
Forum of Mathematics, Sigma (2022), Vol. 10:e71 1–11
doi:10.1017/fms.2022.56

RESEARCH ARTICLE

Restrictions on rational surfaces lying in very general
hypersurfaces
Roya Beheshti1 and Eric Riedl2

1Department of Mathematics and Statistics, Washington University in St. Louis, MO 63105; E-mail: beheshti@wustl.edu.
2Department of Mathematics, University of Notre Dame, IN 46556; E-mail: eriedl@nd.edu.

Received: 4 October 2021; Revised: 1 June 2022; Accepted: 27 June 2022

Abstract
We study rational surfaces on very general Fano hypersurfaces in P𝑛, with an eye toward unirationality. We prove
that given any fixed family of rational surfaces, a very general hypersurface of degree d sufficiently close to n
and n sufficiently large will admit no maps from surfaces in that family. In particular, this shows that for such
hypersurfaces, any rational curve in the space of rational curves must meet the boundary. We also prove that for any
fixed ratio 𝛼, a very general hypersurface in P𝑛 of degree d sufficiently close to n will admit no generically finite
maps from a surface satisfying 𝐻2 ≥ 𝛼𝐻𝐾 , where H is the pullback of the hyperplane class from P𝑛 and K is the
canonical bundle on the surface.
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1. Introduction

There are many competing notions of what it means for a variety to be ‘like’ projective space. Three of
the most common are: rational, meaning birational to P𝑛; unirational, meaning admitting a dominant
morphism from P𝑛; and rationally connected, meaning for two general points, there exists a rational
curve through both. Celebrated results of Griffiths-Harris, Artin-Mumford and Iskovskikh-Manin [CG,
AM, IM] show that there are unirational varieties that are not rational. However, it remains an open
question whether rationally connected varieties are always unirational.
Question 1.1. Does there exist a variety that is rationally connected but not unirational?

Due to the classification of surfaces, any counterexample would need to have dimension at least three.
It is generally expected that the answer to Question 1.1 is yes, and an often-discussed source of examples
is Fano hypersurfaces of large degree. A smooth hypersurface of degree d in P𝑛 is Fano if 𝑑 ≤ 𝑛, and
every Fano variety is rationally connected. It is known that smooth hypersurfaces of degree d in P𝑛 are
unirational when 2𝑑! ≤ 𝑛 (see [BR2] and [HMP]), but it is expected that very general hypersurfaces
of large degree, specifically those with degree approximately n in P𝑛, are not unirational. Schreieder
[Sch] has recently proved that the degree of a unirational parametrisation of a Fano hypersurface of
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2 Roya Beheshti and Eric Riedl

large degree must be extremely large by showing that it should be divisible by every integer m such that
𝑚 ≤ 𝑑 − log2 𝑛.

Since any unirational variety will be swept out by rational surfaces, we can answer Question 1.1
negatively by finding a rationally connected variety that is not swept out by rational surfaces, as proposed
by Kollár. To that end, there has been a lot of past work studying rational surfaces on Fano hypersurfaces.
Testa [Te] generalises work of Beheshti and Starr [BS] and proves that a smooth complete intersection
of index 1 is not swept out by rational surfaces S with 𝜔𝑆 nef. Observe that a rational curve in the
space of rational curves on X corresponds to a rational surface in X. Beheshti [Be] proves that spaces of
rational curves of low degree are not uniruled, and in [BR1] the authors generalise that work by showing
that there are no rational surfaces in X ruled by low-degree rational curves, the generic one of which is
smooth.

In this paper, we prove several results restricting the types of rational surfaces that lie in a general
hypersurface. Roughly speaking, we show that given a fixed surface or family of surfaces, a general Fano
hypersurface of degree approximately n in P𝑛 admits no generically finite maps from these surfaces.
More precisely, we prove the following.

Theorem 1.2. Let X be a hypersurface of degree d in P𝑛
C

. Then:

1. (compare to Corollary 3.8) If 𝑛 ≥ 𝑑 > (2−
√

2) (3𝑛+𝑘+1)
2 + 2 and X is very general with respect to some

fixed k-dimensional family of rational surfaces S → 𝐵, then X admits no generically finite maps
from a fibre of S → 𝐵. In particular, X contains no Hirzebruch surfaces, so there is no complete
rational curve in the locus parametrising embedded smooth rational curves in the Kontsevich space
M0,𝑛 (𝑋, 𝑒).

2. (compare to Corollary 3.6) If 𝛼 is a fixed positive number and 𝜆 < 1 is fixed with 𝜆 > 3
2 (2−

√
2), then

for sufficiently large n, a very general hypersurface of degree 𝑑 ≥ 𝑛𝜆 admits no generically finite
morphisms from a rational surface S with 𝐻 · 𝐾 ≤ 𝛼𝐻2, where H is the pullback of the hyperplane
class to S and K is the canonical class on S.

For particular types of surfaces, we prove stronger restrictions. See Corollary 2.9 for a statement
about del Pezzo surfaces and Corollary 2.11 for a statement about blowups of P2 at general points.

The basic idea of the proofs is to study the normal sheaf 𝑁 𝑓 /𝑋 of a morphism f from a rational surface
to X and understand the Euler characteristic of its twists. A direct calculation shows that 𝑁 𝑓 /𝑋 (𝑘𝐻) must
have negative Euler characteristic for small positive integers k. However, a careful analysis of globally
generated sheaves on rational surfaces shows that in fact, this Euler characteristic must be positive. In
Section 2, we lay out the core of this technique, working with twists of 𝑁 𝑓 /𝑋 . This allows us to find d
and n so that a very general degree d hypersurface X in P𝑛 will not be swept out by rational surfaces with
𝐻2 larger than some fixed multiple of 𝐻𝐾 . In Section 3, we reduce mod p and apply a similar argument
to the restricted tangent bundle 𝑓 ∗𝑇𝑋 . We show how techniques from [CR] then imply the statement of
Theorem 1.2.

