the scalp and the scalp EEG is an important tool for clinical usage
(Niedermeyer&Lopes da Silva, 2005). Thehumancerebral cortex, that is the outermost
layer of the brain, is divided into four lobes: frontal lobe, temporal lobe, occipital lobe
and parietal lobe. Parietal lobe and frontal lobe are separated by the central sulcus. EEG
signals are recorded by electrodes which are positioned at specific locations following
international standards such as 10/20, 10/10 and 10/5 placement systems (Jasper, 1958;
Chatrian, Lettich, & Nelson, 1985; Oostenveld & Praamstra, 2001). EEG is collected at
sampling rate between 250 and 500Hz, even up to several kHz by the nowadays human
EEG recording system (Weiergraeber et al., 2016). Due to its high temporal resolution,
time-based and frequency-based EEG features have been applied to detect mental and
functional abnormalities, as well as cognitive and affective states under external or
internal stimuli (Acharya et al., 2013; Pidgeon et al., 2016). The time-based EEG
features reflect the scalp potential of neuronal generators at a given moment in time.
This information provides a possibility to study the temporal dynamics of whole-brain
neuronal networks. The frequency-based EEG features reflect the rhythmic oscillations
of neuronal generators in specific frequency bands. This information offers a possibility
to investigate the characteristics of brain waves.

The collected EEG data imply information of designers’ cognitive and affective
states as EEG signals relate regional brain activities to different cognitive and
affective states (Delplanque et al., 2006). Some EEG research was conducted based
on the assumption that the frontal area plays an important role in the reflection of
the valence level (Harmon-Jones & Allen, 1998; Schmidt & Trainor, 2001). The
human parietal lobe was believed to be closely related to human perception,
decision-making and speech comprehension (Bisley & Goldberg, 2010). The
occipital lobe is known to process visual information, which is related to object
detection and recognition (Malach et al., 1995; Dijkerman & Haan, 2007). Studies
also indicated that the two hemispheres of a brain are specialized for different tasks
(Sergent & Bindra, 1981; Rhodes, 1985). ‘The right hemisphere mediates tasks
requiring global, holistic processing such as facial effect recognition’, whereas the
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left hemisphere is specified for detailed analysis (Holt et al., 2006). Nie et al. (2011)
concluded from their experimental analysis that the EEG features related to
emotional states ‘are mainly on the right occipital lobe and parietal lobe in alpha
band, central site in beta band, left frontal lobe and right temporal lobe in gamma
band’. As a result, there are researchers trying to look at what is happening inside
designer’s brain during the design process.

3.1.2. Loosely controlled experiments
Loosely controlled experiments are proposed for design studies which should be
less controlled compared to traditional ERP experiments based on our previous
discussions of design process. The surrounding environment of a product consists
of everything other than the product itself and the designer. Additional controls
will bring changes to the environment resulting in different design solutions as
those controls change the environment in which the product is to be designed
(Zeng & Cheng, 1991; Roozenburg, 1993; Dorst & Cross, 2001; Maher & Tang,
2003; Gero & Kannengiesser, 2004; Dong, 2005, 2007; Hatchuel & Weil, 2008;
Nguyen & Zeng, 2012). This means that loosely controlled experiments will be
conducted without control of certain extraneous variables. A noticeable charac-
teristic of such experiments is that the experiment could last much longer than
traditional ERP experiment, during which various cognitive activities may happen.
Meanwhile, loosely controlled experiments are proposed to target the uncontrol-
lable part of design activities while current EEG-based design studies mainly
investigate basic and clear stimulus–response relationships under experiments
with better controls. The consistency of the nature of loosely controlled experi-
ments and that of complex design scenarios indicates more possibilities and new
directions for design studies. Finally, different loosely controlled experiments can
be designed depending on the complexity of the studied scenario and the cognitive/
affective aspect of interest. That is to say, designers need to have an overall
understanding of the research topic and be aware of the characteristics of this
kind of experiment when designing a loosely controlled experiment. A basic
principle of experiment design for studying design activities is to ensure the
emergence of regularities related to the phenomena under observation while
applying minimum controls.

Despite the difference in experiment design, EEG data collection under loosely
controlled design experiments will be the same as that under experiments of current
EEG studies. EEG data will be collected throughout the experiment while subjects are
asked to solve a design problem. Moreover, behavioural data will also be collected
which will be used in clustering-based segmentation as illustrated in Figure 4. In the
meantime, only ambient noises will be filtered fromEEGdata and artifacts are kept for
further analysis, which is different from the data filtering step in current EEG studies.
Those artifacts can be used for clustering-based segmentation given that the so-called
artifacts may be an indirect reflection of participant’s cognitive/affective activities.

3.2. Clustering-based segmentation of unstructured design
protocol

The purpose of data segmentation is to divide a complex design process into several
primitive cognitive subprocesses that can be studied using conventional hypothesis
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test methods, as is specified in Figure 4. This step is essential and necessary in the
proposed framework because of the unstructured data collected from loosely
controlled experiments. The reason for not applying existing EEG techniques
directly to the unstructured data can be explained from the critiques and concerns
with ‘reverse inference’ (Poldrack, 2006, 2011). An inherent limitation of reverse
inference is that an activated region or an observable pattern is necessary but not
sufficient to a certain mental state. As suggested in Poldrack (2006, 2011), a
probabilistic expression could be a better way to explain the information provided
by reverse inference. Following this point of view, it is very important to increase
the posterior probability, which indicates how confident we are with the result
obtained from reverse inference, when interpreting neuroimaging data. The pro-
posed clustering-based segmentation intends to extract the underlying structured
groups from the unstructured data, which is consistent with one of the possible
ways to improve the confidence in reverse inference by ‘increasing the prior
probability of the cognitive process in question’ (Poldrack, 2011).

Since a design experiment consists of numerous stages and processes of solving
different subtasks and evolves over time, designer’s cognitive and affective states
should also vary from time to time. Different cognitive, affective and behavioural
states may be dominant at different stages so that the recognition results should
reflect the designer’s cognitive and affective states in a basic design activity.
Therefore, the recognition of cognitive and affective states can be done for each
individual subprocess instead of the entire process by segmenting either the object
of study into primitive ones or the time duration into shorter ones or into the both.
Each segment will have a clear stimulus–response relationship that can be effec-
tively tested by using existing hypothesis test methods. Afterwards, appropriate
analysis methods should be applied to different subtasks and/or at a shorter
duration for their corresponding hypothesis tests.