2. Families of rational surfaces

By a family of smooth rational surfaces, we mean a smooth and projective morphism 𝑞 : S → 𝐵
such that B is a quasi-projective variety and the fibres of q are rational surfaces. Let X be a smooth
hypersurface of degree 𝑑 ≤ 𝑛 in P𝑛. Let S be a fibre of q and 𝑓 : 𝑆 → 𝑋 a generically finite morphism.
We denote by 𝑁 𝑓 the normal sheaf of f, which is the cokernel of the injective map 𝑇𝑆 → 𝑓 ∗𝑇𝑋 . To
emphasise the range, we sometimes write 𝑁 𝑓 ,𝑋 instead of 𝑁 𝑓 .

We start with a positivity result about the normal sheaf of f when X is a very general hypersurface.
The result and technique come from work of Voisin [Vo96] and Pacienza [Pa], although we give a proof
for completeness.

Proposition 2.1. Let X → 𝐻0(OP𝑛 (𝑑)) be the universal hypersurface on P𝑛, and let 𝑞 : S → 𝐵 be
a family of rational surfaces with morphisms 𝜙 : S → X and 𝑔 : 𝐵 → 𝐻0 (OP𝑛 (𝑑)) commuting with
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the natural projection maps. Assume that 𝜙 is dominant and its restriction f to a general fibre 𝑆 := S𝑏

of q is generically finite. Then 𝑁 𝑓 is generically globally generated and 𝑁 𝑓 (𝐻) is globally generated,
where H is the pullback of the hyperplane section under f.

Proof. Let 𝑓 : 𝑆 → 𝑋 be the restriction of 𝜙 to a general fibre of q. The fact that 𝑁 𝑓 is generically
globally generated follows from basic deformation theory and the fact that X is swept out by images of
surfaces from this family. Indeed, let 𝐵𝑋 = 𝑔−1([𝑋]) and 𝜙𝑋 : S𝑋 → 𝑋 the restriction of 𝜙 to the fibre
over 𝐵𝑋 . Then 𝜙𝑋 is dominant by our assumption. So by generic smoothness, for a general point (𝑏, 𝑠) of
S𝑋 , the induced map on Zariski tangent spaces 𝑇S𝑋 , (𝑏,𝑠) → 𝑇𝑋,𝑥 = 𝑓 ∗𝑇𝑋 |𝑠 is surjective. Therefore the
map 𝑇S𝑋 , (𝑏,𝑠) → 𝑁 𝑓 |𝑠 is surjective as well. There is a map from 𝑇S𝑋 , (𝑏,𝑠) to 𝐻0(𝑁 𝑓 ) (see, for example,
[Se, Theorem 3.4.8]), and the map 𝑇S𝑋 , (𝑏,𝑠) → 𝑁 𝑓 |𝑠 factors through the map 𝑇S𝑋 , (𝑏,𝑠) → 𝐻0 (𝑁 𝑓 ), so
the desired result follows.

For the second claim, we only use the assumption that for a general hypersurface X, there exists a
generically finite morphism from a fibre of q to X.

We can take an étale base change 𝑈 → 𝐻0(OP𝑛 (𝑑)) to obtain a family X𝑈 → 𝑈 of hypersurfaces
with a family Y → 𝑈 of rational surfaces parametrised by q mapping to fibres of X𝑈 → 𝑈 via a map
𝜓 : Y → X𝑈 such that Y admits a natural PGL𝑛+1 action. Denote by 𝜋 the projection map from X𝑈 to
P
𝑛, and let 𝜋′ = 𝜋 ◦ 𝜓. The induced map on tangent bundles 𝑇Y → 𝜋′∗𝑇P𝑛 is surjective because of the

PGL𝑛+1 invariance of Y . We have the following commutative diagram:

0 0�
⏐

�
⏐

𝜋′∗𝑇P𝑛
=−−−−−−→ 𝜋′∗𝑇P𝑛�

⏐
�
⏐

0 −−−−−−→ 𝑇Y −−−−−−→ 𝜓∗𝑇X𝑈 −−−−−−→ 𝑁𝜓,X𝑈 −−−−−−→ 0�
⏐

�
⏐ =

�
⏐

0 −−−−−−→ 𝑇Y/P𝑛 −−−−−−→ 𝜓∗𝑇X𝑈 /P𝑛 −−−−−−→ 𝑁 −−−−−−→ 0�
⏐

�
⏐

0 0

If u is a general point of U and 𝑓 : Y𝑢 → X𝑢 is the restriction of 𝜓 to the fibre over u, then
𝑁𝜓,X𝑈 |Y𝑢 = 𝑁 𝑓 ,X𝑢 , so to show 𝑁 𝑓 ,X𝑢 (𝐻) is globally generated, it is enough to show𝑇X𝑈 /P𝑛⊗𝜋∗OP𝑛 (1)
is globally generated. Consider the following diagram:

0 0�
⏐

�
⏐

𝜋∗O(𝑑) =−−−−−−→ 𝜋∗O(𝑑)�
⏐

�
⏐

0 −−−−−−→ O ⊗ 𝑆𝑑 −−−−−−→ 𝜋∗𝑇P𝑛 ⊕ O ⊗ 𝑆𝑑 −−−−−−→ 𝜋∗𝑇P𝑛 −−−−−−→ 0�
⏐

�
⏐ �

�
⏐

0 −−−−−−→ 𝑇X𝑈 /P𝑛 −−−−−−→ 𝑇X𝑈 −−−−−−→ 𝜋∗𝑇P𝑛 −−−−−−→ 0�
⏐

�
⏐

0 0

Using the eight lemma and looking at the first column, it follows that 𝑇X𝑈 /P𝑛 is the kernel of the map
O ⊗ 𝑆𝑑 → 𝜋∗O(𝑑). Such bundles are called Lazarsfeld-Mukai bundles, so we may say 𝑇X𝑈 /P𝑛 � 𝑀𝑑 ,
the pullback of the Lazarsfeld-Mukai bundle of OP𝑛 (𝑑).
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We can similarly define 𝑀1 to be the kernel of the natural map O ⊗ 𝑆1 → 𝜋∗O(1). The bundle 𝑀𝑑

admits a surjection from a direct sum of copies of 𝑀1, with maps given by multiplication by a general
degree 𝑑 − 1 polynomial. It follows that 𝑁ℎ,X𝑈 admits a surjection from a direct sum of copies of 𝑀1.
Taking the second wedge power of the sequence

0 → 𝑀1 → O ⊗ 𝑆1 → O(1) → 0,

we see that 𝑀1 (1) is globally generated, and hence 𝑀𝑑 (1) is too, so the global generation result
follows. �

We will use the above proposition to give a lower bound on the Euler characteristic of the twists of
the normal sheaf of f. To do so, we will need the following result.

Proposition 2.2. Let S be a rational surface over an algebraically closed field and 𝜋 : 𝑆 → P
1 a

dominant morphism whose general fibres are isomorphic to P1. Let E be a coherent sheaf of rank m on S
that is generically globally generated. Assume A and D are divisors on S such that A is nef and big, and

(a) 𝐸 (𝐴) is globally generated,
(b) deg𝐷 |𝐶 ≥ deg 𝐸 |𝐶 for a general fibre C of 𝜋,
(c) 𝐻1(O𝑆 (𝐷)) = 0.

Then 𝜒(𝐸 (𝐴 + 𝐷)) ≥ 𝑚 𝜒(O𝑆 (𝐴 + 𝐷)).

Proof. Since E is generically globally generated, choosing m general sections of E, we get an injective
map O𝑚

𝑆 → 𝐸 . The cokernel of this map, denoted by T, is a torsion sheaf. Since 𝐸 (𝐴) is globally
generated, there is a surjective map O𝑙

𝑆 → 𝐸 (𝐴) for some l. This in turn gives a surjective map
O𝑙

𝑆 → 𝑇 (𝐴) whose kernel we denote by M.

0

��

0

��
O𝑆 (𝐴)𝑚

��

= �� O𝑆 (𝐴)𝑚

��
0 �� 𝑀 ��

=

��

O𝑙
𝑆 ⊕ O𝑆 (𝐴)𝑚 ��

��

𝐸 (𝐴) ��

��

0

0 �� 𝑀 �� O𝑙
𝑆

��

��

𝑇 (𝐴)

��

�� 0

0 0.

We claim 𝐻1(𝑇 (𝐴 + 𝐷)) = 0. By our assumption, 𝐻1(O𝑆 (𝐷)) = 0, so applying the long exact
sequence of cohomology to the first sequence twisted with O𝑆 (𝐷), the claim follows if we show
𝐻2 (𝑀 (𝐷))) = 0. Applying the Leray spectral sequence corresponding to the map p, it is enough to
show that𝐻1(𝑀 (𝐷) |𝐶 ) = 0, where C is a general fibre of 𝜋. Since C is a general fibre, the first short exact
sequence above remains exacts after restricting to C, so𝑀 |𝐶 is torsion free. If𝑀 |𝐶 = O(𝑎1)⊕· · ·⊕O(𝑎𝑙),
then since 𝑀 |𝐶 injects into O𝑙

𝐶 , we have 𝑎𝑖 ≤ 0 for each i. Also,

𝑙∑
𝑖=1

𝑎𝑖 = − deg(𝑇 (𝐴)) |𝐶 = − deg𝑇 |𝐶 = − deg 𝐸 |𝐶
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since 𝑇 |𝐶 is torsion. If 𝑎𝑖 < −1 − 𝐷 · 𝐶 for some i, then

0 ≥
∑
𝑗≠𝑖

𝑎 𝑗 = − deg 𝐸 |𝐶 − 𝑎𝑖 > − deg 𝐸 |𝐶 + 𝐷 · 𝐶 + 1,

contradicting assumption (b). So 𝑎𝑖 ≥ −1 − 𝐷 · 𝐶 for every i and therefore 𝐻1(𝑀 (𝐷) |𝐶 ) = 0.
This shows that 𝐻1 (𝑇 (𝐴 + 𝐷)) = 0, so 𝜒(𝑇 (𝐴 + 𝐷)) ≥ 0, and the desired result follows from the

short exact sequence

0 → O𝑆 (𝐴 + 𝐷)𝑚 → 𝐸 (𝐴 + 𝐷) → 𝑇 (𝐴 + 𝐷) → 0. �

Corollary 2.3. With the same assumptions as in Proposition 2.1,

𝜒(𝑁 𝑓 ((𝑛 + 2 − 𝑑)𝐻 + 𝐾)) ≥ (𝑛 − 3) ( (𝑛 + 2 − 𝑑)2𝐻2 + (𝑛 + 2 − 𝑑)𝐻 · 𝐾
2

+ 1).