Clustering algorithms could be integrated to find the relative ‘structured’
groups from the unstructured data. Clustering aims to separate an unlabelled
dataset into several clusters by capturing the hidden similarity and dissimilarity
within the data (Jain, Murty, & Flynn, 1999; Xu & Wunsch, 2005; Jain, 2010). In
terms of the aforementioned concerns, the influence of subjective factors can be
attenuated by taking into consideration the data-driven analysis results that are
obtained by applying clustering algorithms to the collected data. Besides, a com-
mon standard could be developed to apply clustering algorithms for segmenting
unstructured data. Clustering, as an unsupervised classification method, has less
dependency on knowledge and experience compared to protocol analysis as it deals
with unlabelled data. Within the proposed tEEG framework, EEG data are the
main source of the unstructured data on which clustering algorithms are applied.

Current EEG-based segmentation methods can be adopted and integrated for
segmenting the data collected from loosely controlled experiments. The purpose of
EEG-based segment techniques is to structure the unstructured data into pairs of
stimulus and response and Table 3 summarizes the EEG-based segmentation
methods applied in existing cognitive and affective studies based on our survey.
The EEG signals collected from loosely controlled design experiments seem to
convey plentiful information related to different cognitive states, affective states
and other hidden factors. Each individual segment is supposed to be sampled from
the same data population. In this way, it is possible to capture the repeatable and
reproducible causal relations underlying the EEG data collected from loosely
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Table 3. Classification methods in recognizing cognitive/affective states from EEG

Segmentation
methods Feature types Affective works Cognitive works

Support Vector
Machine
(SVM)

Time domain,
frequency
domain, time-
frequency
domain

(Blanco et al., 2017), (Bono et al.,
2016), (Brown, Grundlehner,
& Penders, 2011), (Duan, Zhu,
& Lu, 2013), (Frantzidis et al.,
2010), (Liu, Sourina, &
Nguyen, 2010), (Petrantonakis
& Hadjileontiadis, 2010),
(Yohanes et al., 2012), (Singh,
Singh, & Sandel, 2014), (Wang,
Nie, & Lu, 2014), (Rozgić,
Vitaladevuni, & Prasad, 2013),
(Al-shargie et al., 2016)

(Sharma & Gomes, 2015),
(Shi, Jiao, & Lu, 2013),
(Wang & Sourina, 2013),
(Wang, Gwizdka, &
Chaovalitwongse, 2016)

K Nearest
Neighbors
(KNN)

Frequency
domain,
time-frequency
domain

(Blanco et al., 2017), (Brown
et al., 2011), (Duan et al.,
2013), (Hadjidimitriou,
Charisis, & Hadjileontiadis,
2015), (Khosrowabadi et al.,
2010), (Murugappan et al.,
2010), (Petrantonakis &
Hadjileontiadis, 2010)

(Jadhav, Manthalkar, &
Joshi, 2016), (Sharma &
Gomes, 2015)

Linear
discriminant
analysis
(LDA)

Time domain,
time-frequency
domain

(Blanco et al., 2017), (Bono et al.,
2016), (Faber et al., 2017),
(Murugappan et al., 2010)

Multilayer
perceptron
(MLP)

Frequency
domain, time-
frequency
domain

(Liu et al., 2010)

Naive Bayes
nearest
neighbour

Frequency
domain

(Blanco et al., 2017),
(Rozgić et al., 2013)

Fuzzy c-Means,
Fuzzy
k-Means

Time domain,
time-frequency
domain

(Murugappan et al., 2007)
(Chakraborty et al., 2013),
(Sharma & Gomes, 2015)

Correlation
analysis

Time domain,
frequency
domain

(Kroupi, Yazdani, & Ebrahimi,
2011), (Nielsen & Chénier,
1999), (Reuderink,
Mühl, & Poel, 2013)

(Hanouneh et al., 2016)

Microstate
analysis Time domain

(Nguyen, Nguyen, & Zeng,
2015), (Faber et al., 2017),
(Nguyen, Nguyen, & Zeng,
2019)

Quadratic
discriminant
analysis
(QDA)

Frequency
domain,

(Brown et al., 2011),
(Petrantonakis &
Hadjileontiadis, 2010)
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controlled design experiment, which produces uncontrolled, unpredictable and
unstructured data belonging to different data populations. Aligning segments to
the parts with high confidence from the protocol analysis results, it is possible to
validate the reliability of the applied EEG-based segment techniques.

Different methods have been applied to segment EEG data in time, frequency
and time-frequency domains. In time-frequency domain, nonstationary EEG
signals are broken down into pseudo-stationary segments during which statistical
properties do not vary with time. First, EEG signals need to be transformed from
the time domain to time-frequency domain. Short-term fast Fourier transform and
wavelet transform are widely used to transform signals from the time to time-
frequency domain. Second, several EEG features can be extracted in frequency
domain, such as power, nonlinear energy operator (Agarwal & Gotman, 1999) and
generalized likelihood ratio (Appel & Brandt, 1983). Third, segmentation bound-
aries can be detected by comparing differences in EEG features between reference
and sliding test window. If the sliding test window passes over a segment boundary,
the differences would increase significantly leading to greater than a predefined
threshold. If the sliding test window passes within a segment boundary, the sliding
test and reference window would continually move based on different strategies
(Wong & Abdulla, 2006). Alternatively, segmentation boundaries can be detected
by clustering EEG features in overlap reference windows (Barlow et al., 1981;
Nguyen et al., 2019).