Proof. By Proposition 2.1, for a general 𝑓 : 𝑆 → 𝑋 , 𝑁 𝑓 is generically globally generated and 𝑁 𝑓 (𝐻)
is globally generated. We apply Proposition 2.2 to 𝐸 = 𝑁 𝑓 , 𝐷 = (𝑛 + 1 − 𝑑)𝐻 + 𝐾 and 𝐴 = 𝐻. After
possibly blowing up S at a point, we may assume there is a morphism 𝜋 : 𝑆 → P

1 whose general
fibres are smooth rational curves. Condition (a) of Proposition 2.2 is satisfied by our assumption.
Since deg 𝑁 𝑓 |𝐶 = (𝑛 + 1 − 𝑑)𝐻 · 𝐶 − 2 for a general fibre C of 𝜋, condition (b) is satisfied. By the
Kawamata-Viehweg vanishing theorem, condition (c) is also satisfied, so 𝜒(𝑁 𝑓 ((𝑛 + 2 − 𝑑)𝐻 + 𝐾)) ≥
(𝑛−3) 𝜒(O𝑆 (𝑛+2−𝑑)𝐻+𝐾). Applying the Riemann-Roch theorem, we get the desired inequality. �

In the next lemma, we calculate the Euler characteristics of the normal sheaf of 𝑓 : 𝑆 → 𝑋 twisted
with 𝑡𝐻 + 𝐾 directly.

Lemma 2.4. Let X be a smooth hypersurface of degree d in P𝑛, and let 𝑓 : 𝑆 → 𝑋 be a morphism
from a smooth rational surface S. If H denotes the pull-back of the hyperplane section, K the canonical
divisor of S, and 𝑁 𝑓 the normal sheaf of f, then we have

𝜒(𝑁 𝑓 (𝑡𝐻 + 𝐾)) = 1
2
((𝑛 − 3)𝑡2 + 2𝑡 (𝑛 + 1 − 𝑑) + 𝑛 + 1 − 𝑑2) 𝐻2

+ 1
2
(𝑡 (𝑛 − 1) + 𝑛 + 1 − 𝑑) 𝐻 · 𝐾

− 𝐾2 + 𝑛 + 9.

Proof. This is a straightforward computation using the pullback of the Euler sequence on P𝑛 and twisting
it with 𝑡𝐻 + 𝐾:

0 → O𝑆 (𝑡𝐻 + 𝐾) → O((𝑡 + 1)𝐻 + 𝐾)𝑛+1 → 𝑓 ∗𝑇P𝑛 (𝑡𝐻 + 𝐾) → 0

and the short exact sequence

0 → 𝑓 ∗𝑇𝑋 (𝑡𝐻 + 𝐾) → 𝑓 ∗𝑇P𝑛 (𝑡𝐻 + 𝐾) → O((𝑑 + 𝑡)𝐻 + 𝐾) → 0. �

Theorem 2.5. With the same assumptions as in Proposition 2.1, we have

(2(𝑛 + 1 − 𝑑) (𝑛 + 2 − 𝑑) + 𝑛 + 1 − 𝑑2) 𝐻2 + (3𝑛 − 3𝑑 + 5) 𝐻 · 𝐾 − 2𝐾2 + 24 ≥ 0, (2.1)

where K is the canonical divisor on S.

Proof. This follows from comparing Corollary 2.3 with Lemma 2.4 when 𝑡 = 𝑛 + 2 − 𝑑. �
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Corollary 2.6. Let 𝛼 be a fixed positive number and 𝜆 be a number satisfying 1 > 𝜆 > 2 −
√

2. Then
for sufficiently large n, a very general hypersurface of degree 𝑑 ≥ 𝜆𝑛 is not swept out by images of
generically finite morphisms from a rational surface S with 𝐻 · 𝐾 ≤ 𝛼𝐻2 on S.

To prove the corollary, we use Reider’s theorem [Re].

Theorem 2.7. (Reider) Let X be a smooth projective surface and L a nef divisor on X with 𝐿2 ≥ 5. If
|𝐿 + 𝐾𝑋 | has a base-point 𝑥 ∈ 𝑋 , then there is an effective divisor D containing x satisfying

𝐿 · 𝐷 = 0, 𝐷2 = −1

or

𝐿 · 𝐷 = 1, 𝐷2 = 0.

Proof of Corollary 2.6. Suppose to the contrary that a very general hypersurface X is covered by images
of such morphisms. Blowing down S, we can further assume 𝑓 : 𝑆 → 𝑋 does not contract any (−1)-
curve. Applying Theorem 2.5 to the hypotheses given, we conclude that there is a generically finite
morphism 𝑓 : 𝑆 → 𝑋 that does not contract any (−1)-curve and satisfies the inequality of Theorem
2.5. Since H is nef, applying Reider’s theorem to 3𝐻, we see that 3𝐻 + 𝐾 is base-point free. Therefore
(3𝐻 + 𝐾)2 ≥ 0, so −2𝐾2 ≤ 18𝐻2 + 12𝐻 · 𝐾 . Since 𝑑 ≥ 𝜆𝑏 and 𝜆 > 2 −

√
2, the coefficient of 𝐻2 in 2.1

becomes arbitrarily negative compared to the coefficient of 𝐻 · 𝐾 , so we get a contradiction. �

Remark 2.8. Unfortunately, there exist examples of rational surfaces containing divisors H with 𝐻2

small relative to 𝐻 · 𝐾 .
Take a general pencil of degree b curves in P2, and let S be the blowup of P2 along the 𝑏2 base points

of the pencil. Let 𝐻 = (𝑏 + 1)𝐿 −
∑

𝑖 𝐸𝑖 , where the sum ranges over all of the exceptional divisors. Then
H is base-point free and big. Moreover, 𝐻2 = (𝑏 +1)2 − 𝑏2 = 2𝑏 +1, while 𝐻 ·𝐾 = −3𝑏 + 𝑏2 = 𝑏(𝑏−3).
Thus, 𝐻 · 𝐾 grows faster than 𝐻2 as b becomes large, and so we cannot hope to obtain a linear bound
for 𝐻 · 𝐾 in terms of 𝐻2.