In time domain, microstate analysis is used to identify successive short time
periods during which the distribution of the scalp potential filed remains semi-
stable. The changes of distribution of the scalp potential filed imply different
activation of global network activity in the brain. Pascual-Marqui, Michel, &
Lehmann (1995) proposed a clustering-based method to identify the most dom-
inant spatial components in the EEG topography series. This method was based on
the k-means approach that clusters the scalp potential filed topographies into
representative cluster centroids in terms of spatial correlations. The optimal
number of cluster centroids is determined by cross-validation criterion, which
optimally explains the variance in each cluster. Murray, Brunet, & Michel (2008)
proposed an Atomize and Agglomerate Hierarchical Clustering (AAHC) to iden-
tify representative cluster centroids in a bottom-up manner. In contrast with the
k-means approach that its results vary across runs due to a random selection of data

Table 3 Continued

Segmentation
methods Feature types Affective works Cognitive works

(Repeated)
Analysis of
Variance
(ANOVA)

Time domain,
frequency
domain

(Bar-Haim, Lamy, & Glickman,
2005)

(Bonnefond et al., 2014),
(Fink, Graif, & Neubauer,
2009), (Gu et al., 2016),
(Jaarsveld et al., 2015)

Real time
threshold

Time domain,
frequency
domain

(Liu, Sourina, & Nguyen, 2011)
(Wang, Sourina, & Nguyen,
2011)
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points as seed clusters, the AAHC is a deterministic approach that its results are
independent with the repetition of runs. Alternatively, other methods in factor
analysis were applied to determine representative cluster centroids, including
principal component analysis (Pourtois et al., 2008) and independent component
analysis (Makeig et al., 2004).

Afterwards, representative cluster centroids are used to label original EEG
topography based on topographical similarity. It is important to note that a frame
of original EEG topography can only be assigned to a single representative cluster
centroid. The assumption behind the restriction is that only one dominant spatial
component entirely reflects global brain activity at each moment in time. Polarity
of these spatial maps is ignored, since oscillations of the same neuronal generators
lead to inversion of the scalp potential field.

Thereafter, a set of successive short time periods labeled with the same centroid
is generated to form a microstate. Each microstate lasts from 60 to 120ms. In the
field of design, microstates need to be merged to form segments with longer
duration. The accuracy and precision of segments can be tested by comparing
with parts that have high confidence from the protocol analysis. Attempts have
been made to realize data segmentation with an EEG-based algorithm which does
not involve a manual step as in traditional protocol analysis (Nguyen et al., 2019).
The authors used transient microstate percentage of EEG signals to merge micro-
states to form segments with longer duration during the complex design process
(Nguyen, Nguyen, & Zeng, 2018; Nguyen et al., 2019). More details of the
mentioned analysis can be found in Section 4.3 where the study is discussed as
an example of research guided by tEEG framework.

Therefore, a clustering-based segmentation is proposed to process the unstruc-
tured data collected during loosely controlled experiments. Apart from the
improvements regarding the three concerns of traditional protocol analysis,
another advantage of this clustering-based segmentation lies in the involvement
of EEG data during data segmentation may improve the completeness of the
(protocol analysis based) segmentation results. From the discussions above and
previous attempts, the procedure of the proposed clustering-based segmentation
can be explained as follows:

(i) Conduct protocol analysis and apply clustering algorithms on EEG data
simultaneously.

(ii) Use the part with high confidence from the protocol analysis results as the
criteria to assess the reliability of the applied clustering algorithm. If the
reliability is not satisfying, a different clustering algorithm can be applied until
the clustering analysis results can be accepted.

(iii) The segments obtained based on clustering analysis are labelled by the
protocol analysis results.

3.3. EEG-based segment analysis

This subsection discusses the critical issues related to segment analysis. As illus-
trated in Figure 4, the extracted primitive tasks will thereafter be tested by a series of
corresponding hypotheses. Each individually extracted segment is analysed fol-
lowing the traditional hypothesis test method considering that each segmented
subprocessmay be dominated by a stimulus–response relationship. The purpose of
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EEG-based segment analysis is to identify causal relations in the segmented design
process. The captured causal relations can be used to infer cognitive and affective
states that have been widely tested in the field of cognition and psychology during
the design process.

It is during this step that some of the existing results and techniques on EEG-
based cognitive and affective states may be adopted and integrated. In time-
frequency domain, each individual segment can be analysed using event-related
(de)synchronization (ERD/ERS) and task-related power changes (TRP) (Gerloff
et al., 1998; Pfurtscheller & Da Silva, 1999). These methods reflect the rhythmic
oscillations of neuronal generators in specific frequency bands due to external or
internal stimuli. TRP can be quantified by subtracting the log-transformed power
of the reference segment from the activation segment at each electrode. Negative
values indicate the decreases of task-related power from the reference to activation
segment, while positive values indicate the increases of task-related power from the
reference to activation segment (Pfurtscheller & Da Silva, 1999). The degree of
increase and decrease can be tested by ANOVA or repeated measures ANOVA to
reveal causal relations for each segment at each electrode. Task-related power in the
alpha band has been consistently reported in creative ideation in the verbal
domain. Alpha power has been considered as an index to reflect creativity-related
task-demands, originality of ideas and individual’s creativity levels (Fink & Ben-
edek, 2014). Specifically, alpha synchronization was widely associated with idea
evaluation (Hao et al., 2016), divergent thinking (Fink et al., 2006) and fixation
overcoming (Camarda et al., 2018). The time-course research indicated that alpha
power increases at the later stages of the creative ideation (Schwab et al., 2014;
Rominger et al., 2019), which seems like a U-shaped pattern. However, alpha
synchronization is in contradiction with visual creativity. Serval studies reported a
consistent pattern of alpha synchronization during visual creativity compared to
baseline fixation (Pidgeon et al., 2016). Indeed, alpha synchronization was asso-
ciated with enhanced internally-directed attention and top-down control of exter-
nal stimulus (Klimesch, 1999; Klimesch, Sauseng, & Hanslmayr, 2007). Alpha
desynchronization was associated with cortical activation (Klimesch, 2012).