For another example, consider Example 2 from [CKLLMMT]. The authors describe a blowup S of
P

2 at 19 points together with a sequence of big and nef divisors 𝐷𝑛 such that 𝐾𝑆 · 𝐷𝑛 goes to infinity
while 𝐷2

𝑛 = 2 for all n.

Corollary 2.9. If X is a very general hypersurface in P𝑛
C

of degree 𝑑 > (2 −
√

2)𝑛 + 3, then the images
of generically finite morphisms from del Pezzo surfaces to X cannot sweep out X.

We remark that 2 −
√

2 ≈ .59, so the result holds for 𝑑 > 3𝑛
5 + 3.

Proof. Suppose to the contrary that X is covered by images of generically finite morphisms from del
Pezzo surfaces. Then by Theorem 2.5, there exist a del Pezzo surface S and a generically finite morphism
𝑓 : 𝑆 → 𝑋 for which inequality (2.1) holds. We show that this is not possible. Let B be the coefficient
of 𝐻2 in inequality (2.1). We first show 𝐵 < −5𝑛 − 4. To see this, note that since 𝑑 > (2 −

√
2)𝑛 + 3,

𝑛 − 𝑑 < (
√

2 − 1)𝑛 − 3, so

𝐵 < 2((
√

2 − 1)𝑛 − 2) ((
√

2 − 1)𝑛 − 1) + 𝑛 + 1 − ((2 −
√

2)𝑛 + 3)2 ≤ −5𝑛 − 4.

Since S is a del Pezzo surface, −𝐾 is effective, so 𝐻 · 𝐾 < 0 and 𝐾2 > 0. So the left-hand side of
inequality (2.1) is at most −5𝑛 − 4 − (3𝑛 − 3𝑑 + 5) − 2 + 24, which is negative since 𝑑 ≤ 𝑛 and 𝑛 ≥ 3.
This gives a contradiction. �

Next we apply Theorem 2.5 to the blow-up of P2 in general points. Recall the following conjecture
of Harbourne and Hirschowitz [Har] and [Hi].
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Conjecture 2.10 (Harbourne-Hirschowitz). Let S be the blow-up of P2 at k general points and L a line
bundle on S. Then ℎ1 (𝐿) ≠ 0 if and only if there is a (−1)-curve E in S such that

deg(𝐿 |𝐸 ) ≤ −2.

It is known that the Harbourne-Hirschowitz conjecture holds for 𝑚 ≤ 9 [Ci, Theorem 5.1].

Corollary 2.11. Suppose 𝑑 > (2−
√

2)𝑛 + 4, 𝑛 ≥ 4, and X is a very general hypersurface of degree d in
P
𝑛
C

. If the Harbourne-Hirschowitz Conjecture holds true, then the images of generically finite morphisms
from blow-ups of P2 in general points do not cover X.

Proof. Suppose to the contrary that a very general hypersurface X of degree d is covered by the images
of generically finite morphisms from blowups of P2 in general points. Then by Theorem 2.5, there is
a rational surface S obtained by blowing up P2 in general points and a generically finite morphism
𝑓 : 𝑆 → 𝑋 such that inequality (2.1) is satisfied. We can assume f does not contract any (−1)-
curve, since otherwise we can consider the induced morphism from the blow-down of S to X instead.
By the Harbourne-Hirschowitz conjecture, 𝐻1(𝑆,O𝑆 (𝐻)) = 0, so by the Riemann-Roch theorem,
𝐻 (𝐻 − 𝐾) = 2𝜒(𝐻) − 2 ≥ −2. Therefore 𝐻 · 𝐾 ≤ 𝐻2 + 2.

By [RY, Theorem 2.3], if 𝑛 < 𝑑2+3𝑑+6
6 , then there is no rational curve on the space of lines in X. Our

assumption on the degree implies this inequality is satisfied, so we can assume the image of S under f
is not covered by a pencil of lines. In particular, the image of S has degree at least 2, so 𝐻2 ≥ 2. Since
the image of S is not covered by lines, and since H is big and nef, by Reider’s theorem [Re], 2𝐻 + 𝐾 is
base-point free. Therefore (2𝐻 + 𝐾)2 ≥ 0, so −2𝐾2 ≤ 8𝐻2 + 8𝐻 · 𝐾 ≤ 16𝐻2 + 16. So if we denote the
left-hand side of inequality 2.1 by A, then we have

𝐴 ≤ (2(𝑛 + 1 − 𝑑) (𝑛 + 2 − 𝑑) + 𝑛 + 1 − 𝑑2 + (3𝑛 − 3𝑑 + 5) + 16) 𝐻2 + 2(3𝑛 − 3𝑑 + 5) + 40.

Denote the coefficient of 𝐻2 in the above inequality by B. We claim 𝐵 < −(3𝑛 − 3𝑑 + 5) − 20. This is
because by our assumption 𝑛 − 𝑑 ≤ (

√
2 − 1)𝑛 − 4, so

𝐵 + (3𝑛 − 3𝑑 + 5) + 20 < 2((
√

2 − 1)𝑛 − 3) ((
√

2 − 1)𝑛 − 2) + 𝑛 + 1 − ((2 −
√

2)𝑛 + 4)2

+ 6((
√

2 − 1)𝑛 − 4) + 46

= (4
√

2 − 11)𝑛 + 19
< 0,

where the last line follows from the assumption 𝑛 ≥ 4. Since 𝐻2 ≥ 2, we get 𝐴 < 0, a
contradiction. �

3. Morphisms from a fixed rational surface

Here we consider maps from a fixed rational surface S. Let S be a smooth rational surface, and let
Hom0 (𝑆, 𝑋) denote the open locus in Hom(𝑆, 𝑋) parametrising generically finite morphisms from S
to X. We say that S strongly sweeps out a variety X if the natural map Hom0(𝑆, 𝑋) × 𝑆 → 𝑋 × 𝑆
given by ( 𝑓 , 𝑝) ↦→ ( 𝑓 (𝑝), 𝑝) is dominant. In other words, X is strongly swept out by S if for any
pair of a general points 𝑝 ∈ 𝑆 and 𝑞 ∈ 𝑋 , there is a generically finite morphism 𝑆 → 𝑋 sending
p to q.