In time domain, each individual segment can be analysed using microstate
parameters, such as duration, occurrence, coverage and transition probability
(Michel & Koenig, 2018). The duration is calculated as the average lifespan of
each microstate when a microstate remains stable, interpreting as the degree of
stability of its underlying neural assemblies (Zappasodi et al., 2019). The occur-
rence is calculated as the average number of times per second that a microstate
remains stable, interpreting as the degree of activation of its underlying neural
generators (Zappasodi et al., 2019). The coverage is calculated as the fraction of
total segment time that a microstate remains stable, interpreting as the variation of
dependence between stimuli and responses (Zappasodi et al., 2019). The transition
probability is calculated as the percent of transitions from one microstate to
another (Seitzman et al., 2017). Recently, Hurst Exponent, Autoinformation
Function (AIF), and Partial AIF have been used to reveal the temporal dynamics
of microstate sequences (Van de Ville, Britz, & Michel, 2010; Von Wegner et al.,
2016; Von Wegner, Tagliazucchi, & Laufs, 2017; Von Wegner, 2018). These
parameters provide us significant metrics to understand flows of human thoughts
in a segment since microstates are believed to represent basic building blocks of
human thoughts.
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Beyond analysing the microstate parameters within segments, the microstate
parameters can be analysed between segments. On the one hand, combined EEG-
fMRI and EEG source localization studies revealed that microstates are closely
associated with resting-state network as identified using fMRI (Michel & Koenig,
2018). For instance, microstate A reflects auditory network activity; microstate B
reflects visual network activity; microstate C reflects control network activity and
microstate D reflects dorsal attention network activity (Britz, Van De Ville, &
Michel, 2010). On the other hand, several studies compared the microstate
parameters between different cognitive tasks (Milz et al., 2016; Pirondini et al.,
2017; Murphy et al., 2018; Ruggeri et al., 2019; Zappasodi et al., 2019). (Milz et al.,
2016) compared duration, occurrence and coverage of microstates between four
conditions: resting, object-visualization, spatial-visualization and verbalization. It
was found that the duration, occurrence and coverage of microstate B increased
from the resting to verbalization while they increased from the object-visualization
to verbalization. It seems that microstate B could reflect verbalization instead of
visualization activity. These inconsistent findings suggest that the microstate
parameters should be compared not only within segments but also between
segments or conditions.

Furthermore, a reference segment must be comparable with an activation
segment in every aspect except the one being studied (Luo & Knoblich, 2007). In
the field of neurocognition, a resting segment has been considered as a reference
segment in most cases. Stark and Squire (2001) indicated that the rest condition is
an ambiguous reference formemory tasks since the rest condition seems to activate
many brain areas, which might be activated in the memory tasks (Stark & Squire,
2001). To avoid this ambiguity, the parameters of amicrostate should be compared
multiple times between different segments or conditions. Therefore, the reference
segment needs to be established carefully and properly.

To sum up, every extracted feature has its specific aspect of information for
which some information will be lost. For example, frequency domain features can
hardly describe temporal (time) information. Furthermore, information is orga-
nized through different ways and representation forms differ from one feature to
another. As a result, a comprehensive understanding of various features is essential
as each feature represents a different way of information selection and organiza-
tion. Table 4 and Table 5 list the applied EEG features and their corresponding
affective and cognitive findings within the surveyed research papers.

The applied EEG features vary from time domain to (time-) frequency domain,
from scalar to matrix (like microstate). It can be seen from the above tables that
scholars usually extract one or several features in order to recognize certain
cognitive/affective states or to compare the performance of different features
regarding a specific research problem. The two tables also indicate that the applied
EEG features for affective states recognition are similar to that for cognitive
recognition. However, it appears that EEG-based cognitive research falls behind
affective research by comparing Table 4 and Table 5. Table 4 shows that scholars
are now able to recognize or quantify some emotional states fromEEG signals, even
though the number and taxonomy of the EEG-based emotional state recognition
are still diversified. The listed affective recognition results are represented either in
a two-dimensional (2D) (valence-arousal) model (Frantzidis et al., 2010; Rozgić
et al., 2013; Hadjidimitriou et al., 2015) or as discrete emotional states (Bar-Haim
et al., 2005; Murugappan et al., 2010; Liu et al., 2011), whereas in most of the
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Table 4. Mapping between EEG features and affective findings

EEG features Affective findings Authors and works

Power spectral density (PSD)

Discrete emotional states like happy,
sad, fear and relax.

(Yohanes et al., 2012), (Sourina, Kulish,
& Sourin, 2009), (Liu et al., 2010)

Frequency
domain

Emotions under the 2D valence-
arousal model.

(Kroupi et al., 2011), (Reuderink et al.,
2013)

Positive, negative (and neutral) states.
(Brown et al., 2011), (Duan et al., 2013),
(Wang et al., 2014)

Mental stress. (Al-shargie et al., 2016)

Higher order crossings (HOC)

Discrete emotional states like happy,
sad, fear and angry.

(Petrantonakis &Hadjileontiadis, 2010)

Emotions under the 2D valence-
arousal model.

(Frantzidis et al., 2010),
(Hadjidimitriou
et al., 2015)

Coherence
Discrete emotional states like happy,
sad, fear and calm.

(Khosrowabadi et al., 2010)

Negative emotion during dreaming. (Nielsen & Chénier, 1999)

Rational asymmetry (RASM12) and
differential asymmery (DASM12)

Discrete emotional states like pleasant,
sad, angry and joyful.

(Liu et al., 2010)

Positive and negative states. (Duan et al., 2013)

Other techniques: synchronization
likelihood, NN voting histogram,
Dirichlet distribution parameters, etc.

Emotions under the 2D valence-
arousal model.

(Rozgić et al., 2013)

Positive, negative and neutral states. (Faber et al., 2017)
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Table 4 Continued

EEG features Affective findings Authors and works

ERP waveform (P100, N100, P200, N200,
etc.)

Discrete emotional states like happy,
sad, fear, satisfied and frustrated.

(Bar-Haim et al., 2005)

Time domain

Emotions under the 2D valence-
arousal model.

(Frantzidis et al., 2010),
(Hadjidimitriou
et al., 2015), (Singh et al., 2014)

Positive, negative (and neutral)
states.

(Bono et al., 2016)

Fractal distance (FD)

Discrete emotional states like happy,
sad, fear, satisfied and frustrated.

(Liu et al., 2011), (Yohanes et al., 2012),
(Sourina et al., 2009)

Emotions under the 2D valence-
arousal model.

(Kroupi et al., 2011), (Frantzidis et al.,
2010), (Hadjidimitriou et al., 2015)

Positive, negative (and neutral) states. (Faber et al., 2017)

Entropy Positive, negative (and neutral) states. (Duan et al., 2013), (Wang et al., 2014)

Functional connectivity Positive, negative and neutral states. (Bono et al., 2016)

Time-frequency
domain

Wavelet coefficient energy

Discrete emotional states like happy,
sad, fear and disgust.

(Murugappan et al., 2007),
(Murugappan
et al., 2010), (Sourina et al., 2009),
(Yohanes et al., 2012)

Positive, negative (and neutral) states. (Wang et al., 2014)

Mental stress. (Al-shargie et al., 2016)
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surveyed cognitive studies (Table 5), scholars try to identify patterns of the
extracted features regarding to a certain level of their studied cognitive problem
(Fink et al., 2009; Bashiri et al., 2015; Hanouneh et al., 2016). It may be concluded
that EEG-based cognitive findings are somehow still at the early stage as specific
cognitive states are neither recognized nor quantified in the surveyed studies.