Proposition 3.1. Suppose that X is a very general hypersurface of degree d in P𝑛
C

and X is strongly swept
out by S. Then there is 𝑓 ∈ Hom0(𝑆, 𝑋) such that 𝑓 ∗𝑇𝑋 is generically globally generated and 𝑓 ∗𝑇𝑋 (𝐻)
is globally generated.
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Proof. Consider the map Hom0 (𝑆, 𝑋) × 𝑆 → 𝑋 × 𝑆. Then for any ( 𝑓 , 𝑝) ∈ Hom0(𝑆, 𝑋) × 𝑆, we have
the following diagram:

𝑇Hom0 (𝑆,𝑋 )×𝑆, (𝑝, 𝑓 )
𝛼−−−−−−→ 𝑇𝑋×𝑆, ( 𝑓 (𝑝) , 𝑝)

𝜋1
⏐� 𝜋2

⏐�
𝑇Hom0 (𝑆,𝑋 ) , 𝑓 = 𝐻0 ( 𝑓 ∗𝑇𝑋 )

𝛽
−−−−−−→ 𝑇𝑋, 𝑓 (𝑝)

Let (𝑝, 𝑓 ) be a general point of an irreducible component of Hom0 (𝑆, 𝑋) × 𝑆 that dominates
𝑋 × 𝑆. Then if U𝑟𝑒𝑑 is the largest reduced subscheme of Hom0(𝑆, 𝑋), generic smoothness shows that
𝛼 |𝑇U𝑟𝑒𝑑 , (𝑝, 𝑓 ) is surjective, and hence 𝜋2 ◦ 𝛼 is surjective. It follows that 𝛽 is surjective, and hence 𝑓 ∗𝑇𝑋
is generically globally generated.

To prove 𝑓 ∗𝑇𝑋 (𝐻) is globally generated, we repeat the argument of Proposition 2.1 with X replaced
by X × 𝑆. We can find a dominant morphism𝑈 → 𝐻0(OP𝑛 (𝑑)) and a morphism 𝜓 : 𝑈 × 𝑆 → X𝑈 × 𝑆
such that if 𝜋′ : 𝑈 × 𝑆 → P

𝑛 is the natural morphism, then the induced map on tangent spaces
𝑇𝑈×𝑆 → 𝜋′∗𝑇P𝑛×𝑆 is surjective. The same argument as in Proposition 2.1 shows that 𝑇X𝑈×𝑆/P𝑛×𝑆 (𝐻) is
globally generated, and therefore 𝑁𝜓,X𝑈×𝑆 (𝐻) is globally generated. If 𝑓 : 𝑆 → 𝑋 is the restriction of
𝜓 to {𝑢} × 𝑆 for a general point u of U, then 𝑁𝜓,X𝑈×𝑆 |𝑢×𝑆 = 𝑁 𝑓 ,𝑋×𝑆 = 𝑓 ∗𝑇𝑋 , and the desired result
follows. �

Proposition 3.2. Suppose S is a fixed rational surface. If 𝑑 > (2 −
√

2)𝑛 + 2 and X is a very general
hypersurface of degree d in P𝑛

C
, then X is not strongly swept out by S.

Proof. Assume to the contrary that X is strongly swept out by S. Then by Proposition 3.1, there is
𝑓 : 𝑆 → 𝑋 such that 𝑓 ∗𝑇𝑋 is generically globally generated and 𝑓 ∗𝑇𝑋 (𝐻) is globally generated. Passing
to finite characteristic, we can assume there is a sufficiently large prime number p, a rational surface 𝑆𝑝 ,
a smooth hypersurface 𝑋𝑝 of degree d and a morphism 𝑓𝑝 : 𝑆𝑝 → 𝑋𝑝 , all defined over an algebraically
closed field of characteristic p such that 𝑓 ∗𝑝𝑇𝑋𝑝 is generically globally generated and 𝑓 ∗𝑝𝑇𝑋𝑝 (𝐻) is
globally generated.

For a coherent sheaf F on 𝑆𝑝 , let 𝐹 (𝑝) denote the pullback of F under the absolute Frobenius
morphism of X (see [Ha, Proposition 6.1]). Since 𝑓 ∗𝑝𝑇𝑋𝑝 (𝐻) is globally generated, ( 𝑓 ∗𝑝𝑇𝑋𝑝 ) (𝑝) (𝑝𝐻)
is also globally generated. Since 𝑓 ∗𝑝𝑇𝑋𝑝 is generically globally generated, ( 𝑓 ∗𝑝𝑇𝑋𝑝 ) (𝑝) will be as
well. Let K denote the canonical divisor of 𝑆𝑝 . A similar computation as in Lemma 2.4 shows
that

𝜒( 𝑓 ∗𝑝𝑇
(𝑝)
𝑋𝑝

(𝑡 𝑝𝐻 + 𝐾)) = 1
2
(𝑝2 (𝑛(𝑡 + 1)2 + 2𝑡 + 1 − (𝑑 + 𝑡)2)𝐻2 + 𝑝(𝑛𝑡 + 𝑛 + 1 − 𝑑 − 𝑡)𝐻𝐾) + (𝑛 − 1).