Table 5. Mapping between EEG features and cognitive findings

EEG features Cognitive findings Authors and works

Frequency
domain

Power spectral density
(PSD)

Attention (Almahasneh et al., 2014)

Cognitive workload
(Wang et al., 2016),
(Wang& Sourina, 2013)

Reasoning and problem
solving

(Amin et al., 2014)

Semantic memory
recall

(Hanouneh et al., 2016)

Vigilance (Shi et al., 2013)

Perception (Kroupi et al., 2014)
Higher order crossings

(HOC)
Cognitive load (Jadhav et al., 2016)

Band power (theta, alpha,
etc.)

Cognitive workload
(Wang & Sourina, 2013),
(Wang et al., 2016),
(Blanco et al., 2017)

Creative thinking (Fink et al., 2009)

Intelligence (Jaarsveld et al., 2015)

Time domain

ERP waveform (N2, P300,
P3b, etc.)

Perception delay (Chakraborty et al., 2013)

Sustained attention (Gu et al., 2016)

Deductive reasoning (Bonnefond et al., 2014)

Microstate
Transcendental
meditation

(Faber et al., 2017)

Perceived task difficulty (Nguyen et al., 2015)

Fractal distance (FD)

Cognitive workload
(Sharma & Gomes, 2015),
(Wang& Sourina, 2013)

Concentration (Wang et al., 2011)

Meditation (Harne, 2014)

Vigilance (Shi et al., 2013)

Entropy
Vigilance (Shi et al., 2013)

Attention (Thomas & Vinod, 2016)
Amplitude based statistical

features
Cognitive workload (Wang et al., 2016)

Time-frequency
domain Wavelet entropy Cognitive workload

(Wang et al., 2016),
(Wang& Sourina, 2013)
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Various classification and analysis algorithms are applied to recognize cogni-
tive and affective states from EEG signals, which directly contributes to the
recognition result. Popular classifiers include support vector machine (SVM),
K-Nearest Neighbours algorithm (K-NN), linear discriminant analysis (LDA), as
well as their derived algorithms and other classification algorithms (Altman, 1992;
Cortes & Vapnik, 1995). Numerous analysis methods have been applied to
recognize cognitive and affective states from features in time domain, frequency
domain and time-frequency domain. According to our survey, SVM seems to be
the most applied classifier for affective states recognition. However, the differences
between classifiers are not obvious for cognitive studies. Some scholars tried to
compare the performance of different classifiers on one or several chosen EEG
features regarding a certain cognitive/affective state recognition problem and their
conclusions differ from one to another (Petrantonakis & Hadjileontiadis, 2010;
Duan et al., 2013; Singh et al., 2014; Sharma & Gomes, 2015; Bono et al., 2016;
Blanco et al., 2017). Therefore, there is in general no best classifier that can
outperform other classifiers in recognition of any cognitive/affective state because
of the limited number of features applicable to a certain cognitive/affective problem
and the lack of formal representation of the recognition results which also
contributes to the missing generic criteria for performance comparison among
different cognitive/affective studies.

4. Experimental applications
The proposed tEEG framework for design activities has been experimentally
implemented in Design Lab at Concordia University, Montreal. In this section,
we will present three studies (Nguyen & Zeng, 2014b; Nguyen & Zeng, 2017a,
2017b; Nguyen et al., 2018) to demonstrate how tEEG framework can be applied to
design research. Not onlywere those studies guided by the idea of tEEG framework,
but they also helped improve the framework and contributed to the framework
presented in this paper. The presented experimental protocols were approved by
the Human Research Ethics and Compliance Department of Concordia Univer-
sity. Informed consent has been obtained from each participant.

4.1. Application 1

The study (Nguyen & Zeng, 2014b), published on Computer-Aided Design is
presented as the first example of tEEG framework application. This study aims
to investigate the relationship between designer’s mental effort (cognitive aspect)
and mental stress (affective aspect). One potential application of this study lies in
the development of the next generation of CAD systems where the interactions
between designers and design tools should be well considered. The results show
that designer’s mental effort decrease at high stress level (among the studied three
stress levels), which means that ‘the workflow and interfaces of computer aided
conceptual design tools should be built in a way that they do not add unnecessary
mental stress’.

(i) Data collection from loosely controlled experiments

During the experiments, each subject was given unlimited time to solve an open-
ended design problem and was free to search online. Subjects were assigned with
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three design problems as listed in Table 6. Those design tasks served as the input of
a design process, one of which was designing a house that could fly from one place
to another. In themeantime, the expected output should be a design solution to the
given problem which was collected by screen recording.

Eleven subjects aged 25–35 years fromConcordia University participated in the
experiment. EEG and heart rate variability (HRV) were recorded during the entire
design process besides several recording cameras: EEG data were recorded from
14 EEG channels (Fpz, Fz, F4, F3, C4, C3, T4, T3, P4, P3, T6, T5, O2 andO1); HRV
was recorded using Polar RS800G3; body movements were recorded by cameras;
and sketches/writings were recorded from the tablet screen as well. To sum up, this
physiological study conducted EEG-based analysis to investigate the designer’s
cognitive and affective states during a complex design process.

(ii) Clustering-based segmentation

The idea of clustering-based segmentation was tested in this example and biomet-
ric data have been integrated with protocol analysis for segmentation in this case.
(i) Protocol analysis was applied for segmentation based on the collected videos.
The data were first segmented based on changes of the subject’s observable actions
from the recorded tablet screen. Further information about the subject’s move-
ments was then added by analysing videos recorded from different cameras so that
‘annotations can be added for each segment and small segments can bemerged into
larger ones’. Besides, some segments were eliminated for further analysis based on a
preliminary clustering analysis on EEG data and only the data collected from seven
subjects were processed due to device failure. (ii) Since direct causal stress–effort
relationship could not be observed along the temporal dimension, k-means
(MacQueen, 1967) was applied to cluster the computed LF/HF ratios that were
used to quantify mental stress. After the clustering, the experimental data were
segmented into low-, medium- and high-stress segments. (iii) Finally, three
primitive tasks corresponding to three hypotheses were extracted which allowed
us to investigate the stress–effort relationship within each segment.

Table 6. Design problems used in the experiment

Description

Design
problem 1

Design a house that can easily fly from one place to another place. There is no budget
limit.

In your final result, clearly specify:
- Functions (what can it do? how…)
- Features of your product (how does it look like…)

Design
problem 2

Design a vehicle that can transport an object between any two locations on earthwithin a
few seconds. There is no budget limit:-
- Functions (what can it do? how…)

Features of your product (how does it look like…)

Design
problem 3

Design a desk that helps a messy university student to keep things organized and tidy.
There is no budget limit:
- Functions (what can it do? how…)
- Features of your product (how does it look like…)
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By referring to Eqs. (3) and (4), Figure 5 depicts the above-mentioned process
where x1 � x3 represent low stress level, medium stress level, and high stress level,
respectively; y1 � y3 represent low mental effort, high mental effort, and low
mental effort, respectively. The presented three tests correspond to the following
three hypotheses:

• Hypothesis 1: Mental effort is low at low stress level.
• Hypothesis 2: Mental effort is high at medium stress level.
• Hypothesis 3: Mental effort is low at high stress level.

(iii) Segment analysis

The stress levels corresponding to each segment were calculated first using the
LF/HF ratio of HRV, followed by a clustering of segments by classifying their
stresses into three levels. Then themental effort, whichwas quantified by the power
spectral densities (PSD) from EEG signals, for each cluster was statistically ana-
lysed, which shows a correlation between designers’ mental effort and mental
stresses in conceptual design.

Friedman tests were conducted for each individual band at different channels
and Figure 6 shows the results of alpha band analysis. Level 3 seemed to have the
least energy although the results varied from one subject to another. Afterwards,
the averaging results across subjects and channels were calculated as illustrated in

Figure 5. Extraction of primitive tasks for flying house design problem.
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Figure 7. As a result, it was concluded that ‘mental effort at low and medium stress
levels was stronger than themental effort at high stress level (because theta and beta
energy were significantly higher at stress levels 1 and 2 than at stress level 3)’. Other
findings included that beta power at P4 and F4 was greater in the second half of the
design process whereas there was no significant difference for theta and alpha
power in the two half parts. The observed difference in beta implied that ‘the
subjects were more active and attentive in the second half of the process’. In terms
of the time spent at different stress levels, it was found that designers were mostly
under low and medium stress during the design process ‘because there are a large
number of segments associatedwith low/medium stress and the time spent at stress

Figure 6. Alpha at channels (Fz, F3, F4, C3, C4, T3, P3, P4, T5, T6, O1 and O2) having significant differences
between stress levels (Nguyen & Zeng, 2014b).
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level 3 is significantly lower than the time spent at stress level 1 and stress level 2’.
Readers may refer to (Nguyen & Zeng, 2014b) for details and further information.

4.2. Application 2

The second application example is the study entitledModal Shifts in Concentration
Indicate Creativity (Nguyen&Zeng, 2017a, 2017b). The presented technique could
‘offer a complementary alternative to concurrent verbal protocol techniques’ in
creativity related research. This study is based on a subset of eight datasets recorded
on eight subjects aged from 25 to 35 years.

(i) Data collection from loosely controlled experiment

During the experiment, subjects were asked to solve six design problems of variable
difficulty, ranging from trivial tasks to more complex tasks. Only one design
problemwas presented at a time, for which subjects were asked to sketch a solution.
Once the sketch was finished, subjects were asked to rate their own workload
during the problem-solving process. Afterwards, subjects were given two design
solutions to evaluate for the same design problem as their sketch. Subjects were
asked to rate their workload during the evaluation stage. Once the second rating is
finished, another problem was presented and subjects needed to repeat the above
stages (sketching, self-rating, evaluation and self-rating).

The NASA-TLX (Task Load Index) (Hart & Staveland, 1988) was used during
the self-rating stages. And the six design problems were:

• Problem 1: Make a birthday cake for a 5-year-old kid. How should it look like?
• Problem 2: Sometimes, we do not knowwhich items should be recycled. Create a
recycle bin that helps people recycle correctly.

Figure 7. Grand average of energy per segment at theta, alpha and beta (Nguyen &
Zeng, 2014b).
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• Problem 3: Create a toothbrush that incorporates toothpaste.
• Problem 4: In many cities, people on wheelchair cannot use the metro safely
because most metros only have stairs or escalators. Elevators are not an option
because they are costly. You are asked to create an efficient solution to solve this
problem.

• Problem 5: Employees in IT companies sit too much. The company wants their
employees to stay healthy and work efficiently at the same time. You are asked to
create a workspace that can help employees to work and exercise at the
same time.

• Problem 6: There are two problems with standard drinking fountains: (i) filling
up water bottles is not easy and (ii) people too short cannot use the fountain and
people too tall have to bend over. Create a new drinking fountain that solves these
problems.

Subjects completed all the tasks at their own pace with no time limit imposed and
they could have one or more than one solutions. During the experiment, subjects’
EEGs were monitored and their actions on a touchpad were recorded. As a result,
the dataset consisted of the recordings on the eight subjects ranging from 30min to
2 h. The listed six design problems correspond to the input (x!) in Eq. (3) and the
output (y!) included designer’s sketches (solutions), evaluation results and self-
rating results in this case.

(ii) Clustering-based segmentation

After pointing out the limitations of verbal protocol analysis, the authors integrated
EEG-based analysis into the segmentation process. The PSD of beta bands (12.5–
30Hz) were computed given that concentration is associated to the beta band
(Baumeister et al., 2008). Afterwards, the beta band power curves were clustered
into five clusters since the computed ‘beta power curves are often too high
frequency to analyse’ directly (Nguyen & Zeng, 2017a, 2017b). The authors then
extracted time segments from the clustering results by regrouping the samples with
similar beta power.

In their analysis, the identification ofmodal shifts in concentration was realized
by finding the periods where modal shifts in the beta feature curves occurred.
Modal shifts are believed to be episodes where ‘especially during creative periods of
conceptual design, designers alternate rapidly in shifts of attention between
different aspects of their task, or between different modes of activity’ (Cross,
2001). Therefore, the design protocol data were segmented based on the computed
beta band powers and determined that a modal shift in concentration occurred
when many time segments were generated during a short time.