(3.1)

We can now apply Proposition 2.2 with 𝐸 = 𝑓 ∗𝑝𝑇
(𝑝)
𝑋𝑝

, 𝐴 = 𝑝𝐻 and 𝐷 = 𝑝(𝑛 + 2 − 𝑑)𝐻 + 𝐾 to get a
contradiction. Since 𝑆𝑝 is a rational surface, by [Mu, Theorem 3], 𝐻1 (𝐷 + 𝑝𝐻) = 0, so condition (c) of
Proposition 2.2 is satisfied. After possibly blowing up 𝑆𝑝 at a point, we can assume there is a morphism
𝑆𝑝 → P1 whose general fibres are smooth rational curves. If C denotes a general fibre of this morphism,
then deg( 𝑓 ∗𝑝𝑇

(𝑝)
𝑋𝑝

) |𝐶 = 𝑝(𝑛 + 1 − 𝑑)𝐻 · 𝐶 ≤ 𝑝(𝑛 + 2 − 𝑑)𝐻 · 𝐶 − 2, so condition (b) is also satisfied.
Therefore,

𝜒( 𝑓 ∗𝑝𝑇
(𝑝)
𝑋𝑝

((𝑛 + 3 − 𝑑)𝑝𝐻 + 𝐾)) ≥ (𝑛 − 1)𝜒(O𝑆𝑝 ((𝑛 + 3 − 𝑑)𝑝𝐻 + 𝐾))

=
1
2
(𝑝2 (𝑛 − 1) (𝑛 + 3 − 𝑑)2𝐻2 + 𝑝(𝑛 − 1) (𝑛 + 3 − 𝑑)𝐻𝐾) + (𝑛 − 1).
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Comparing the coefficients of 𝐻2 in this equation and Equation (3.1) when 𝑡 = 𝑛 + 3 − 𝑑, and letting p
increase, we see if the above inequality holds, then we must have

𝑛(𝑡 + 1)2 + 2𝑡 + 1 − (𝑑 + 𝑡)2 ≥ (𝑛 − 1) (𝑛 + 3 − 𝑑)2.

Letting 𝑡 = 𝑛 + 3 − 𝑑, this gives

𝑛 + (𝑛 + 3 − 𝑑)2 + 2(𝑛 + 3 − 𝑑) (𝑛 + 1) + 1 − (𝑛 + 3)2 ≥ 0.

But since we assume 𝑑 > (2 −
√

2)𝑛 + 2, we have 𝑛 − 𝑑 < (
√

2 − 1)𝑛 − 2, so the left-hand side of the
above inequality is smaller than

𝑛 + ((
√

2 − 1)𝑛 + 1)2 + 2((
√

2 − 1)𝑛 + 1) (𝑛 + 1) + 1 − (𝑛 + 3)2 = −5 − (6 − 4
√

2)𝑛 < 0,

a contradiction. �

We now implement a technique from [CR] to show that a very general X admits no generically finite
morphisms from S. We recall some terminology. Let U𝑛,𝑑 be the space of pairs (𝑝, 𝑋), where X is a
degree d hypersurface in P𝑛 and 𝑝 ∈ 𝑋 ⊂ P𝑛. Given a subset B𝑟 ⊂ U𝑟 ,𝑑 , we let the tower of induced
varieties of B𝑟 be defined inductively by B 𝑗+1 ⊂ U 𝑗+1,𝑑 is the set of pairs (𝑝, 𝑋) such that some linear
section of the pair (𝑝, 𝑋) is in B 𝑗 , 𝑗 ≥ 𝑟 .

In our setting, we are interested in proving that B𝑛 has high codimension in U𝑛,𝑑 , from which it will
follow that a very general hypersurface will contain no points of B𝑛. The tool we use is the following.

Theorem 3.3 (Theorem 4.8 from [CR]). Let B𝑟 ⊂ U𝑟 ,𝑑 be an integral, 𝑃𝐺𝐿𝑟+1-invariant subvariety,
and let B𝑛, 𝑛 ≥ 𝑟, be the tower of induced subvarieties of B𝑟 . Then if B𝑚 is not dense in U𝑚,𝑑 for some
𝑚 > 𝑟 , either

1. codimB𝑛 ⊂ U𝑛,𝑑 is at least 2(𝑚 − 𝑛) + 1 for every 𝑟 ≤ 𝑛 ≤ 𝑚, or
2. there is some B1 ⊂ U1,𝑑 such that B𝑛 is in the closure of the tower of induced subvarieties of B1, or
3. B𝑚,𝑑 is the space of pairs (𝑝, 𝑋) with p contained in a line ℓ lying in X.

We wish to show that in our setting, we need only consider case (1).

Corollary 3.4. Let B𝑟 ⊂ U𝑟 ,𝑑 be an integral, 𝑃𝐺𝐿𝑟+1-invariant subvariety, and let B𝑛,𝑑 be the tower
of induced subvarieties of B𝑟 for 𝑛 ≥ 𝑟 . Then if B𝑚 is not dense in U𝑚,𝑑 for some 𝑚 ≥ 𝑑 + 1 ≥ 𝑟 ,
codimB𝑛 ⊂ U𝑛,𝑑 is at least 2(𝑚 − 𝑛) + 1.