Figure 8 presents an example of integrating EEG (beta power) based analysis in
design protocol segmentation. There are six screenshots in the figure each of which
represents a short time period with the corresponding EEG-based segmentation
information below. It can be noticed that the number of time segments (obtained
from EEG-based segmentation) varies from one period to another and that ‘a large
quantity of timestamps is generated’ at the sixth period (screenshot 6) indicating
the appearance of a modal shift in concentration. In this example, modal shift
occurred while the subject was erasing his/her previous design solution and started
to draw a new one.
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As a result, the authors were able to extract the available sequences where a
modal shift in concentration occurred. Those sequences would be used in the
segment analysis step to test the hypothesis – modal shifts in concentration are
indicative of creativity.

(iii) Segment analysis

Figure 8. Excerpt from the design protocol data of a subject solving Problem 4. Below are timestamps
generated by the segmentation algorithm (Nguyen & Zeng, 2017a, 2017b).

Figure 9. Slices of the spherical 3D model of the brain we used at different z values (�0.79, �0.58, �0.37,
�0.16, 0.05, 0.26, 0.47, 0.68, 0.89) which also corresponded to the location of the voxel slices. White denotes
high density magnitudes while black denotes low density magnitudes (Nguyen & Zeng, 2017a, 2017b).
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In order to determine whether the extracted sequences were indicative of high
creativity, the authors crosschecked the physiology literature on creativity and
performed source localization (LORETA) on the high concentration samples
identified from the previous step. According to their literature review, there are
two types of creativity, namely insight creativity (e.g., Aha! experience and gestalt)
and verbalizable creativity (e.g., logic and language). Insight creativity occurs when
‘the right prefrontal lobe or the right anterior superior temporal gyrus (right upper
temporal lobe) are activated’ whereas verbalizable creativity occurs when ‘the left
prefrontal lobe is activated’ (Nguyen & Zeng, 2017a, 2017b). Figure 9 presents a
sequence of samples followed by a summary of the activation patterns of each
corresponding source localized sample (Table 7). It can be found from Table 7 that
the activation regions include left and right prefrontal and frontal lobes, right
temporal lobe and other regions associated with creativity.

Furthermore, the activation patterns in the left-frontal-upper and the right-
frontal-upper quadrants of human brain model were compared on the number of
times the average magnitude per voxel in any of the eight quadrants of our three-
dimensional (3D) model. The comparison results showed that the left-frontal-
upper quadrant (which contains the left frontal and prefrontal lobes) dominated in
23.68% of the samples whereas the right-frontal-upper quadrant (which contains
the right frontal and prefrontal lobes) dominated in 26.66% of the samples. The
mentioned two values are so similar that it may indicate that ‘insight and intuitive
solutions were at par with logical and verbalizable solutions, insight solutions can
be seen to have a slight edge in the design protocol excerpt we used, emphasizing
the importance of nonconscious processing’ (Nguyen & Zeng, 2017a, 2017b).

The results showed the existence of an alternation between left frontal and
prefrontal activation and right frontal and prefrontal activation when modal shifts
in concentration occurred. The activated regions were in agreement with the
creativity related activations reported in neurology literature. Therefore, the
hypothesis cannot be rejected, suggesting that modal shifts in concentration may
indicate creativity.

4.3. Application 3

The third application example is a study published in 2018 (Nguyen et al., 2018)
using EEG signals to test different hypotheses on the cognitive and quantitative

Table 7. Approximate regions of the brain activated in relation to creativity (Nguyen & Zeng, 2017a,
2017b)

Segment Timestamp Activation

A 1 s left frontal and prefrontal lobe, right temporal lobe
B 3 s right frontal and prefrontal lobe, basal ganglia
C 28 s right frontal and prefrontal lobe, left prefrontal lobe, right temporal lobe
D 36 s left/right frontal lobe, left prefrontal lobe, left superior temporal gyrus
E 52 s right frontal lobe

F 58 s left/right frontal and prefrontal lobe, right superior temporal gyrus
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aspects of design process. There is a loose connection between cognitive states and
the design process as undertaken by a subject that can be interpreted from a
physiological perspective using for example EEG signals. EEG signals can measure
cognitive states although these cognitive states labelled as fatigue, stress or crea-
tivity may no longer retain the same semilogical content as their natural language
counterparts and take a more operational and experimental meaning. At the
Design Lab, experiments were undertaken to measure cognitive states using
EEG signals of subjects asked to solve design tasks of varying difficulty. In this
study, the following four hypotheses were tackled:

• Hypothesis 1: Effort (and by extension fatigue) is subject to an ice-breaking and
end of task phenomena during the conceptual design process.

• Hypothesis 2: Fatigue and effort follow a capacity model during the conceptual
design process.

• Hypothesis 3: Fatigue is multidimensional.
• Hypothesis 4: Concentration follows a modal shift model during the conceptual
design process.

We will focus on the hypotheses related to fatigue (Hypothesis 1, Hypothesis 2 and
Hypothesis 3) as concentration has already been discussed in Section 4.2.

(i) Data collection from loosely controlled experiment

The dataset used in this study is the same as the one used in the second application
example. Subjects were asked to solve the six design problems listed in Section 4.2
and for each given problem they performed reading, sketching, self-rating, eval-
uation and another self-rating. The design protocol is presented in Figure 10 which
displays the screenshots taken from a video recorded from a sketchpad while a
subject was having its EEG monitored.

However, the number of subjects was relatively low (i.e., eight subjects) due to
the significant complexity of the analysis methods used on the dataset and the size
of the resulting databases.

(ii) Clustering-based segmentation

The objective of the analysis of design protocols using EEG signals is to associate
EEG features and patterns to the video sequences presented in the design protocol.
In this study, clustering-based segmentation was applied on the computed tran-
sient microstates for analysing mental effort.

Transient microstates are short duration microstates that rapidly change to
other microstates. The microstate transitions assumedly reflect the degree of
mental effort during the different design tasks. First, EEG signals were assigned
to a few representative clusters to form microstates and smooth microstates,
respectively. Second, the transient microstate percentage was calculated within
each 2.5 s epochs according to the following equation:

TM%¼ Segments�Smooth Segments
N

, (5)

where N represents the number of samples. For example, a period of time can be
either labelled by microstate sequences (1,1,1, 2, 2, 3, 2,1) that have five discon-
tinuous segments, or labelled by smooth microstate sequences (1,1,1, 2, 2, 2, 2,1)
that have three discontinuous segments. The difference between both values is a
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transient microstate valuation of two. Since the number of samples is eight during
the period of time, the transient microstate percentage is 0.25. This number is
always positive and smaller than 1. Third, the transient microstate percentage was
submitted to a clustering method to form four clusters corresponding to low,
medium, high and very high effort segments (Figure 11). This kind of approach
provides a possibility to segment complex design activities into a set of primitive
design activities.