Proof. First observe that for 𝑚 > 𝑑 + 1, the space of lines in any degree d hypersurface in P𝑛 will sweep
out X, so case (3) of Theorem 3.3 cannot occur. We next show that case (2) cannot occur. Let B1 ⊂ U1,𝑑 ,
and let B𝑛 ⊂ U𝑛,𝑑 be the tower of induced varieties. It suffices to show B𝑑+1 is dense in U𝑑+1,𝑑 . If a
general element of B1 has at least two distinct points, it follows from [CR] Proposition 4.10(1) that
B𝑛 is dense in U𝑛,𝑑 , which contradicts the hypothesis. Thus, it remains to consider the cases where B1
consists of d-fold points and show that the tower of induced varieties is dense in U𝑚,𝑑 . To see this, let
(𝑝,𝑉 (𝐹)) ∈ U𝑛,𝑑 be a general point. Expand the equation of F around p to get 𝐹 = 𝐹1 + · · · 𝐹𝑑 , where
𝐹𝑖 is the ith order part of F near p. Then the space of lines in P𝑛 meeting 𝑉 (𝐹) to order d near p is
𝑉 (𝐹1, . . . , 𝐹𝑑−1). This is nonempty for 𝑑 ≤ 𝑛 − 1, so the result follows. �

Using this result, we can prove a series of results about the nonexistence of rational surfaces in a very
general hypersurface X, using our previous work.

Theorem 3.5. Let 𝑑, 𝑛 and c be integers with 𝑑 < 𝑛+𝑐. If a very general hypersurface of degree d in P𝑛+𝑐
C

is not swept out by rational surfaces from a certain class (e.g., images of generically finite morphisms
from Hirzebruch surfaces), then for a very general hypersurface X of degree d in P𝑛, surfaces in this
class sweep out a subvariety of X of codimension at least 2𝑐 + 1. In particular, if 𝑐 ≥ 𝑛−3

2 , then X
contains no surfaces in this class.
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Proof. Let B𝑛,𝑑 be the locus in U𝑛,𝑑 swept out by surfaces in the given class, and let B𝑟 ,𝑑 be the tower
of induced varieties from B𝑛,𝑑 . Then by assumption, we have that B𝑛+𝑐,𝑑 has codimension at least 1 in
U𝑛+𝑐,𝑑 . By Corollary 3.4, it follows that B𝑛,𝑑 has codimension at least 2𝑐+1 in U𝑛,𝑑 , and the first part of
the result follows. Since generically finite morphisms from a surface to X must sweep out a subvariety
of dimension at least 2, we see that X will admit no such morphisms if 2𝑐 + 1 ≥ 𝑛 − 1 − 1 = 𝑛 − 2. The
second result follows. �

Corollary 3.6. Let 𝛼 be a fixed positive number and 𝜆 < 1 another real number with 𝜆 > 3
2 (2 −

√
2).

Then for sufficiently large n, a very general hypersurface of degree 𝑑 ≥ 𝑛𝜆 contains no images of
generically finite morphisms from a rational surface S with 𝐻 · 𝐾 ≤ 𝛼𝐻2 on S.

Proof. This is a direct application of Theorem 3.5 to the results of Corollary 2.6, replacing 𝜆with 2𝜆
3 . �

Corollary 3.7. Let S be a rational surface and 𝑋 ⊂ P𝑛
C

a very general hypersurface of degree greater
than (2 −

√
2) (𝑛 + 1) + 2. Then X is not covered by the images of generically finite morphisms from S.

Proof. Observe that the result is immediate for 𝑑 > 𝑛, so we may assume 𝑑 ≤ 𝑛. Let 𝑝 ∈ 𝑆 be a general
point, and let B𝑛,𝑑 be the locus of images of p under a generically finite morphism 𝑆 → 𝑋 . Let B𝑛+1,𝑑
be part of the tower of induced varieties of B𝑛,𝑑 . Then by Proposition 3.2, B𝑛+1,𝑑 has codimension at
least 1 in U𝑛+1,𝑑 . By Corollary 3.4, it follows that B𝑛,𝑑 has codimension at least 3 in U𝑛,𝑑 . Thus, the
locus in X swept out by the images of p under generically finite morphisms from S is codimension at
least 3 in X. It follows that the images of S under generically finite morphisms sweep out a subvariety
of codimension at least 1, as required. �

Corollary 3.8. Let S → 𝐵 be a family of rational surfaces of dimension dim 𝐵 = 𝑘 and n and d be
integers satisfying 𝑛 ≥ 𝑑 > (2−

√
2) (3𝑛+𝑘+1)

2 + 2. Then if 𝑋 ⊂ P𝑛
C

is a very general hypersurface of degree
d, X admits no generically finite morphisms from any surface in the fibres of S → 𝐵.

Note that 3(2−
√

2)
2 < 9

10 , so the result holds for 𝑑 ≥ 9𝑛
10 + 3𝑘

10 + 3.

Proof. As we saw in the proof of Corollary 3.7, for any fixed surface S in the fibres of S → 𝐵, we
can construct B𝑟 ,𝑑 , the tower of induced varieties on the locus in U𝑛,𝑑 swept out by generically finite
images from S. We have already seen that B𝑚,𝑑 has codimension at least 1 in U𝑚,𝑑 for some m satisfying
𝑑 > (2 −

√
2) (𝑚 + 1) + 2. Thus, B𝑚−𝑐,𝑑 will have codimension at least 2𝑐 + 1 in U𝑚−𝑐,𝑑 for r in this

range. If we let B′
𝑚,𝑑 be the union of all the B𝑚,𝑑 over all the different possible S, then B′

𝑚−𝑐,𝑑 will
have codimension at least 2𝑐 + 1 − 𝑘 in U𝑚−𝑐,𝑑 . If 2𝑐 + 1 − 𝑘 ≥ 𝑚 − 𝑐, then we see that a very general
X of degree d in P𝑚−𝑐 will admit no generically finite maps from the fibres of S. Using 𝑚 − 𝑐 = 𝑛 and
rearranging, we see that the result holds as claimed. �

Corollary 3.9. If X is a very general hypersurface of degree d in P𝑛 and 𝑛 ≥ 𝑑 > (2−
√

2) (3𝑛+1)
2 + 2, then

X admits no generically finite maps from Hirzebruch surfaces. In particular, any rational curve in the
space of rational curves on X has to meet the boundary.
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