(iii) Segment analysis

Different hypotheses were tested against different EEG metrics. Each hypoth-
esis had background in the research literature from works such as (Arai, 1912;
Kurzban et al., 2013) on prolonged and sustained effort, (Kahneman, 1973) on the
capacity theory of mental states, (DeLuca, 2005) and (Hockey & Hockey, 2013) on
the polysemic nature of the fatigue concept or (Cross, 2001) on the modal shift
theory of creativity.Mental effort wasmeasured using transientmicrostates of EEG
signals (Nguyen & Zeng, 2014b) and concentration was as well measured using
frequency domain features of EEG signals (Nguyen&Zeng, 2017a, 2017b). Fatigue
was also measured using frequency domain features of EEG signals. The following
discussion will only cover the quantification of fatigue.

There exist different types of fatigue (mental, drowsiness, and physical) and a
few frequency domain features of EEG signals are commonly used for fatigue

Figure 10. Screenshots of various stages in the experimental protocol: (a) read question, (b) sketch a solution,
(c) rate the hardness of the question (cf. NASA-TLX), (d) evaluate the presented design solutions and (e) rate
the hardness of the question.

Figure 11. Transient microstate percentage curve clustered into four clusters. Clus-
tering the feature curve allows a reduction in the number of valid segments (Nguyen
et al., 2018).
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quantification (Baumeister et al., 2008; Jap et al., 2009) based on the authors’
research. Thereafter, the fatigue quantified from different EEG features was
labelled as TYPE-1, TYPE-2, TYPE-3, TYPE-4 and TYPE-5 to distinguish them
(Table 8).

Figure 12 depicts the feature curve of TYPE-2 fatigue where high peaks could be
found at the beginning and the end of the process. In the meantime, the authors
displayed the effort feature curve as well where low peaks were found both at the
beginning and the end of the process. The peaks found at the beginning ‘leans
towards the existence of an ice-breaking phenomenon’, whereas the peaks found as
the end can be understood as a result of continuous work. From this viewpoint, the
first hypothesis stating that effort and fatigue are subjective to and ice-breaking and
end of task phenomena (Hypothesis 1) cannot be rejected.

Thereafter, the correlation between different fatigue feature curves was com-
puted. The results showed that ‘other than TYPE-1 and TYPE-2 fatigue scores,
there was no general pattern for positive correlation between different fatigue
metrics’. From this point of view, the hypothesis stating that fatigue is multi-
dimensional (Hypothesis 3) cannot be rejected. Besides, the authors found that

Table 8. EEG frequency domain features and fatigue labels

EEG frequency domain features Fatigue labels

Alpha TYPE-1 Fatigue
(Theta +Alpha)/Beta TYPE-2 Fatigue

Alpha/Beta TYPE-3 Fatigue
(Theta +Alpha)/(Alpha +Beta) TYPE-4 Fatigue

Theta/Beta TYPE-5 Fatigue

Figure 12. Evolution of fatigue feature curves for TYPE-2 fatigue. On the x-axis is theme and on the y-axis is
the power spectral density. Each session las lasted up to 2 h and contained seven problems to solve and three
tasks per problem (sketching problem, multiple choice problem and subjective rating) for a total of 168 tasks.
An average U-shape can be trended. Although problemswere easy at the beginning, fatigue was high (Nguyen
et al., 2018).

34/47

https://doi.org/10.1017/dsj.2020.28 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2020.28


effort and some measures of fatigue were negatively related. The trended feature
curves (red curves) in Figure 12 showed a noticeable negative correlation with the
trended effort curves. The computed average value of the negative correlation was
�0.847 for TYPE-2 fatigue and effort and �0.816 for TYPE-1 fatigue and effort.
This ‘confirms the existence of a capacity model for effort and fatigue (Kahneman,
1973)’ so that the hypothesis stating that fatigue and effort follow a capacity model
cannot be rejected (Hypothesis 2).

5. Conclusion and future work
This paper intends to guide scholars’ research on EEG-based cognitive and
affective studies in the context of design through proposing a tEEG framework.
A theoretical analysis of design process is conducted in the first place to show that it
is necessary and promising to look into designers’ cognitive and affective states for
further investigation of the design process. Afterwards, we summarize several
difficulties with EEG-based design studies through reviewing and analysing cur-
rent EEG applications in design research. Therefore, tEEG framework is proposed
to address the identified difficulties, which is derived from a series of analysis.

The proposed tEEG framework consists of three parts including data collection
from loosely controlled experiments, clustering-based segmentation and EEG-based
segment analysis. Those three parts are discussed one by one, for which related
algorithms and techniques are summarized from the existing literature spread in a
wide spectrumof fields and resources. Loosely controlled experiments are proposed to
investigate the uncontrollable parts and complex relationshipswithin a designprocess.
Afterwards, clustering-based segmentation is proposed to find structured subdatasets
from the unstructured dataset collected during loosely controlled experiments. As a
result, a complex design process is segmented into different primitive activities that
can be studied using traditional hypothesis tests. Finally, during segment analysis step
the extracted segments are analysed onebyonewhich canbe seen as several hypothesis
tests. In the meantime, tEEG framework makes existing EEG techniques and analysis
methods applicable for EEG-based design studies. The information presented in
Tables 3–5 could assist scholars in choosing appropriate EEG features and segmen-
tation techniques when they apply tEEG framework to design research.

Wewill continue to improve and validate the proposed tEEG framework in our
future work. Guided by the tEEG framework, a recent research analyses the EEG
microstates while designers are conducting three modes of thinking: idea gener-
ation, idea evolution, and evaluation under a loosely controlled experiment. An
ongoing research investigates the long-range temporal correlations of EEG micro-
state sequences extracted from three different design activities: problem under-
standing, idea generation and idea evaluation. Similar to the three experimental
applications presented in Section 4, the mentioned future research will not only
contribute to the validation of tEEG framework but also provide valuable feedback
for further improvement of the framework.
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